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Abstract35

A central question in the study of ecology and evolution is: "Why are there so many species?"36

It has been shown that certain forms of the Lotka-Volterra (L-V) competition equations lead37

to an unlimited number of species. Furthermore, these authors note how any change in the38

nature of competition (the competition kernel) leads to a �nite or small number of coexisting39

species. Here we build upon these works by further investigating the L-V model of unlimited40

niche packing as a reference model and evolutionary game for understanding the environmen-41

tal factors restricting biodiversity. We also examine the combined eco-evolutionary dynamics42

leading up to the species diversity and traits of the ESS community in both in�nite and �nite43

niche-packing versions of the model. As an L-V game with symmetric competition, we let44

the strategies of individuals determine the strength of the competitive interaction (like com-45

petes most with like) and also the carrying capacity of the population. We use a mixture of46

analytic proofs (for one and two species systems) and numerical simulations. For the model47
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of unlimited niche packing, we show that a �nite number of species will evolve to speci�c con-48

vergent stable minima of the adaptive landscape (also known as species archetypes). Starting49

with a single species, faunal buildup can proceed either through species doubling as each50

diversity-speci�c set of minima are reached, or through the addition of species one-by-one by51

randomly assigning a speciation event to one of the species. Either way it is possible for an52

unlimited number or species to evolve and coexist. We examine two simple and biologically53

likely ways for breaking the in�nite niche-packing: 1) some minimum level of competition54

among species, and 2) constrain the fundamental niche of the trait space to a �nite interval.55

When examined under both ecological and evolutionary dynamics, both modi�cations result56

in convergent stable ESSs with a �nite number of species. When the number of species is57

held below the number of species in an ESS coalition, we see a diverse array of convergent58

stable niche archetypes that consist of some species at maxima and some at minima of the59

adaptive landscape. Our results support those of others and suggest that instead of focusing60

on why there are so many species we might just as usefully ask, why are there so few species?61
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Introduction62

Hutchinson (1959) in his �Homage to Santa Rosalia�asks �Why are there so many species?�63

This succinctly summed up and anticipated the enduring and important question of what64

promotes and maintains biodiversity. The development of the Lotka-Volterra (L-V) com-65

petition equations (Volterra 1926, 1928, Lotka 1927) and Gause�s (1931, 2003) empirical66

application of this model led to Gause�s Principle or the Competitive Exclusion Principle.67

For similar species to coexist they must occupy separate niches. With explicit resource dy-68

namics in models of competition, this general result requires that the number of coexisting69

species cannot exceed the number of distinct resources (including both opportunities and70

hazards) (Tilman 1982). In typical consumer-resource models the niche axis o¤ers discrete71

resources such as A or B with nothing in between.72

What happens when the niche axis is continuous? Does this provide an in�nite number73

of resources and hence the potential for unlimited niche packing? MacArthur (1958) found74

�ve species of warblers dividing up the foliage height and breadth of conifers � �ve species75

and �ve foliage habitats. Yet, in reality the number of habitats recognized by MacArthur76

was a continuum. The presence of the �ve bird species in somewhat discrete and predictable77

locations within the tree de�ned the �ve habitats. Fewer or more species would have led78

to di¤erent conclusions. A �nite number of distinct species coexisting on continuous niche79

axes has led to an interest in limiting similarity and Hutchinson�s ratios (MacArthur and80

Levins 1967). Key questions that are central to the study of ecology but for which we81

still do not have clear answers are: How similar can two species be to each other and still82

coexist? Do traits such as the ratio of body sizes, beak sizes, or other functional traits83

associated with close competitors provide useful insights into community organization and84

species coexistence?85

Just as the Lotka-Volterra competition equations provided useful insights into the coexis-86
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tence or exclusion of species from a community, they have provided an equally valuable tool87

for modelling and understanding eco-evolutionary dynamics (Morris and Lundberg 2011)88

where the number of species and their traits are allowed to evolve in response to ecological89

interactions. Roughgarden (1979) used Gaussian functions for the resource axis (distribution90

of carrying capacities) and for the competition coe¢ cients (like competes most with like) to91

show how unlimited niche packing can occur along any discrete interval of the resource axis.92

In essence, the community of competitors becomes a continuum of species whose share in93

the community also follows a Gaussian curve (Roughgarden 1979, Barabás et al. 2012).94

A number of empirical objections can be raised regarding this model of unlimited niche95

packing: sexual reproduction, minimum viable population sizes, boundaries to the length96

of resource axes, deviations from the idealized Gaussian distributions just to name a few97

(Gyllenberg and Meszéna 2005, Barabás et al. 2012). Indeed, modi�cations of the L-V98

model as an evolutionary game have provided insights into niche coevolution, speciation,99

and community structure where the number of species at the eco-evolutionary equilibrium100

involve a �xed number of species with discrete traits (Brown and Vincent 1987, 1992, Metz101

et al. 1996, Cohen et al. 1999, Ripa et al 2009). Here we build upon and extend these102

prior works. We add to prior work of the L-V model with unlimited niche packing by103

examining the ecological and evolutionary dynamics that can lead to faunal buildup. This104

model provides an idealized model that, while unlikely in nature, can be used as a starting105

point for understanding how biodiversity in nature evolves and coexists. With a world106

full of resource continuum, we can rephrase Hutchinson�s (1959) observation of �why are107

there so many species?� to �why are there so few species?�. Unlimited niche packing is108

possible in theory, and yet seem in nature. Asking why not might provide new insights into109

questions of biodiversity. The L-V competition evolutionary game with in�nite niche packing110

provides an excellent reference model for understanding limiting similarity, Hutchinson�s111

ratios, and community organization. It also complements other game theory models of112
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species coexistence based on predator-prey models (Ripa et al. 2009) such as the cyclic113

dynamics seen in versions of rock-paper-scissor games (Szolnoki et al. 2014).114

Our goal is to explore Roughgarden�s model of in�nite niche packing in greater detail115

that explicitly considers evolutionary dynamics, and the properties of various convergent116

stable points of the adaptive landscape when species numbers fall below that of the ESS.117

We will do this as an evolutionary game while preserving the resource and competition118

curves proposed by Roughgarden (1979) and studied extensively by others (Bulmer 1974 ;119

Sasaki and Ellner 1995; Sasaki 1997; Szabó and Meszéna 2006; Parvinen and Meszéna 2009;120

Barabás et al. 2013; D�Andrea et al. 2013). The model produces unlimited niche packing121

and a continuum of species with spec�c characteristics and population sizes (Meszéna et al.122

2006;Barabás and Meszéna 2009). What emerges is a model of faunal buildup (taken as far123

as 1024 coexisting species) through continual adaptive speciation as the number of species124

grows towards unlimited niche packing . In this model, we show that any �nite number125

of species will evolve to a convergent stable, non-ESS, "niche archetype". While mostly126

demonstrated by simulations we obtain analytic solutions for the two species case which127

allows us draw explicit conclusions regarding the e¤ects of niche breadth and competition128

parameters on character divergence and population sizes. In going towards an unlimited129

number of species, we show that the ultimate contiguous distribution of "species" is a game-130

theoretic, Nash solution. We show that the convergent stable community of 1024 species131

essentially �ts this distribution. We then follow the lead of those (Gyllenberg and Meszéna132

2005;Barabás et al. 2012) who shown that the competition functions that permit unlimited133

niche packing are not robust. Any modi�cation to the functional form leads to a collapse134

of the continuum of coexisting species to �nite numbers. Here, we add eco-evolutionary135

dynamics to two modi�cations of the competition function to study the diversity of species136

at the ESS, and faunal buildup to the ESS startling with a one or a reduced number of species137

Finally, we add eco-evolutionary dynamics to a modi�ed competition function proposed by138
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Leimer et al. (2013) characterized by the possibility of unlimited niche packing within the139

context of convergent stable maxima rather than minima. Ultimately, the factors that cause140

the continuum of species to cease may be the model�s greatest value for understanding what141

actually happens in the nitty-gritty of real biological communities in nature.142

An Eco-Evolutionary Lotka-Volterra Model143

Following Roughgarden (1979) and Brown and Vincent (1987), we develop an evolutionary144

game based on the Lotka-Volterra competition model. To do this we imagine a continuous145

valued trait, u, that can potentially take on any value from negative in�nity to positive146

in�nity. Carrying capacity, K, is in�uenced by the individual�s own strategy, v. We let147

the vector u = (u1; :::; un) denote the di¤erent strategies currently found among individuals148

within the ecological community. For this paper, we will assume that the di¤erent ui�s149

represent distinct strategies associated with di¤erent species. Furthermore, we assume that150

species breed true. The total number of species currently within the community is n. The151

vector x = (x1; :::; xn) represents the current population sizes of each of the species such152

that xi is the population size of species ui. With these assumptions, we can now write the153

expected per capita growth rate (i.e. �tness) of a focal individual using strategy, v, as a154

Lotka-Volterra competition game:155

G(v;u;x) =
r

K (v)

"
K(v)�

nX
j=1

a (v; uj)xj

#
(1)

We assume that competition is most intense between individuals using the same strategy156

and that competition between two species declines as the di¤erence in their strategy values157

increases. Like competes most with like. Hence, we let the competition coe¢ cient, a (v; uj),158

be a Gaussian relationship based on the di¤erence between the focal individual�s strategy159
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and that of the competitor. The function reaches a maximum of 1 when v = ui and declines160

as the strategies of the competitors diverge (�gure 1 A). This yields the following:161

a (v; ui) = exp

"
�(v � ui)

2

2�2a

#
(2)

For the carrying capacity we assume a Gaussian relationship between the individual�s162

strategy, v, and K. The relationship is centered on v = 0 such that K(v) reaches a163

maximum of Km when v = 0 and then K(v) declines as v deviates from 0 (�gure 1 B). This164

yields the following:165

K (v) = Km exp

�
� v2

2�2k

�
(3)

Two parameters will be key to the properties and dynamics of this model. These are166

the width of the niche axis, �2k, and the width of the competition coe¢ cient, �
2
a. As �2k167

increases, the width of the niche axis increases and the decline in K(v) as the individual�s168

strategy deviates from v = 0 becomes less severe (�gure 1 B). As �2a increases, an individual169

receives less of a bene�t through a reduction in competition by deviating its strategy from170

the strategies of others. With a large �2a, the competition coe¢ cient, a (v; ui), declines171

slowly with jv � uij (�gure 1 A).172

This model has been analyzed using Darwinian Dynamics (Vincent et al. 1993, Vincent173

and Brown 2005). The Gfunction can be used to determine both population dynamics, @xi
@t
,174

and evolutionary dynamics, @ui
@t
, as follows:175

@xi
@t

= xiG (v;u;x) when v = ui i = 1; � � � ; n (ecological dynamics) (4)

and176
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@ui
@t

= k
@G

@v
when v = ui i = 1; � � � ; n (evolutionary dynamics) (5)

where the positive parameter k represents some measure of additive genetic variance and177

heritability of the trait. These eco-evolutionary dynamics conform to Fisher�s Fundamental178

Theorem of Natural Selection (Fisher 1958) and models of Adaptive Dynamics (Metz et al.179

1996, Gertiz et al. 1998). The outcome of these systems (i.e. the long-run behavior of their180

solution trajectories) is often analyzed through the concepts of evolutionarily stable strategy181

(ESS) and convergence stability.182

The de�nitions for ESS and convergence stability are not universal. In some cases the183

ESS has been de�ned as a strategy that maximizes the �tness function (see e.g., Leimar184

2009) and in some cases as an asymptotically stable equilibrium point of an evolutionary185

dynamic (see e.g., Vincent and Brown 2005). These de�nitions apply to both single species186

and multi species evolutionary games. For single species, convergence stability is well de-187

�ned as a strategy that is approached through strategy substitution (Eshel and Motro 1981,188

Christiansen 1991). However, for multi species evolution, there is no clear de�nition for con-189

vergence stability. Cressman (2009) has provided a de�nition for two species evolution and190

Leimar (2009) has discussed convergence stability for nspecies models. In this manuscript,191

we adopt the following operationalizable de�nitions.192

De�nition 1 An ESS is an eco-evolutionary equilibrium (u�;x�) with a �nite number n of193

strategy types u�1, u
�
2,. . . ,u

�
n, and positive x

�
1, x

�
2, . . . , x

�
n such that G(u

�
i ;u

�;x�) = 0 for194

i = 1; : : : ; n and G(v;u�;x�) < 0 if v does not equal any u�i .195

The above de�nition of ESS is essentially the ESS Maximum Principle (Vincent and196

Brown 2005). Thus ESS are strategies which reside at (global) peaks of the adaptive land-197

scape with peak value of G(:)= 0.198
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De�nition 2 A convergence stable strategy is an eco-evolutionary equilibrium (u�;x�) with a199

�nite number n of strategy types u�1, u
�
2, . . . , u

�
n, and positive x

�
1, x

�
2, . . . , x

�
n such that (u

�;x�)200

is an asymptotically stable equilibrium for the 2ndimensional eco-evolutionary dynamics (4)201

and (5).202

Thus, a convergence stable strategy is taken operationally to be a strategy (or niche203

archetype) that are rest points of the eco-evolutionary dynamics (4) and (5) which may be204

at a maximum, minimum or in�ection point of the �tness landscape with �tness of the extant205

strategies being 0. This evolutionary stability idea is similar to that in Leimar (2009) except206

that he does not consider population sizes explicitly.207

Vincent and Brown (2005) de�ne niche archetypes as any community of n species�strate-208

gies that converge on a stable u� and x�. They represent communities that result from the209

ecological and evolutionary dynamics. Such communities may not be ESS. Some or all210

of the species may reside at local peaks, minima, or even in�ection points of the adaptive211

landscape. But in the absence of additional species, such communities would remain per-212

sistent and stable to some range of perturbations to the existing species�strategy values or213

population sizes.214

Since �tness is de�ned here as per capita population growth rate, at an equilibrium215

population size x�, where all of the n species have positive population sizes, each species216

�tness must equal 0. This requires that G (v;u;x�) = 0 when v = ui for all i = 1; � � � ; n:217

K(v) =
nX
j=1

a (v; uj)x
�
j when v = ui i = 1; � � � ; n (6)

Similarly, at an equilibrium of the evolutionary dynamics, the rate of change in each218

species�strategy must be 0. This requires that @G
@v
= 0 when v = u�i for all i = 1; � � � ; n:219
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@K(v)

@v

nX
j=1

a (v; uj)xj = K(v)
nX
j=1

@a

@v
xj when v = u�i i = 1; � � � ; n (7)

At a combined eco-evolutionary (i.e. Darwinian) equilibrium (u�;x�), we can further220

simplify the ecological equilibrium conditions by substituting in the conditions for x� to221

obtain:222

@K(v)

@v
=

nX
j=1

@a (v; uj)

@v
x�j when v = u

�
i i = 1; � � � ; n (8)

While the properties of this model for n = 1 are well understood (Apaloo 1997, 2003), it223

is nevertheless useful to show and catalog them as the basis for understanding the model for224

multiple coexisting species, n > 1.225

When there is just a single species, the equilibrium conditions result in u� = 0 and226

x� = Km (�gure 2). Applying the conditions of Apaloo et al. (2009), this solution is both227

convergent stable and a Neighborhood Invader Strategy (NIS). This means that this equi-228

librium point will result from the Darwinian dynamics (convergent stable) and furthermore,229

the strategy u� = 0 can successfully invade (i.e. increase when rare) populations where230

all individuals in the population are using a strategy u 6= 0 at their ecological equilibrium231

of x�(u) = K(u) < Km. The eco-evolutionary solution of u� = 0 and x� = Km makes232

sense. This strategy is the one that maximizes carrying capacity and results in the largest233

equilibrium population size when there is just one species.234

Is this solution an ESS in the sense of De�nition 1 (i.e. maximizing �tness given the235

circumstances)? This solution would be an ESS if it resides on the peak of the adaptive236

landscape (@
2G
@v2

< 0, �gure 2 A-C) and an evolutionarily stable minimum (sensu Abrams237

et al. 1993) if it resides at a minimum of the adaptive landscape (@
2G
@v2

> 0, �gure 2 D-238

F). For a single species, the relationship between the breadth of the niche axis and the239
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breadth of competitive interactions determines whether u� = 0 is an ESS (�2k < �2a) or240

a convergent stable minimum (�2k > �2a) (�gure 2). For a single species at u� = 0, the241

carrying capacity function produces stabilizing selection for maximum K. Conversely, the242

competition function produces disruptive selection because like competes most with like.243

With a narrow niche axis and broad competitive interactions, the stabilizing selection on K244

outweighs the disruptive selection on a and u� = 0 is a convergent stable ESS (�gure 2 A-C).245

With a broad niche axis and narrow competitive interactions, the disruptive selection on a246

outweighs the stabilizing selection K and u� = 0 is a convergent stable minimum (�gure 2247

D-F).248

For the remainder of this paper, we shall be interested in the case where �2k > �2a and249

u� = 0 is a convergent stable minimum. Such minima have been identi�ed as bifurcation250

points (Brown and Pavlovic 1992) that can produce evolutionary branching (Geritz at al.251

1998) via adaptive speciation (Cohen et al. 1999, Doebeli and Dieckmann 2003; Ripa et al.252

2009). In this case, we expect the single species at u� = 0 to split into two with di¤erent253

values of u which diverge from u� = 0 as the di¤erence �2k � �2a increases. What happens254

when we have n = 2?255

The Lotka-Volterra Competition Game with Two Species256

Under adaptive speciation at u� = 0, the single species at its ecological equilibrium x� = Km257

splits into two species, whose strategies are initially close by and branch on either side of 0258

(e.g., Geritz et al. 1998). The intense inter-speci�c competition between the two new species259

exerts selection for further evolutionary divergence. But, how far will they diverge, and will260

the two species continue to coexist at positive population sizes? Theoretically, several long-261

run possibilities exist for this speciation event, including one of the species going extinct262

and the surviving species evolving back to u = 0 before another cycle of adaptive speciation263

12



occurs. Another possibility has the two species coexisting in separate niches, as they evolve264

to new points of evolutionary and ecological stability �such points would balance the bene�ts265

of further divergence with the cost of lowered carrying capacity. From extensive simulations266

of the Darwinian dynamics for n = 2 (�gure 3), the outcome of the L-V competition model is267

the second scenario. A convergent stable equilibrium with two species placed symmetrically268

about u = 0 always emerges. As expected, the two species have equal population sizes at269

equilibrium: x�1 = x
�
2.270

We can predict, a priori, what this new equilibrium will be since the system must then271

evolve to a combined eco-evolutionary equilibrium (u�;x�) = ((u�1; u
�
2); (x

�
1; x

�
2)). That is,272

u�1 6= u�2; x�1 > 0; x�2 > 0 must satisfy:273

K(v) =
2X
j=1

a (v; uj)x
�
j and

@K(v)

@v
=

2X
j=1

@a (v; uj)

@v
x�j when v = u

�
i i = 1; 2

This equilibrium is a solution to the following system of four equations in the four unknowns274

u�1; u
�
2; x

�
1; x

�
2.275

x1 + x2e
�(u1�u2)2=2�2a = Kme

�u21=2�2k (9)

x1e
�(u1�u2)2=2�2a + x2 = Kme

�u22=2�2k (10)

u1 � u2
�2a

e�(u1�u2)
2=2�2ax2 = Km

u1
�2k
e�u

2
1=2�

2
k (11)

u2 � u1
�2a

e�(u1�u2)
2=2�2ax1 = Km

u2
�2k
e�u

2
2=2�

2
k : (12)

If the equilibrium is symmetric about 0 with u�1 = u
� > 0 and u�2 = �u�1, then the �rst276

two equations imply that x�1 = x
�
2 = x

�. The four equations reduce to two,277
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x�e�(2u
�)2=2�2a + x� = Kme

�u�2=2�2k

2u�

�2a
e�(2u

�)2=2�2ax� = Km
u�

�2k
e�u

�2=2�2k ;

which can be solved (see Appendix A), yielding the unique symmetric equilibrium278

u�2 =
�2a
2
ln

�
2�2k � �2a
�2a

�
(13)

x� = Km
�2a
2�2k

�
2�2k � �2a
�2a

�1� �2a
4�2
k
: (14)

There is something aesthetically pleasing about the e¤ects of niche width, �2k, and the width279

of the competition coe¢ cient, �2a, on the two species�strategy values and population sizes.280

Recall that for there to be a two species convergent stable point: �2k > �2a. First, notice281

what happens at the point where �2k = �
2
a. In this case, u

�
1 = u

�
2 = u

� = 0 and both species282

would want the same strategy. Furthermore, each species would have the same x� = Km

2
for283

a total population size of Km. This point is not quite stable in the sense that the adaptive284

landscape at u� = 0 is neither a minimum nor a maximum. The landscape has gone �at.285

But the moment �2k > �
2
a the two species�strategies diverge and their equilibrium populations286

become less than Km but greater than Km

2
(�gure 3 B). Hence the sum of the two species�287

total population sizes is now greater than the size Km of the single species equilibrium.288

As the di¤erence between �2k and �
2
a becomes larger and goes towards in�nity the equilib-289

rium values for the two species�strategies diverge towards in�nity, and their population sizes290

increase towards Km meaning the total population size of the community increases towards291

2 � Km. Furthermore, both the di¤erence and ratios of �2k and �
2
a directly in�uence the292
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species�equilibrium strategies and population sizes. Hence, there are an in�nite number of293

combinations of �2k and �
2
a that will produce the same u

� and this set would appear as a294

curved line in the state space of �2k and �
2
a. Similarly, there are an in�nite number of com-295

binations of �2k and �
2
a that will produce the same x

�. However, combinations that produce296

the same equilibrium strategy values will not produce the same equilibrium population sizes,297

and vice versa for combinations that produce the same equilibrium population sizes.298

The simulations exactly match these results for the model parameters, �2a and �
2
k, cho-299

sen in �gure 3. For arbitrary initial conditions, simulations of the two-species Darwinian300

dynamics always converged on the predicted two-species equilibria. The simulations suggest301

that there are no non-symmetric two-species equilibria and, indeed, the analytic proof of this302

appears in the Appendix B for arbitrary model parameters.303

Finally, for this L-V competition model, it is noteworthy that the two species�strategies304

both converge on minima of the adaptive landscape (�gure 3 C; see the Appendix C for a305

proof of this result). In particular, (u�;x�) is not an ESS according to De�nition 1. Thus,306

we can expect each of these species to undergo adaptive speciation to produce a new four307

species community. The next section will explore what happens at and after a four-species308

equilibrium.309

In�nite Niche Packing310

In this section we �rst describe a species doubling algorithm to demonstrate the convergence311

of evolution to a continuum of strategies. The associated analytic computations for the312

equilibria beyond two strategies are intractable and thus computer simulations were used.313

The default parameters for these simulations are �2k = 200, �2a = 4 and Km = 100. We314

use Darwinian dynamics for these simulations. The description of these computer based315

simulations and the corresponding results will be followed with a description of the end316
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point of these speciation events.317

In�nite Niche Packing through Species Doubling318

There are three ways we can seek eco-evolutionary solutions for the L-V model when species319

diversity is greater than two (n > 2). The �rst would be to numerically solve for u� and320

x� from the 2n simultaneous equations representing the �rst order necessary conditions for321

evolutionary and ecological stability, respectively. The advantage of this approach is that it322

can �nd all singular points on the adaptive landscape whether these strategies and population323

sizes are actually stable or not under the Darwinian dynamics. For instance, a given u�i may324

reside on a peak of the landscape (satisfying @G
@v
= 0) and could be one component of an325

ESS. But, this peak may not be convergent stable in the sense that a species starting with326

a strategy near the peak will evolve away from u�i rather than converging on that strategy.327

This uncertainty then also becomes the disadvantage of the approach. One must still run the328

Darwinian dynamics to determine whether u� and x� will be convergent stable and likely329

outcomes of natural selections.330

This leads to a second way for �nding eco-evolutionary solutions by simulating Darwinian331

dynamics on a system seeded with n preselected strategy values and associated population332

sizes. The disadvantage of this approach is that it may never converge either due to non-333

equilibrial evolutionary and/or ecological dynamics, or because an actual solution is not334

dynamically accessible from the initial conditions. For instance, even if there is an nspecies335

solution, the initial condition may result in various pairs of species converging on the same336

u� e¤ectively reducing the number of distinct species. The outcome can be highly sensitive337

to initial conditions.338

A third way to seek eco-evolutionary solutions is to let the number of species be dynamic339

as well. This can be done by starting the system with one (or more) species. If Darwinian340
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dynamics evolve to a convergent stable minimum, then induce adaptive speciation by intro-341

ducing two progeny species each with distinct strategies that are very close in value to the342

progenitor species (this can usually be done by adding and subtracting a small � from the343

original strategy), and letting the new species start with a small population size. Darwinian344

dynamics then resume with these two species. If one or both of the progeny species converge345

on minima then continue the process of adaptive speciation for those species. This approach346

permits a gradual buildup of species from a single common ancestor. So long as the Dar-347

winian dynamics converge on niche archetypes, then the process will continue inde�nitely348

unless a level of species diversity has been reached where all of the species�strategies reside349

on peaks of the adaptive landscape. A disadvantage of this approach is that it may stop at350

a species diversity that is lower than could occur at other eco-evolutionary solutions (e.g.,351

Vincent and Brown 2005, Ripa et al. 2009).352

For simulating the L-V model, we chose the third approach while variously exploring the353

model with all three approaches. The details on how the simulations were conducted are354

given in the Appendix D. Quite often convergence was very slow in the neighborhood of the355

equilibrium points. Using these simulations, we saw that there was a doubling of species356

each time a niche archetype equilibrium was reached as far as 64 species (i.e. from 1 to 2, to357

4, to 8, to 16, to 32, to 64). These simulations produced dynamics illustrate several results.358

First, the strategy dynamics produce the actual phylogeny of strategy evolution over time.359

Here, we see that distance between the strategies of each species gets smaller and smaller360

as more species are added (�gure 4 A). Second, it shows how the equilibrium population361

size of each species decreases with each increase in diversity (�gure 4 B). The amount of362

time required to reach equilibrium also increases with diversity. With k = 1, the two species363

equilibrium is reached in approximately two thousand time steps, while it takes more than364

thirty thousand to go from eight to sixteen species.365

The complete eco-evolutionary dynamics resulting in 1024 species in about 3.5 million366
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time steps are obviously impossible to plot legibly. However, at each convergent stable367

minimum, we can summarize the range of the equilibrium strategies (�gure 5 A), the range368

of the population sizes (�gure 5 B) and the productivity of the community (total population369

size of all species combined, �gure 5 C).370

We make several conjectures based on these simulations. First, as the diversity increases371

to in�nity, the maximum and minimum strategies also go to +/- in�nity, respectively, but the372

distance between adjacent species decreases to the point of being in�nitely small at in�nite373

diversity (�gure 5 A). Second, when diversity is in�nite, population sizes are in�nitely small374

(�gure 5 B). Finally, even when diversity is in�nite, there is a �nite limit to the productivity375

of the community imposed by the niche width. To strengthen these conjectures, we ran the376

simulation again up to 1024 species using a di¤erent set of parameters which took about 3.2377

million time steps (�gure 5 D-F). The range of equilibrium strategies increased more slowly378

with community diversity, and the maximum productivity of the community was lower, but379

our three conjectures remain.380

In�nite Niche Packing through Nash equilibrium381

The adaptive speciation events from the previous section (up to 210 = 1024 species), are382

anticipated to continue inde�nitely. Thus, we expect this basic L-V competition model to383

support in�nitely many species. Moreover, since the distance between adjacent species for384

the n�species symmetric equilibrium declines towards 0 and the overall distance between385

the most extreme niche types appears to become arbitrarily large as n increases (see �gure386

4, 5), the limiting process will produce in�nite niche packing in each subinterval of the387

strategy axis. In fact, we expect the limiting population sizes (or relative frequencies) will388

be a continuous distribution P �(u) along the strategy axis. That is, P �(u) is positive for all389

u and so P � is a distribution with full support, meaning the continuum of u coexists in the390
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population. From game theory, the stability of P � would imply that this distribution must391

be a Nash equilibrium (NE). Otherwise, some species will have a higher �tness and so be392

able to invade, thus destabilizing the system.393

Generalizing the G-function approach to distributions, we take394

G(v;u; P ) =
r

K (v)

�
K(v)�

Z 1

�1
a (v; u)P (u)du

�
as the �tness of the focal strategy v. When P is a distribution with a �nite number of395

species, u = (u1; :::; un), this integral reduces to the original n�species G-function (1). For396

notational convenience more in line with that used in game theory, since P already speci�es397

the niche types u, we denote G(v;u; P ) simply as �(v; P ) and call it the expected payo¤ to398

an individual using strategy v when the population distribution is P .399

Since P � is at an ecological equilibrium with full support, it is a solution to400

�(v; P ) = 0 for all niche types v:

One such distribution, which has been known since this model was introduced by Roughgar-401

den (1979) (see also Barabás et al. 2012), is given by the normal distribution402

P �(u) =
Km�k

�a
p
2� (�2k � �2a)

e�u
2=(2(�2k��2a)) (15)

adjusted by the equilibrium total population size
R1
�1 P

�(u)du = Km
�k
�a
. For the parameters403

used in �gure 5, the population sizes are 100
q

200
4
= 100

p
50 = 707:107 (�gure 5 C), and404

100
q

50
4
= 50

p
50 = 353:553 (�gure 5 F) which are in almost perfect agreement with the405

simulations with up to 1024 species. It can be shown that for the P � given in Equation (15),406

�(v; P �) is independent of v and so a Nash equilibrium (see Appendix E).407

It is likely that this distribution P � is global and unique for a given set of parameters.408
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If this was not so, then any convex combination of P � and an arbitrary P would also be a409

NE, and so P � would not exhibit its observed convergence and stability in our simulations.410

If these solutions were not unique, we would expect some of our simulations to converge on411

di¤erent equilibria depending on initial conditions.412

The NE concept is also relevant for the n�species equilibrium. It is then de�ned as413

a strategy vector u� = (u�1; :::; u
�
n) such that no individual has a unilateral incentive to414

change its strategy, with the added feature that the payo¤ to each species at the n�species415

equilibrium is 0 (ecological equilibrium). Since there is a single payo¤ function for all species416

(i.e. a single Gfunction), the NE requirement is:417

G (v;u�;x�) � G (u�i ;u�;x�) for all v i = 1; � � � ; n

For the basic L-V game with competition between v and ui given by a (v; ui), there is no418

n�species NE since (u�;x�) is a convergent stable minimum; G (v;u�;x�) > G (u�i ;u
�;x�)419

for all v not equal to one of the niche archetypes u�i (�gures 3C and 4C)). This inequality420

is the root cause of the speciation events for each species i in the section �In�nite Niche421

Packing through Species Doubling".422

Modi�cations of competition and carrying capacity423

Barabás et al. (2012) and references therein noted how altering the functional forms of424

the carrying capacity and competition functions likely result in ESSs with a �nite number425

of species. In these sections we examine two modi�cations that collapses in�nite niche426

packing. We can arrive at analytic solution for two species and computer simulations for427

greater numbers of species. We �rst consider a modi�cation to the competition function428

followed by a modi�cation to carrying capacity.429
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The e¤ect of baseline competition430

Suppose there is some baseline competition between all individuals no matter how distant431

their strategy values. This makes ecological sense because closely related species (those432

from the same Gfunction) may have certain shared resource requirements no matter how433

distinct their strategies. In addition to the unavoidable baseline competition we add back434

our function that has like competing most with like. We model this by replacing a (v; ui) =435

exp
h
� (v�ui)2

2�2a

i
with436

p+ (1� p)a (v; ui)

in the G-function (1) (�gure 1 C). Here 0 � p < 1 represents the relative weight of these two437

competition factors with p = 0 giving the original model and, as p increases, the e¤ect of the438

baseline competition becomes more pronounced (we exclude the degenerate case p = 1 which439

corresponds to equal competition between all individuals). The single species equilibrium440

remains at u� = 0 with equilibrium population size x� = Km. More interestingly, if baseline441

competition is su¢ ciently high (in fact p > p�1 � 1�
�2a
�2k
as shown in the Appendix F), then442

this equilibrium is at a maximum of its adaptive landscape (see �gure 6 where p�1 = 0:98 for443

our default parameters). In fact, it is now a single species ESS as well as an NIS, and thus444

automatically convergent stable (Apaloo 1997). Furthermore, it appears to be the global445

outcome of Darwinian dynamics no matter how many species are initially present (�gure 6).446

For lower amounts of baseline competition (i.e. 0 � p < p�1), adaptive speciation occurs447

at u� = 0. The resultant two-species symmetric equilibrium is now (see Appendix F)448
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u2 =
�2a
2
ln

�
2�2k � �2a
�2a

1� p
1 + p

�

x = Km
1

1 + p

�2a
2�2k

�
2�2k � �2a
�2a

�1� �2a
4�2
k
:

It is of interest to identify analytically the nature of this two-species equilibrium as p varies449

on the interval [0; p�1]. Here, we only consider results obtained from computer simulations.450

The equilibrium is a convergent stable ESS according to De�nitions 1 and 2 with n = 2 for451

p�2 < p < p
�
1 where p

�
2 = 0:93 for the default parameters (p

�
2 was found by simulation). For452

0 � p < p�2, the two-species equilibrium is a convergence stable minimum and so speciation453

can occur at both. However, the initial four species reduce to three for p just a bit less than454

p�2 (�gure 6 A) since the two new species closest to u = 0 eventually evolve to u = 0 and455

form one niche type in an ESS coalition of three.456

These numerical simulations for our default parameters were used in two separate ways.457

First, with the number of species �xed at two, the simulations return the same convergence458

stable minima as in �gure 3 when p = 0 (see also �gure 6 A) where u�1 = 3:03 and u
�
2 = �3:03.459

As p increases, strategy values tend to 0 from both sides (�gure 6 A) and the equilibrium460

population size declines (�gure 6 B). As p approaches 1, the two-species equilibrium becomes461

a convergent stable ESS when p reaches 0:93 and then disappears for p > 0:98 when a single-462

species ESS at u� = 0 emerges.463

The second use of these numerical simulations examines how increases in the level of464

baseline competition alters the speciation events discussed in section �In�nite Niche Packing465

through Species Doubling" up to 16 species in �gure 4 and 1024 species in �gure 5. That is,466

we ran the simulations as in section �In�nite Niche Packing through Species Doubling", but467

with di¤erent baseline levels of competition, p; to see how at the ESS the total number of468
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species, the maximum range of strategies, and the total community productivity changed.469

As predicted, in the absence of baseline competition (i.e. p = 0), the simulations return the470

same result as the original simulations for 1024 species (shown in �gure 5 A-C). However as p471

increases, the total number of unique equilibrium strategies (i.e. species) rapidly declines and472

corresponds to a convergent stable ESS. Indeed, with p = 0:01, the system already collapses473

to just 52 unique species (�gure 7 A), compared to in�nitely many strategies at p = 0. As474

p increases further, the maximum and minimum strategy values converge on zero, and the475

community productivity converges on Km (�gure 7 B, C). Eventually, the system collapses476

to a two-species convergent stable ESS (0:93 < p < 0:98) and then to a single-species ESS477

(0:98 < p < 1) (�gure 7 A).478

The simulations constraining the system to two species (�gure 6 A, B), or to at most479

1024 species (�gure 7 A-C) produce consistent conclusions: any ecological factors that do480

not allow species to evolve to strategies that produce zero competition among some members481

of the community, but instead introduce some minimum level of baseline competition will482

cause the system to go from in�nite species to some �nite number.483

By imposing a baseline level of competition between all individuals, the equilibrium484

population sizes of any convergent stable point with more than two species will be less than485

that of the original model. This is because for any given pair of species (with di¤erent486

strategy values) their competition coe¢ cient will be larger than for original model..487

The e¤ect of truncated trait space488

In the L-V model of section �An Eco-Evolutionarry Lotka-Volterra Model" the carrying489

capacity function insures that all values of v will result in K(v) > 0. Szabo and Meszena490

(2006) showed how changing the carrying capacity function from Gaussian can collapse491

unlimited niche packing down to just a few species. Gyllenberg and Meszena (2005) and492
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Barabas et al. (2012) achieved this through a truncated niche space. In this section, we493

provide an eco-evolutionary exploration of the consequences of limiting the range of strategy494

values that support a positive carrying capacity. To do this, we replace K(v) in (3) by a495

carrying capacity that still has maximum Km at u = 0 but no carrying capacity outside an496

interval centered at u = 0 (�gure 1 D). Speci�cally, we take carrying capacity as497

K(v) + s(K(v)�Km)

whenever this expression is positive and 0 otherwise. Here s is a positive constant that498

in�uences the range of strategies that result in a positive carrying capacity. As shown in499

Appendix G, carrying capacity is positive for v2 < 2�2k ln
�
1+s
s

�
, an interval that becomes500

smaller as the �shrinking�parameter s increases (�gure 1 D). The following results are also501

proved in the Appendix G.502

When s is close to 0, the single species equilibrium at u� = 0 undergoes adaptive speci-503

ation as in the original model except that the resulting two-species symmetric equilibrium504

now has trait values �u�1;2 where u�21;2 is the unique solution for u2 in505

e2u
2=�2a =

2�2k � �2a
�2a

� s

1 + s

2�2k
�2a
eu

2=2�2k

(cf. (13)). There is a two-species symmetric niche archetype if and only if the shrinking506

parameter s is below the threshold value507

s� =
(�2k � �2a)

�2a
:

For s above this threshold value there is no two-species symmetric equilibrium and the single508

species equilibrium u� = 0 is an ESS and NIS (and thus convergent stable) that appears to509

be the eventual outcome of the combined eco-evolutionary dynamics (4) and (5) from any510
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arbitrary initial condition.511

As in the preceding section, we consider only the results from simulations regarding the512

nature of evolutionary stability of the two-species symmetric equilibrium as s varies on the513

interval [0; s�). The simulations did not reveal a second threshold value of s, say s�2 such514

that the two-species equilibrium is an ESS (i.e. has no further speciation) for any s in the515

interval (s�2; s
�
1) with s

�
1 = s

�,516

We used our numerical simulations to explore the e¤ect of truncating trait space in the517

same ways that we did for baseline competition. The results are broadly similar. First,518

for two species when s = 0, the simulations return the same result as the original model519

(shown in �gure 3) such that u1 = 3:03 and u2 = �3:03 (�gure 6 C). As s increases and520

the trait space becomes smaller and smaller, the equilibrium strategy value declines, as521

does the equilibrium population size, eventually resulting in a single species with a strategy522

that is a convergent stable ESS instead of a convergent stable minimum on the adaptive523

landscape (�gure 6 C, D). Second, we examined how truncating the trait space would alter524

the solutions for 1024 species. For this analysis, we ran the simulations as in section "The525

Lotka-Volterra Competition Game with Two Species", and as for the section �The e¤ect526

of baseline competition" but with varying values of trait space truncation, s; to see how527

the total diversity changed, how the maximum range of strategies changed, and how total528

community productivity changed. When s = 0, the simulations return the same result as the529

original simulations of 1024 species (shown in �gure 5 A-C). As s increases, the total number530

of unique equilibrium strategies (i.e. species) rapidly declines, eventually collapsing to just531

one species (�gure 7 A). Similarly, as s increases, the maximum and minimum strategy532

values converge to zero, and the community productivity converges to Km. The simulations533

for truncating trait space where the system is constrained to two species (�gure 6 C, D),534

or to 1024 species (�gure 7 D-F) produce identical conclusions: any ecological factors that535

truncate the trait space will cause the system to go from in�nite species to some �nite number536
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the achieve and ESS. Indeed, with s = 0:01 the system collapses to an ESS of just 8 unique537

species, compared to in�nitely many strategies at s = 0 (�gure 7 D).538

By truncating the carrying capacity function, the equilibrium population sizes of any539

convergent stable point with more than two species will be less than that of the original540

model. This is because once a species strategy deviates from u = 0; its carrying capacity541

declines more rapidly in the this truncated trait space model than in the original.542

0.1 A Quartic Competition Function543

Leimar et al (2013) investigated the properties of communities based upon the L-V unlimited544

niche packing model, but with a quartic version of the competition function:545

a (v; ui) = exp

"
�(v � ui)

4

2�2a

#
They found a more or less regular spacing of species with possibility of adding species at546

either end of the niche axis. While providing for unlimited niche packing, the coexisting547

species tended to reside near peaks rather than valleys of the adaptive landscape. We548

can run their model using the ecological and evolutionary dynamics. A single species549

with any starting strategy value will evolve to a peak at u� = 0. However, this peak is550

only a locally convergent stable maxima. Across valleys in the adaptive landscape their551

exist strategies to the left and to the right that would be able to invade. The valleys552

preclude adaptive speciation as happens at the convergent stable minima. To create a553

faunal buildup new species must be added some distance from the resident species. Upon554

adding species across the valleys of the adaptive landscape, the new, more diverse community555

evolves until all species reside on local maxima, with valleys at each end of the niche axis556

providing evolutionary barriers to additional species with still higher �tness (see Fig. X for557

an example with a convergent stable community of 11 species). In accord with Leimar et558
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al. (2013), the species�strategies are more or less uniformly spaced. This model provides a559

nice starting point for investigating faunal buildup when unlimited niche packing cannot be560

achieved through speciation at convergent stable minima. As before, one could adjust the561

competition function to reveal ESSs with �nite numbers of species.562

1 Discussion563

We opened with Hutchinson�s (1959) question: �why are there so many species?�We suggest564

that this is because previous ideas about competitive exclusion and limiting similarity gen-565

erally predict fewer species than we observe in natural systems (Chesson 2000; Silvertown566

2004). Indeed, Hutchinson (1961) later went so far as to call this discrepancy between theory567

and observation a �paradox�. In general, previously published evolutionary games also pre-568

dicted that natural selection would produce a �nite number of strategies. These outcomes569

occur under both discrete or continuous niche axes. Starting with Roughgarden (1979) and570

continuing with others (Bulmer 1974; Sasaki and Ellner 1995; Sasaki 1997; Gyllenberg and571

Meszéna 2005; Meszéna et al. 2006; Szabó and Meszéna 2006; Barabás and Meszéna 2009;572

Parvinen and Meszéna 2009; Barabás et al. 2012; Barabás et al. 2013; D�Andrea et al.573

2013) it is been shown how unlimited niche packing is in theory feasible, but robust to slight574

alterations of the carrying capacity and competition functional forms. Our eco-evolutionary575

extension of these works shows how a �nite number of species will evolve to convergent stable576

equilibria that we describe as "niche archetypes". These various eco-evolutionary equilib-577

ria are not haphazard collections of species but structured with distinct and well organized578

patterns of abundances and strategy values. Furthermore, these convergent stable con�gura-579

tions result in very speci�c patterns of trait spacing among the coexisting species (not unlike580

Hutchinson�s ratios). We examine how faunal buildup from a few to many species (we went581

as far as 1024) can occur as adaptive speciation (evolutionary branching) from convergent582
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stable minima of the adaptive landscape. Interestingly, when the competition function is583

raised to the 4th power rather than simply squared (Leimar et al. 2013), unlimited niche584

packing still occurs, but all of the niche archetypes for a �nite number of species represent585

non-ESS, convergent stable maxima (local maxima, only). It has been noted that models586

with unlimited niche packing collapse to �nite numbers of species with slight changes to the587

form of the competition function. We see the same, and with eco-evolutionary dynamics588

faunal buildup or the invasion of species with distinct strategies can lead to the ESS.589

In the L-V model we analyzed, if the width of the niche axis (�K) is less than the com-590

petition coe¢ cient (�a), it is known that the outcome of evolution is a single strategy that591

is a convergent stable ESS (�gure 2 A-C ). When the inequality is reversed, the result no592

longer holds. Our numerical and analytical results are compatible, and show that species593

doubling can continue inde�nitely, with each doubling of the number of species occurring594

after the Darwinian dynamics have reached convergent stable minima based on a coalition595

of 2n strategies (�gures 4 and 5). Due to constraints of computing power, even with a super-596

computer cluster, the maximum number of strategies attained in the simulations was 1024.597

To run a single simulation past this number of strategies would take excessive computational598

time (>weeks), and require enormous amounts of storage space for the output (>900GB).599

However, several results were evident by the time simulations arrived 1024 species. These600

include: (1) the spacing between the niche archetypes decline as the number of species in-601

crease; (2) the range of the species in the convergent stable strategy coalitions increased as602

the number of species increased; (3) the total population size approached a limiting value603

(�gure 5). The third result is particularly interesting. It is almost in perfect agreement604

with the value obtained in Eqn 15 by an analytic limit argument. As the number of species605

increases, the simulations showed that the distribution of convergent stable strategies con-606

verges on the Nash distribution (Eqn 15). In sum, that our analytic proofs based on in�nite607

diversity asymptote with our simulations based on 1024 species leads us to conclude that in-608
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�nite diversity by species doubling is theoretically possible. As diversity approaches in�nity,609

there is also no longer any limiting similarity: species di¤erences also approach zero (�gure610

4 A). We concur with many of the others cited above that the L-V model of unlimited niche611

packing is structurally non-robust, but it provides a valuable ideal from which to develop612

and contrast models predicting a �nite number of species at the ESS.613

Gyllenberg and Meszéna (2005) and Meszéna et al. (2006) demonstrated the non-614

robustness of the coexistence of a continuum of species or phenotypes in a large class of615

models including the L-V model used here. Gyori Barabás and colleagues in a series of616

elegant papers (Barabás and Meszéna 2009; Barabás et al. 2012; Barabás et al. 2013) ex-617

amine the structural robustness of several forms of the competition equation. In particular,618

Barabás et al. (2012) start with a number of forms that generate in�nite niche packing and619

then show how 400 or so species will collapse to communities of 5 -10 upon small perturba-620

tions to the shape of the competition function (their Figs 4, 5 & 7). The ecological dynamics621

and results of our work represent examples of these results. In addition to the ecological622

dynamics of �xed species, we consider the model as an evolutionary game, and consider623

the evolutionary dynamics that traverse frequency-dependent and highly dynamic adaptive624

landscapes. When the game permits a continuum of species, any �nite number of species625

evolved to distinct, convergent stable minima from which adaptive speciation can continue626

the diversity buildup. Similarly, when the competition curve or carrying capacity functions627

were modi�ed, a convergent stable ESS with a �xed number of species residing on peaks of628

the adaptive landscape emerged. In all of our examples, the eco-evolutionary dynamics of629

the game led to very speci�c niche positions of the coexisting species whether the number630

of species was at or below the number of species in the ESS coalition.631

We considered two modi�cations of the L-V model to study what evolutionary factors632

might produce a �nite rather than an in�nite number of species. Here, analytic results are633

available for only one species or two species and simulation analyses were used to provide634
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further insights into the outcomes of the eco-evolutionary dynamics. These numerical results635

are again in agreement with the analytic results when there are a small number of species.636

First, we considered a modi�cation of the competitive interaction to include a minimum637

level of baseline competition by introducing a parameter that varied between 0 and 1 (�gure638

1 C). Concerning the two species solution, we observe that as the baseline competition639

parameter increases from 0 to 1, there is an initial regime where the two strategies form a640

convergent stable minimum, followed by a regime of a convergent stable ESS before a �nal641

collapse of the two species solution to a single species convergent stable ESS solution(�gure 6642

A, B). These simulation results agree with the results predicted by the analytic calculations.643

In the case of 1024 species solution, we observe that, as the parameter increases from 0,644

the number of species in the equilibrium solutions declines rapidly to a solution with just645

one species (�gure 7 A). We propose that, any ecological factors that do not allow species646

to evolve to strategies that produce exactly zero competition among some members of the647

community, but instead introduce some level of baseline competition will cause the system648

to go from in�nite species to some �nite number depending on the intensity of the baseline649

competition. That is, with a minimum baseline level of competition, there will be a limit650

to how similar species can be and still coexist. For example, all plants require the same set651

of limiting nutrients in approximately the same proportions (Knecht and Goransson 2004;652

Tilman 1982). In a forest, the level of competition that occurs between a canopy tree and653

a small annual herb will be so small as to be almost certainly impossible to measure. Yet,654

every nutrient ion that is captured by the tree is one less ion that is available to the herb655

and vice versa. This means that there is a tiny but �nite level of baseline competition that656

necessarily occurs between all cooccurring plants. It is noteworthy that such small levels of657

competition will be ecologically unimportant within the ESS community. However, these658

small levels of competition are paramount in maintaining a �nite number of species at the659

ESS, and in imposing a limit to how similar species can be and still coexist (�gure 7 A). No660
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matter how small, a �nite baseline level of competition in the L-V model collapses unlimited661

niche packing into a �nite number of species.662

Second, we truncated carrying capacity so that only trait values in a �nite symmetric663

interval about 0 can support populations. The truncation is measured as a shrinkage pa-664

rameter which, ecologically, constrains the trait space to some �nite interval (�gure 1 D).665

The results obtained here are similar to those for the case with baseline competition. As666

the parameter increased from 0 it increasingly constrained the trait space, and above some667

threshold value, the two species solution collapsed to a one species equilibrium that is a668

convergent stable ESS (�gure 6 C, D). When we start the simulation with 1024 species, as669

the shrinkage parameter increases (i.e. the niche width decreases), the number of species in670

a convergent stable ESS declines and eventually a solution of one species is obtained (�gure671

7 D). From these simulations, we propose that any ecological factors that truncate the trait672

space will cause the system to go from in�nite species to some �nite number with increasing673

shrinkage parameter values. Returning to our forest example, plant height is a critically674

important trait within evolutionary games played by plants (Dybzinski et al. 2011; Falster675

and Westoby 2003; Givnish 1982). Taller plants are able to gain access to sunlight, and676

leave shorter plants struggling to �x carbon in the shade; plant competition above-ground is677

clearly an arms race for height. However, plants are only able to move water up their stem678

by passive evapotranspiration. This means that the Earth�s gravity imposes a strict limit679

on how high passive evapotranspiration can lift water, and constrains the trait space to a680

maximum height of 122-130 metres in the absence of mechanical damage (Koch et al. 2004).681

Again, our analysis suggests that such constraints are enough to limit the system to some682

�nite number of species at a convergent stable ESS.683

While unlimited niche packing is theoretically possible, we are not suggesting that there684

are an in�nite number of species on Earth. This is demonstrably false. But, if in�nitely685

many species are theoretically possible, but not actually achieved, it begins to turn the ques-686
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tion of �why are there so many species?�on its head. Based on the analyses presented in this687

paper we ask: �why are there so few species?�. We have provided situations with more re-688

alistic competition interaction (baseline competition) and carrying capacity (truncated trait689

space) that reduce unlimited niche packing to a �nite number of evolutionarily coexisting690

species. Previous theories of biodiversity generally predict fewer species than are observed691

in real systems, while the (unmodi�ed) L-V evolutionary game predicts more species than692

are observed in real systems. The truth, and the solution to Hutchinson�s (1961) �para-693

dox�, is obviously somewhere in the middle. We suggest two immediate empirical questions694

that could begin to �nd this middle based on baseline competition and the size of the trait695

space. It is noteworthy that with these modi�cations diversity drops from literally 1000�s696

to 5�s and 10�s. The drastic drop in diversity seen by introducing a �xed baseline level of697

competition may also under-represent species diversity. Likely factors increasing diversity698

(and compatible with these models) include multiple niche axes (rather than just one), and699

geographically separated communities that evolve somewhat di¤erent species that may be700

more or less ecological equivalents in space.701

Di¤erent taxonomic groups likely exhibit di¤erent ecologically permissible ranges of their702

trait space due to di¤erent biophysical constraints di¤erent evolutionary trade-o¤s for trait703

evolution. Do taxonomic groups with fewer trait constraints correspond with those taxo-704

nomic groups with high observed levels of coexisting species? For example, the insect Order705

Coleoptera is extremely diverse compared to other insect Orders, and indeed other taxa706

more broadly. Is there something about Coleopterans that introduces either less competi-707

tion among functionally similar taxa, or introduces fewer constraints on their morphological708

or physiological trait space? Similarly, the mammal Family Felidae contains relatively few709

species globally, and rarely more than a few species of Felidae coexist locally. Is there some-710

thing about felines that introduces more competition among functionally similar taxa, or711

introduces more constraints on morphological and physiological trait space? These are two712
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extreme examples, but the constraints on competition and traits among organisms from713

microbes to whales are probably very di¤erent and may provide clues as to why there are714

so many and yet so few species on earth. In summary, the diversity of life on earth may715

be a �nite and greatly reduced subset of what is evolutionarily feasible and ecologically716

acceptable.717
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Appendix A: The existence of a symmetric two-species839

equilibrium for (9)-(12)840

From the main text, when competition between strategies v and ui is modelled by our841

standard term a (v; ui) = exp
h
� (v�ui)2

2�2a

i
, the symmetric equilibrium corresponds to a solution842

of the following two equations with u > 0 and x > 0.843

xe�(2u)
2=2�2a + x = e�u

2=2�2k

2u

�2a
e�(2u)

2=2�2ax =
u

�2k
e�u

2=2�2k ;

Since u 6= 0, the second equation implies that x = �2a
2�2k
e�u

2=2�2ke(2u)
2=2�2a. Substituting this844

into the �rst equation and canceling e�u
2=2�2k yields:845

�2a
2�2k

e(2u)
2=2�2ae�(2u)

2=2�2a +
�2a
2�2k

e(2u)
2=2�2a = 1

e2u
2=�2a =

2�2k
�2a

�
1� �2a

2�2k

�
2u2

�2a
= ln

�
2�2k
�2a

� 1
�

u2 =
�2a
2
ln

�
2�2k � �2a
�2a

�

Thus,846
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x =
�2a
2�2k

e�u
2=2�2ke(2u)

2=2�2a

=
�2a
2�2k

exp

��
�2a
2
ln

�
2�2k � �2a
�2a

���
2

�2a
� 1

2�2k

��
=

�2a
2�2k

exp

��
1� �2a

4�2k

�
ln

�
2�2k � �2a
�2a

��

=
�2a
2�2k

�
2�2k � �2a
�2a

�1� �2a
4�2
k
:

That is, exactly one symmetric equilibrium exists given by (13), (14)..847

Appendix B: Uniqueness of the equilibrium (13), (14)848

Now suppose that there is a non-symmetric two-species equilibrium. That is, there are849

u1 6= u2 and positive x1; x2 such that850

x1 + x2e
�(u1�u2)2=2�2a = e�u

2
1=2�

2
k (16)

x1e
�(u1�u2)2=2�2a + x2 = e�u

2
2=2�

2
k (17)

u1 � u2
�2a

e�(u1�u2)
2=2�2ax2 =

u1
�2k
e�u

2
1=2�

2
k (18)

u2 � u1
�2a

e�(u1�u2)
2=2�2ax1 =

u2
�2k
e�u

2
2=2�

2
k : (19)

From the last two equations, u1 and u2 are non-zero and have opposite signs. Without851

loss of generality, assume that u2 = ��u1 where � > 1. With u � u1, (18) and (19) imply852
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x1 =
�u

(� + 1)u

�2a
�2k

e�(�u)
2=2�2k

e�((�+1)u)
2=2�2a

=
�

(� + 1)

�2a
�2k

e�(�u)
2=2�2k

e�((�+1)u)
2=2�2a

x2 =
1

(� + 1)

�2a
�2k

e�u
2=2�2k

e�((�+1)u)
2=2�2a

:

Substituting these values into (16) yields:853

�2a
�2k

"
�

(� + 1)

e�(�u)
2=2�2k

e�((�+1)u)
2=2�2a

+
1

(� + 1)
e�u

2=2�2k

#
= e�u

2=2�2k

�

(� + 1)
e(1��

2)u2=2�2k+(�+1)
2u2=2�2a +

1

(� + 1)
=

�2k
�2a�

1� �2
�
u2

2�2k
+
(� + 1)2 u2

2�2a
= ln

�
� + 1

�

�2k
�2a
� 1
�

�

u2 =
1

1��2
2�2k

+ (�+1)2

2�2a

ln

�
� + 1

�

�2k
�2a
� 1
�

�

Similarly, from (17), we obtain854

u2 =
1

�2�1
2�2k

+ (�+1)2

2�2a

ln

�
(� + 1)

�2k
�2a
� �
�
:

Equating these two expressions for u2 and rearranging terms produces the following855

equations where R � �2k
�2a
:856
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0 =
�
�2 � 1

� �
ln

�
� + 1

�

�2k
�2a
� 1
�

�
+ ln

�
(� + 1)

�2k
�2a
� �
��

+
�2k
�2a
(� + 1)2

�
ln

�
� + 1

�

�2k
�2a
� 1
�

�
� ln

�
(� + 1)

�2k
�2a
� �
��

0 =
�
�2 � 1

�
ln

��
R +

1

�
(R� 1)

�
(R + �(R� 1))

�
+R (� + 1)2 ln

�
R + 1

�
(R� 1)

R + �(R� 1)

�

Fix � > 1 and consider the function f(R) �
�
�2 � 1

�
ln
��
R + 1

�
(R� 1)

�
(R + �(R� 1))

�
+857

R (� + 1)2 ln
h
R+ 1

�
(R�1)

R+�(R�1)

i
. Since �2k > �

2
a, we want to show that f(R) is never 0 for R > 1.858

This contradiction will complete the proof that there is no non symmetric equilibrium. To859

see this, we need the �rst and second derivatives of f(R):860

f 0(R) =
�
�2 � 1

� � � + 1

�R +R� 1 +
� + 1

�R +R� �

�
+R (� + 1)2

�
� + 1

�R +R� 1 �
� + 1

�R +R� �

�
+(� + 1)2 ln

�
�R + (R� 1)
R + �(R� 1)

1

�

�
=

�
�2 � 1

�
(� + 1)2

R� 1
(�R +R� 1) (�R +R� �) + (� + 1)

2 ln

�
�R + (R� 1)
R + �(R� 1)

1

�

�
f 00(R) = �

�
�2 � 1

�
(� + 1)2

(R� 1) (� + 1) ((�R +R� 1) + (�R +R� �))
(�R +R� 1)2 (�R +R� �)2

+

�
�2 � 1

�
(� + 1)2

(�R +R� 1) (�R +R� �) � (� + 1)
2

�
�2 � 1

�
(�R +R� 1) (�R +R� �)
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�
�2 � 1

�
(� + 1)3 (R� 1) (2R� 1)

(�R +R� 1)2 (�R +R� �)2

Thus f(1) �
�
�2 � 1

�
ln 1+(� + 1)2 ln 1 = 0, f 0(1) =

�
�2 � 1

�
(� + 1)2 0

�
+(� + 1)2 ln 1 = 0861

and f 00(R) < 0 for all R > 1
2
. In particular, by concavity, f(R) < 0 for R > 1 and this862

completes the proof.863
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Appendix C: Speciation at the symmetric equilibrium864

(13), (14)865

Our �nal claim for this model is that, for the two-species symmetric equilibrium, the adaptive866

landscape is at a minimum value of 0 exactly at u�1 = u and u
�
2 = �u. We want to show that867

G(v; (u�1; u
�
2); (x

�
1; x

�
2)) is at a minimum as a function of v at u and �u. That is868

@2G(v;u;x)

@v2
jv=�u> 0:

Taking the second derivative of the �tness function869

G(v;u;x) =
r

K (v)

"
K(v)�

nX
j=1

a (v; uj)xj

#

and simplifying by using the eco- and evo-equilibrium conditions (6) and (8) we obtain870

@2G(v;u;x)

@v2
= � r

K (v)

"
nX
j=1

@2a (v; uj)

@v2
xj �K��(v)

#

Thus for G(v;u;x) to be at local minimum for for each v = ui; i = 1; � � � ; n871

"
nX
j=1

@2a (v; uj)

@v2
xj �K��(v)

#�����
v=ui

< 0

Furthermore, we assume that competition is most intense between individuals using the872

same strategy. Like competes most with like. Hence, we let the competition coe¢ cient,873

a (v; uj), be a Gaussian relationship based on the di¤erence between the focal individual�s874

strategy and that of the competitor. The function reaches a maximum of 1 when v = ui and875

declines as the strategies of the competitors diverge. This yields the following:876
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K��(v) =

"�
v

�2k

�2
� 1

�2k

#
K(v) and

@2a (v; uj)

@v2
=

"�
v � uj
�2a

�2
� 1

�2a

#
a (v; uj)

Substituting expressions for these derivatives into the LHS of the minima condition we877

have two equivalent expressions878

1

�2a

nX
j=1

ujxj
@�(v; uj)

@v
+
v2

�2k

�
1

�2a
� 1

�2k

�
K(v)�

�
1

�2a
� 1

�2k

�
K(v) (20)

nX
j=1

xj
�(v; uj)

�
@�(v; uj)

@v

�2
� v2

�4k
K(v)�

�
1

�2a
� 1

�2k

�
K(v):

Using the last expression for n = 2 species with u1 = u and u2 = �u (symmetric solution)879

with v = u1 or v = u2, expanding and simplifying only the summation we get880

2u2

�2a�
2
k

K(u)

Substituting this back into the whole expression and ignoring K(u) we obtain881

2�2k � �2a
(�2k)

2

1

2
ln

�
2�2k � �2a
�2a

�
� �

2
k � �2a
�2a�

2
k

or882

1

�2k

�
2�2k � �2a
�2k

1

2
ln

�
2�2k � �2a
�2a

�
� �

2
k � �2a
�2a

�
Now �x �2a and let �

2
k = ��

2
a. The above expression can be written as883

1

2��2a

�
(2�� 1) ln (2�� 1)� 2

�
�2 � �

��
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Since 1
2��2a

> 0 the sign of the expression is determined by f(�) = (2�� 1) ln (2�� 1)�884

2
�
�2 � �

�
. First note that f(1) = 0. In addition885

f 0(�) = 2 [ln (2�� 1)� (2�� 1) + 1] and f 00(�) = 4

�
2� 2�
2�� 1

�
For � > 1; f 00(�) < 0 and f (�) is concave down. Since f (1) = 0 it follows that f (�) < 0886

for � > 1. (Alternatively, note that for � > 1; f 00(�) < 0 and f 0(�) is decreasing. Since887

f 0(1) = 0, it follows that f 0(�) < 0. Thus f (�) is decreasing and with f (1) = 0 we888

conclude that f (�) < 0 for � > 1.) This establishes the proof for the minima.889

Thus, the equilibrium is at a minimum of the two species G-function.890

Appendix D: Details of the simulations891

Using the software package R (v. 3.1.1) (R Core Team 2013), we developed a series of892

numerical programs to simulate the ecological and evolutionary dynamics of a descretized893

version (Vincent and Brown 2005, Eqn. (4.5.2) and (5.9.2)) of the model894

@xi
@t

= xiG (v;u;x) when v = ui i = 1; � � � ; n (ecological dynamics) (21)

and895

@ui
@t

= k
@G

@v
when v = ui i = 1; � � � ; n (evolutionary dynamics) (22)

The community began with a single species, with initial conditions of u1= 0.1 and x1 =896

1. The simulation would automatically run for as many generations as necessary to reach897

a convergent stable equilibrium. Using the sign of the second derivative, a subroutine898

would then evaluate each species�strategy for whether it was as a minima or maxima on the899

adaptive landscape. If all species�strategies were at maxima on the adaptive landscape,900
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then the simulation would stop (E.g. �gure 2 A-C). On the other hand, if a strategy was at901

a minimum on the adaptive landscape then the simulaition treated it as a bifurcation point902

where a mutation could lead to speciation (e.g., �gure 2 D-F). At such a bifurcation point,903

the program automatically added a second species with u1 = u�; u2 = u� � �, x1 = x� and904

x2 = 1; where � = 0:1, and the ecological and evolutionary dynamics continued from where905

they left o¤ prior to speciation and again run to equilibrium (e.g. �gure 3). Every time906

the community evolved to a convergent stable equilibrium, species at a convergent stable907

minimum were allowed to speciate by adding a new species adjacent to each minimum with908

a strategy value of ui+1 = u�i � � and a population size of xi+1 = 1. However, the sub-909

program that checked whether the strategies are at a minimum on the landscape takes a910

great deal of computational time. For example, after running the program for 150 hours911

on a 57 computer cluster, the simulation had run for ~20 million generations, and still had912

not reached equilibrium for 64 species. The simulation gets very close to the equilibrium913

relatively quickly, but then it would take a very long time to get all the way to equilibrium.914

This can already be seen to some extent in �gure 3 A, where the strategy values were identical915

to 4 decimal places for thousands of generations before equilibrium was fully reached. Since916

competition coe¢ cients must be calculated among all species within the community, this917

version of our program would become even more numerically intensive as diversity increased918

past 64 species. In many cases adding the new species at a population size (this can also be919

thought of as density) of x2 = 1 can be a sizable fraction of the original species�populaiton920

size, x1. For this model, this is not an issue because all convergent stable points and their921

associated strategy values and population sizes are global. We veri�ed this by running922

several of the simiulations with a smaller initial density for the new species (x2 = 0:001).923

All results remained the same.924

With �2k > �
2
a, our experience with the simulation up to 64 species showed that the au-925

tomatic speciation algorithm produced a convergent stable minimum (i.e. before speciation,926
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the dynamics reached an equilibrium where all species were at a minimum of the adaptive927

landscape). Speci�cally, this led to a doubling of diversity at each equilibrium point. Thus,928

to speed up our simulations, we wrote a second program that did not check whether all929

the species were at a minimum on the landscape, but instead just doubled species once the930

equilibrium point was such that strategy and population values satis�ed G (v;u;x) � 10�7931

and@G
@v
� 10�7, at which point all species would speciate as described above, and the dy-932

namics would continue from that point with twice as many species. This species doubling933

shortcut made the simulations numerically tractable and was allowed to continue according934

to these simulation rules, and following the Darwinian dynamics de�ned by the L-V game for935

3.51 million generations, which produced 1024 species. A subset of the complete ecological936

and evolutionary dynamics up to 16 species are shown in �gure 4. These 16 species dynamics937

are produced from the same parameters as �gure 2 D-F and �gure 3 except speciation was938

permitted to continue to n = 16.939

Appendix E: Nash equilibrium with full support for ba-940

sic LV model941

Recall from the main text that942

G(v; u; x) =
r

K (v)

"
K(v)�

nX
j=1

a (v; uj)xj

#

where the carrying capacity and interaction term have the forms943

K (v) = Km exp

�
� v2

2�2k

�
; a (v; u) = exp

"
�(v � u)

2

2�2a

#
:

If �2k < �
2
a, then there is a CSS for the monomorphic population with strategy u = 0.944
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Assume that �2k > �
2
a. For the top-down approach, we try a normal distribution P

�(u) =
p
mp
2�
e�mu

2=2 that is adjusted to a total population size of N�. Since

G(v; u;N�) = r

�
1� N

� exp(�(v � u)2=2�2a)
K exp(�v2=2�2k)

�
;

we have that the payo¤ �(v; P �; N�) to v when the population is in the state (P �; N�) is945

�(v; P �; N�) =

Z
R

�(v; u;N�)P �(u)du

= r

Z 1

�1

�
1� N

� exp(�(v � u)2=2�2a
K exp(�v2=2�2k)

� p
mp
2�
e�mu

2=2du:

Completing the square in v for the exp exponent, we �nd that �(v; P �; N�) is independent946

of v if and only if947

m = 2

"
1

(2�2a)
2

1
1
2�2a
� 1

2�2k

� 1

2�2a

#
:

If we write P �(u) = 1p
2�M

e�u
2=2M2

instead (i.e. if we replace m by 1
M2 ), we �nd that948

M2 = �2k � �2k:

That is, P �(u) is given by Eqn 15.949

Appendix F: The symmetric equilibrium under baseline950

competition951

We also have an expression for the two-species symmetric equilibrium when the competition952

term between v and ui has the form953
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p+ (1� p)a (v; ui) = p+ (1� p) exp
"
�(v � ui)

2

2�2a

#
:

The system of two equations to solve for u > 0 and x > 0 are now954

x
�
p+ (1� p)e�(2u)

2=2�2a

�
+ x = e�u

2=2�2k

2u

�2a
(1� p)e�(2u)

2=2�2ax =
u

�2k
e�u

2=2�2k :

Since u 6= 0, the second equation implies that x = 1
1�p

�2a
2�2k
e�u

2=2�2ke2u
2=�2a. Substituting this955

into the �rst equation and canceling e�u
2=2�2k yields:956

1

1� p
�2a
2�2k

e2u
2=�2a

�
1 + p+ (1� p)e�(2u)

2=2�2a

�
= 1:

Thus,957

u2 =
�2a
2
ln

�
2�2k � �2a
�2a

1� p
1 + p

�

x =
1

1 + p

�2a
2�2k

�
2�2k � �2a
�2a

�1� �2a
4�2
k

as claimed in the main text. Since u2 > 0, we must have 2�2k��2a
�2a

1�p
1+p

> 1. Solving for p, we958

have that p < p�1 � 1�
�2a
�2k
. That is, the two-species symmetric equilibrium exists if and only959

if 0 � p < 1� �2a
�2k
.960
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Appendix G: The symmetric equilibrium under trun-961

cated trait space962

In section �The e¤ect of truncated trait space", we replaced the carrying capacity K(v) =963

Kme
�v2=2�2k in (3) by964

bK(v) �
8><>: K(v) + s(K(v)�Km) if K(v) + s(K(v)�Km) > 0

0 if K(v) + s(K(v)�Km) � 0
: (23)

Here s > 0 is a shrinking parameter in that the carrying capacity of the model is supported on965

the interval in trait space v where K(v)+ s(K(v)�Km) > 0. Since K(v)+ s(K(v)�Km) =966

Km

�
(1 + s)e�v

2=2�2k � s
�
, we �nd that bK(v) > 0 when �v2=2�2k > ln

�
s
1+s

�
. Thus, the967

support of bK (i.e. the closure of the set where bK is non-zero) is the �nite interval in trait968

space given by v2 < 2�2k ln
�
1+s
s

�
(i.e. v 2 [v�; v+] where v� � �

p
2�k

q
ln
�
1+s
s

�
).969

Since bK(v) is 0 for some values of v, the G-function given by (1) is unde�ned for these970

v. To maintain the development of the eco-evolutionary dynamics (4) and (5) in section971

�An Eco-Evolutionary Lotka-Volterra Model", we formally set G(v;u;x) � �1 whenever972 bK(v) = 0. This agrees with the limiting values at v� in that limv!v�+
G(v;u;x) = G(v+;u;x)973

and limv!v+�
G(v;u;x) = G(v�;u;x). It then makes sense to take xi = 0 for any ui outside974

the support of bK since, from (4), xi would be decreasing in�nitely fast to 0 if it were975

positive. Thus, any equilibrium of the dynamics corresponds to strategies ui in the interior976

of the support of bK. Furthermore, from (2) and (23), @G
@v
< 0 whenever v = ui is in this977

interval close to v+ (in fact, limv!v�+
@G
@v
= �1). Similarly limv!v+�

@G
@v
= 1. Thus, the978

evolutionary dynamics (5) forces strategies to evolve away from the boundary of the support979

of bK and into its interior.980

A two-species symmetric equilibrium from (2) and (23) is given by a u+ = u > 0 and981

u� = �u+ in (the interior of) the support of bK that satis�es982
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�2a
2�2k

e2u
2=�2a =

2�2k � �2a
2�2k

� s

1 + s

eu
2=2�2k

Km

:

For �xed s > 0, the LHS of this equation is an increasing function of u > 0 that increases to983

1 and the RHS is a decreasing function of u > 0 that decreases to �1. Thus, by evaluating984

both sides at u = 0, there is a two-species symmetric equilibrium (which will automatically985

be unique) if and only if986

�2a
2�2k

<
2�2k � �2a
2�2k

� s

1 + s

1

Km

s

1 + s
< Km

�2k � �2a
�2k

:

Since 0 � s
1+s

< 1 for s � 0, if Km
�2k��2a
�2k

� 1, then there is a two-species symmetric987

equilibrium for all s � 0.988

On the other hand, if Km
�2k��2a
�2k

< 1, then there is a two-species symmetric equilibrium if989

and only if s < s�, where990

s�

1 + s�
= Km

�2k � �2a
�2k

s� � (�2k � �2a)Km

�2k + (�
2
a � �2k)Km

:

Note that s� > 0 when Km
�2k��2a
�2k

< 1 since �2k + (�
2
a � �2k)Km > 0 and �2k > �

2
a.991
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Figure 1: Examples of the e¤ect of strategy (v) and the parameters �k on the competition
coe¢ cient and the carrying capacity. (A) The competition coe¢ cient a(v; uj) for �a = 2 and
uj = 3:0314 has a maximum at v = 3:0314. As the focal strategy (v) becomes more di¤erent
from that of it�s competitors (uj), competition approaches zero causing disruptive selection.
(B) Carrying capacity, K(v), for �2k = 200 is at a maximum when v = 0 causing stabilizing
selection. (C) We can change the baseline level of competition from 0 to p to examine the
e¤ect of slowly removing the disruptive selection caused by competition on adaptive dynamics
and niche packing. In this example, the minimum value for the competition coe¢ cient is
p = 0:5. (D) Similarly, we can truncate the distribution for K(v) by dropping it to the v-axis
with the shrinking parameter s, to examine the e¤ect of narrowing the niche width on in�nite
niche packing. In this example, s = 2 and K(v) is e¤ectively truncated at v = �12:73.
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Figure 2: The adaptive dynamics for one species that goes to an ESS (A-C), or for one species
that goes to a bifurcation point (D-F). Panels (A, D) show the strategy dynamics, panels
(B, E) show the population dynamics and panels (C, F) show the �nal adaptive landscapes.
In all panels r = 0:25, Km = 100, k = 1. For panels (A-C) the parameters are �k =

p
2 and

�a = 2, for panels (d-f) �k =
p
200 and �a = 2.

53



Figure 3: The two species dynamics for parameter values r = 0:25, Km = 100, k = 1,
�k =

p
200 and �a = 2. This is a continuation of the dynamics in Figure 1 (D-F) assuming

a mutation led to speciation from the convergent stable minimum. The analytic solutions
for two species are given by Eqn 5 and Eqn 6, and for these parameters are u� = �3:031541
and x� = 96:75135. These analytic solutions are shown by X in (A) and (B) respectively
and match the numerical solutions. Panel (C) shows the �nal adaptive landscape.
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Figure 4: Example of eco-evolutionary dynamics starting from a single common ancestor
(u� = 0) and evolving into a community of 16 species. The dynamics of the �original�species
are shown in red. The evolutionary process was arti�cially stopped at 16 species, but we
hypothesize that doubling will proceed inde�nitely. (A) The phylogeny of strategy dynamics
over time, each time an evolutionary minimum is reached, a mutation causes speciation.
(B) The population dynamics associated with the phylogeny, each time speciation occurs
the new species begins from a population size of 1. (C) The �nal adaptive landscape for 16
species just before speciation. These are the same dynamics as shown in Fig 2 D-F and Fig
3, but with speciation at each convergent stable minimum point. Parameters were r = 0:25,
Km = 100, k = 1, �k =

p
200 and �a = 2.
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Figure 5: Eco-evolutionary outcomes up to 1024 species showing how increasing niche pack-
ing causes the maximum range of strategies to expand (A, D), and the population size of
each species to decline (B, E). Productivity, the total population size of all species, increases
to a maximum . In all panels r = 0:25, Km = 100, k = 1, �a = 2. �2k was varied, and panels
(A)-(C) are for �2k = 50 and panels (D)-(F) are for �

2
k = 200.
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Figure 6: The e¤ect of changing the competition function form a(v; ui) to p+(1� p)a(v; ui)
where 0 � p < 1models baseline competition on the two species equilibrium strategy (A) and
equilibrium population size (B) shown in Fig 3. For 0 � p � 0:93 the equilibrium strategy
is at a bifurcation point, for 0:93 < p � 0:98 the equilibrium strategy is at a maximum,
p = 0:93 is denoted by the vertical line in (A) and (B). Also shown, the e¤ect of truncating
the K function by introducing a shrinking parameter s as in equation (15) on the two species
equilibrium (C) and equilibrium population size (D). For 0 � s � 49 the equilibrium strategy
is a at a bifurcation point, for s > 49 the equilibrium strategy is at a maximum; s = 49 is
denoted by the vertical line in (C) and (D). Parameters were r = 0:25, Km = 100, k = 1,
�k =

p
200 and �a = 2.
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Figure 7: Adjusting the baseline level of competition by introducing p into the Alpha function
(A-C), or truncating the carrying capacity by introducing s into the K function (D-F)
changes niche packing. Very small levels of baseline competition cause dramatic drops in
(A) total species (de�ned as the number of unique equilibrium strategies), (B) the range of
strategies and (C) the total productivity (total population size of all species) of the system.
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