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Aradi vértanúk tere 1., H-6720, Szeged, Hungary

e-mail:vargata@math.u-szeged.hu

December 2, 2017

∗Author for correspondence

2



Abstract

Recently, we introduced the class of matrix games under time con-
straints and characterized the concept of (monomorphic) evolution-
arily stable strategy (ESS) in them. We are now interested in how
the ESS is related to the existence and stability of equilibria for poly-
morphic populations. We point out that, although the ESS may no
longer be a polymorphic equilibrium, there is a connection between
them. Specifically, the polymorphic state at which the average strat-
egy of the active individuals in the population is equal to the ESS is
an equilibrium of the polymorphic model.

Moreover, in the case when there are only two pure strategies,
a polymorphic equilibrium is locally asymptotically stable under the
replicator equation for the pure-strategy polymorphic model if and
only if it corresponds to an ESS. Finally, we prove that a strict Nash
equilibrium is a pure-strategy ESS that is a locally asymptotically sta-
ble equilibrium of the replicator equation in n-strategy time-constrained
matrix games.

Key words: evolutionary stability, monomorphic, polymorphic, replica-
tor equation
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1 Introduction

In ecology, the number of individuals ready to interact with the conspecifics
they meet (we call these active individuals) is less than the total number of
individuals in the species. For instance, other activities such as the time to
handle prey (Holling 1959, Garay and Móri 2010) and the time to recover
from a fight (Garay et al. 2015b; Sirot 2000) decrease the number of active
individuals in a predator/consumer species. Moreover, the amount of time
each of these activities take varies and may depend on the strategies (or phe-
notypes) used by the individuals. Consequently, in optimal foraging theory
(Charnov 1976; Garay et al. 2012) and in ecological games (e.g. Broom et al.
2008, Broom and Rychtar 2013; Garay et al 2015a), activity dependent time
constraints have an essential effect on the expected evolutionary outcome.

Motivated by these facts, we recently developed the theory of single-
species matrix games under time constraints and characterized the concept
of a (monomorphic) evolutionarily stable strategy (ESS) in them (Garay et
al. 2017). This theory is briefly summarized in Section 2 below by following
the static ESS approach of Maynard Smith (1982). This approach assumes
that there are only two phenotypes in the population at a given time, one
of which is the fixed phenotype of the resident population and the other is a
rare mutant phenotype. An ESS is then a resident phenotype whose fitness is
higher than that of any possible mutant (cf. Maynard Smith 1982, Garay et
al. 2017). Although the static ESS concept relies implicitly upon an under-
lying dynamic (see Maynard Smith (1982) as well as the discussion following
Definition 2.1 below), its basic intuition concentrates on the evolutionary
question: What phenotype is uninvadable by an arbitrary rare mutant?

The second solution concept of evolutionary game theory (Cressman,
1992) corresponds to a stable rest point of an explicit evolutionary dynamics
that models how the distribution of individual phenotypes in a polymorphic
population evolves over time. For instance, under the replicator equation
(Taylor and Jonker 1978) of the standard polymorphic population model (i.e.
each phenotype existing in the population is a pure strategy), the evolution-
ary outcome is characterized as a locally asymptotically stable rest point of
this dynamical system.

For classical matrix games (i.e. matrix games without time constraints),
these two concepts are connected by one part of the folk theorem of evolu-
tionary game theory (Hofbauer and Sigmund, 1998; Cressman, 2003; Broom
and Rychtar, 2013): An ESS is a locally asymptotically stable rest point
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of the replicator equation. The fundamental question of this paper is then:
What is the connection between ESSs and stable rest points of the standard
replicator equation in the class of matrix games under time constraints?

To address this question, we first show in Section 3 (Proposition 3.1) that
playing the game against a polymorphic population is equivalent to interact-
ing with a specific monomorphism whose phenotype is the average strategy
of the active individuals in the polymorphic population. Moreover, for the
standard polymorphic model of Section 4, there is a unique distribution of
individual phenotypes in the population that corresponds to this monomor-
phism.1

In the special case that all individuals in the population are playing the
same pure strategy, the monomorphism is this pure strategy. It is then
straightforward to show (Theorem 4.1) that a strict Nash equilibrium (NE)
according to Definition 2.2 is an ESS that is locally asymptotically stable
under the replicator equation, thereby generalizing another part of the folk
theorem of evolutionary game theory to matrix games with time constraints.

Our main result (Theorem 4.2) states that, when there are two pure
strategies, the distribution in the standard polymorphic model is locally
asymptotically stable under the replicator equation if and only if its cor-
responding monomorphism is an ESS. That is, the two solution concepts of
evolutionary game theory are equivalent for two-strategy games with time
constraints. The lengthy proof of Theorem 4.2 relies heavily on special tech-
niques for two-strategy games that do not generalize to higher dimensional
strategy spaces. In fact, although an ESS still corresponds to a polymorphic
rest point of the replicator equation (see Lemma 3.2), we conjecture that
counterexamples to stability of this polymorphic distribution already appear
in three-strategy games.

2 Matrix games under time constraints and

the monomorphic model

In a matrix game, there are n pure strategies and an individual’s pheno-
type is given by a mixed strategy (i.e. a probability distribution p =

1In classical matrix games, this monomorphism is the same as the mixed strategy
given by the polymorphic population. This is no longer true in general when the effect
of time constraints is considered and there are two or more pure strategies in use by the
polymorphic population.
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(p1, . . . , pn) ∈ Sn = {p ∈ Rn : 0 ≤ pi ≤ 1,
∑
pi = 1} on these pure strate-

gies) whereby it uses pure strategy i with probability pi at a given time. In
our time-constrained model, individuals can either be active or inactive. An
active individual meets other individuals at random at a fixed rate. It plays
a two-player (symmetric) game when it encounters another active individual,
receiving an intake that depends on its strategy and that of its opponent.
After encountering another active individual, the active individual becomes
inactive for a certain amount of time that also depends on its strategy and
that of its opponent. This positive amount of time may include the time it
takes to play the game (i.e. interaction time), a waiting or recovery time
after the interaction before it is ready to play another game, or a handling
time if the interaction models competition over a resource (e.g. a foraging
game).

If, at a given time, the focal active individual using the i-th pure strategy
meets an active opponent who is using the j-th pure strategy, then the focal
individual’s intake is aij and the focal individual cannot play the next game
during an average time duration τij > 0. Hence our time-constrained matrix
game is characterized by two matrices, the intake matrix A = (aij)n×n, and
the time constraint matrix T = (τij)n×n. For individual fitness in this game,
we follow Garay et al. (2017) who assume a continuous time Markov model is
used where a focal individual’s time between encounters when active and the
amount of time it is inactive are independent and exponentially distributed
with prescribed mean.2 For a large population in this situation, they show
that the fitness of the focal individual is given by the quotient

W =
E(A)

E(T )
, (1)

where E(A) and E(T ) are the average intake and average time, evaluated at
the stationary distribution of the Markov process, for the focal individual’s
phenotype during one cycle of it being active and inactive (i.e. one activity
cycle).3

2That is, we assume each activity (i.e. active or inactive) can happen during a random
time duration, which is exponentially distributed. This is quite different from the situation
where the time duration of an action is part of the strategy of the player, for instance,
the war of attrition (e.g. Eriksson et al. 2004), and dispersal-foraging game (Garay et al.
2015a).

3Observe that the Holling functional response are defined in a similar way (Holling
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For the monomorphic model, we follow the setup of Maynard Smith
(1982). That is, the resident population is monomorphic whereby every in-
dividual has resident phenotype p∗. To be a stable evolutionary outcome, p∗

must resist invasion by a small mutant subpopulation whose members all use
a mutant phenotype p that is different from p∗. It does this by having the
higher fitness in the resident-mutant system whenever the proportion of mu-
tants is small enough. Let ε and (1−ε) be the frequencies of mutant and resi-
dent phenotypes in the resident-mutant system. Since the population is large
and well mixed, a focal active individual (independent of its phenotype) meets
an active (respectively, inactive) mutant with rate ερ (respectively, ε(1− ρ))
and an active (respectively, inactive) resident with rate (1−ε)ρ∗ (respectively,
(1−ε)(1−ρ∗)) where ρ (respectively, ρ∗) is the relative frequency of mutants
(respectively, residents) who are active.4 That is, the encounter distribution
of the focal individual is (ερ, ε(1− ρ), (1− ε)ρ∗, (1− ε)(1− ρ∗)). Moreover,
as shown by Garay et al. (2017), the stationary distribution of the Markov
process for fixed ε satisfies the system of equations

ρ =
1

1 + pT [(1− ε)ρ∗p∗ + ερp]

(2)

ρ∗ =
1

1 + p∗T [(1− ε)ρ∗p∗ + ερp]
.

where, for instance, pT (1−ε)ρ∗p∗ = (1−ε)ρ∗
∑n

i,j=1 piτijp
∗
j is the probability

a focal active mutant meets an active resident times the expected amount of
time the mutant is then inactive. They also show this system5 has a unique
solution (ρ, ρ∗) in [0, 1]× [0, 1] (see Lemma 6.1 in A.1).

1959, Garay and Móri 2010). Also, observe that we do not use the term “payoff” for
matrix games under time constraints. Instead, we use “intake” for the entries aij and
“fitness” for (1) to avoid ambiguity since both these concepts have been called payoff in
other circumstances.

4This assumes, without loss of generality, that the time unit is chosen in such a way
that the fixed rate an active individual meets an individual at random is 1.

5The numerator 1 on the right-hand sides of (2) is the length of the active part of an
activity cycle and the denominator is the expected time of an activity cycle for the focal
individual whose phenotype is p (first equation) or p∗ (second equation). That is, the
left-hand and right-hand sides are both equal to the proportion of active individuals in the
mutant (first equation) and resident (second equation) population. Note that ρ and ρ∗

depend on p∗,p and ε. Therefore, if it is necessary to emphasize this dependence, we use
the notations ρp(p∗,p, ε) and ρp∗(p∗,p, ε), respectively, instead of ρ and ρ∗, respectively.
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From (1), the individual fitness of a resident and a mutant is given by

ω∗ :=
p∗A[(1− ε)ρ∗p∗ + ερp]

1 + p∗T [(1− ε)ρ∗p∗ + ερp]
and ω :=

pA[(1− ε)ρ∗p∗ + ερp]

1 + pT [(1− ε)ρ∗p∗ + ερp]
,

respectively, evaluated at the stationary distribution. To emphasize that
ω and ω∗ depend on p∗,p and ε, we use the notations ωp(p∗,p, ε) and
ωp∗(p∗,p, ε), respectively, if it is necessary. From (2), the resident phenotype

will have higher fitness than the mutant (i.e. ω∗ >ω) at a given ε if and
only if

ρ∗p∗A[(1− ε)ρ∗p∗ + ερp] > ρpA[(1− ε)ρ∗p∗ + ερp]. (3)

This has the following biological interpretation: the active resident phenotype
p∗ has higher intake against the whole active population than the active
mutant phenotype p.

Other equivalent interpretations emerge by considering the fitness ω̄ =
ω̄(p∗,p, ε) := (1−ε)ω∗ +εω of a random individual chosen in the resident-
mutant population. It is straightforward to show that (3) is equivalent to
either of the inequalities ω∗ > ω̄ or ω̄ >ω. That is, the resident phenotype
has higher than the average fitness of the whole population or, alternatively,
the mutant phenotype has lower fitness than the average fitness of the whole
population. As we will see, these different views will be important in the
paper.

From the monomorphic approach of Maynard Smith (1982), we have the
following definition (see also Garay et al. (2017)).

Definition 2.1 A p∗ ∈ Sn is an evolutionarily stable strategy of the
matrix game under time constraints (ESS), if, for all p 6= p∗, there
exists an ε0 = ε0(p) such that (3) holds whenever 0 < ε < ε0.

That is, p∗ is an ESS if and only if it resists invasion by any mutant
phenotype if the mutant is initially sufficiently rare in the resident-mutant
system. The ESS concept is also equivalent to dynamic stability in the fol-
lowing sense. The replicator dynamics for the resident-mutant system has
the form

ε̇ = ε(ω−ω̄) = ε(1− ε)(ω − ω∗)
= ε(1− ε) (ρpA[(1− ε)ρ∗p∗ + ερp]− ρ∗p∗A[(1− ε)ρ∗p∗ + ερp]) .
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This replicator dynamics satisfies the Darwinian tenet that the frequency of
the mutant phenotype decreases if its fitness ω is less than the mean fitness
ω̄ of the resident mutant system. From Definition 2.1 and inequality (3),
strategy p∗ ∈ Sn is an ESS if and only if ε = 0 is a locally asymptotically
stable equilibrium of this replicator dynamics for all p ∈ Sn with p 6= p∗.

As pointed out by Garay et al. (2017), the main obstacle to an analytical
formula for an ESS in terms of the matrices A and T of the time-constrained
game is that the stationary distribution of the population from (2), which
depends in a complicated way on the time constraint matrix T as well as the
strategies of mutant and resident phenotypes for fixed ε, must be substituted
into (3). On the other hand, since the fitness functions on both sides of
inequality (3) depend continuously on the frequencies of the phenotypes (see
Corollary 6.3 in A.1) as ε→ 0, an ESS satisfies inequality (4) in the following
definition of a Nash equilibrium (NE). That is, an ESS is a NE.

Definition 2.2 A strategy p∗ ∈ SN is a Nash equilibrium of the matrix
game under time constraints (NE), if, for every p 6= p∗,

ρp∗(p∗,p, 0)p∗Ap∗ =
p∗Ap∗

1 + p∗Tρp∗(p∗,p, 0)p∗

≥ pAp∗

1 + pTρp∗(p∗,p, 0)p∗ (4)

= ρp(p∗,p, 0)pAp∗.

If the previous inequality is strict (for every p 6= p∗) we say that p∗ is a
strict NE.

Note that, by continuity of the fitness functions, a strict NE is auto-
matically an ESS. However, a strict NE is necessarily a pure strategy in Sn
(see Theorem 4.1 below) and so there are many ESSs that are not strict
NE. To see this, take all entries in T to be equal to τ . Then p∗T [(1 −
ε)ρ∗p∗ + ερp] = τ [(1− ε)ρ∗ + ερ] = pT [(1− ε)ρ∗p∗ + ερp]. Thus, from (2),
ρ∗=ρ = (−1 +

√
1 + 4τ)/(2τ) since ρ = 1/(1 + τρ). Furthermore, inequality

(3) is equivalent to p∗A[(1− ε)p∗ + εp] > pA[(1− ε)p∗ + εp] and so an ESS
according to Definition 2.1 is the same as the classical concept of ESS for
a matrix game A with no time constraint. It is well-known (Hofbauer and
Sigmund, 1998) that many such games have mixed strategy ESSs.
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3 Monomorphic versus polymorphic popula-

tions

In the polymorphic population, there is a fixed finite set of phenotypes taken
from the phenotype pool Sn, at least two of which have positive frequency.
Let the phenotypes be denoted by p∗ and p1,p2, ...,pm.6 For i = 1, 2, ...,m,
let xi be the proportion of phenotype pi in the population and set x =
x1 + ...+ xm. Then the proportion of phenotype p∗ is 1− x ≥ 0. Let %∗ and
%i for i = 1, 2, ...,m denote the proportions of active individuals within the
phenotype p∗ and phenotype pi populations, respectively.

We assume that, for a given x1, ..., xm, the polymorphic system is at
its stationary distribution. Generalizing (2), this is the unique solution
(%∗, %1, ..., %m) in the unit hypercube [0, 1]m+1 (Garay et al., 2017) of the
following system of equations.

%∗ =
1

1 + p∗T [(1− x)%∗p∗ +
∑m

j=1 xj%jpj]
(5)

%i =
1

1 + piT [(1− x)%∗p∗ +
∑m

j=1 xj%jpj]
1 ≤ i ≤ m.

Furthermore, the average intakes per time unit (i.e. fitness given as in (1))
of phenotype p∗ and phenotype pi, respectively, are

W ∗ = %∗p∗A

[
(1− x)%∗p∗ +

m∑
j=1

xj%jpj

]
(6)

Wi = %ipiA

[
(1− x)%∗p∗ +

m∑
j=1

xj%jpj

]
1 ≤ i ≤ m.

It is important to note that %∗, %i,W
∗ and Wi depend on the frequency dis-

tribution
x := (1− x, x1, . . . , xm) ∈ Sm+1.

Therefore the notations %∗(x), %i(x),W ∗(x) and Wi(x), respectively, are used
if we want to emphasize this dependence.

6In the following, p∗ is often thought of as the resident strategy or as an ESS according
to Definition 2.1. However, since this does not need to be the case, it is better to regard
p∗ only as a phenotype that is distinguished from the others.
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Our first main result (Proposition 3.1) is that, from the point of view of
phenotype p∗, the collection of other phenotypes pi with proportions given
through x in the large polymorphic population can be replaced with a sin-
gle mixed phenotype as in the monomorphic model of Section 2. For this
purpose, we define

%̃(x) =
1

x

m∑
j=1

xj%j(x) (7)

h̃(x) =

∑m
i=1 xi%i(x)pi∑m
j=1 xj%j(x)

=
1

x%̃(x)

m∑
i=1

xi%i(x)pi. (8)

That is, %̃ is the average frequency of active individuals among the phenotypes
p1,p2, ...,pm and h̃(x) is the average strategy of these active individuals.7

The result is

Proposition 3.1 Consider a large polymorphic population with probability
distribution x. At the stationary distribution of this polymorphic system,
%∗(x) and W ∗(x) in (5) and (6) respectively are given by the monomorphic
model based on phenotypes p∗ and h̃(x) with proportions 1−x and x, respec-
tively. That is, ρp∗(p∗, h̃(x), x) = %∗(x) and ωp∗(p∗, h̃(x), x) = W ∗(x).

Furthermore, %∗(x) and %̃(x) give the stationary distribution for the mo-
nomorphic model (in particular, ρh̃(x)(p

∗, h̃(x), x) = %̃(x)) and the fitness

of h̃(x) is the average fitness W̃ (x) ≡ 1
x

∑m
j=1 xiWi(x) of the phenotypes

p1,p2, ...,pm in the polymorphic model (i.e. ωh̃(x)(p
∗, h̃(x), x) = W̃ (x)).

Proof. Recall the defining equations (5) of %∗ and %i, respectively:

%∗ =
1

1 + p∗T [(1− x)%∗p∗ +
∑m

j=1 xj%jpj]
(9)

%i =
1

1 + piT [(1− x)%∗p∗ +
∑m

j=1 xj%jpj]
1 ≤ i ≤ m. (10)

Multiplying both sides of (10) by its denominator and then by xi/x yields:

1

x

[
xi%i + xi%ipiT

[
(1− x)%∗p∗ +

m∑
j=1

xj%jpj

]]
=
xi
x
. (11)

7Note that, %̃(x) and h̃(x) are well-defined since at least one of the xi is positive.
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Recall the definition of %̃ in (7) and note that, by (8), it is true that

m∑
j=1

xj%jpj = x%̃
1

x%̃

m∑
j=1

xj%jpj = x%̃h̃.

Therefore, if we sum equations (11) from i = 1 to i = m we receive that

%̃+ %̃h̃T
[
(1− x)%∗p∗ + x%̃h̃

]
= 1 (12)

which, divided by 1 + h̃T
[
(1− x)%∗p∗ + x%̃h̃

]
, is equivalent to

%̃ =
1

1 + h̃T
[
(1− x)%∗p∗ + x%̃h̃

] , (13)

and so %̃(x) = ρh̃(x)(p
∗, h̃(x), x).

Similarly, write (6) in the following form:

W ∗ = %∗p∗A[(1− x)%∗p∗ + x%̃h̃]

Wi = %ipiA[(1− x)%∗p∗ + x%̃h̃] 1 ≤ i ≤ m.

Mimic the previous calculation for the “%”-s from (11) to (12) to get

W̃ = %̃h̃A[(1− x)%∗p∗ + x%̃h̃]

which completes the proof. �

We will use Proposition 3.1 to investigate how an ESS p∗ of the monomor-
phic model is related to equilibrium and stability in two different polymorphic
models. In this section, we focus on the case where p∗ is the resident pheno-
type and the frequencies of the other phenotypes p1,p2, ...,pm (now called
mutants) are small.8 This models the situation where mutations are not rare
events since there can be more than one type of mutant in the system at a
given time. Maynard Smith (1982, Appendix D) has already called atten-
tion to the possibility in the classical matrix games that a resident strategy,
which cannot be invaded by any single mutant using a pure strategy, can

8Section 4 considers the pure-strategy polymorphic model where the only phenotypes
present in the population use one of the n pure strategies.
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sometimes be invaded when two mutant pure strategies are simultaneously
present. This continues to be true under arbitrary time constraint as we shall
show shortly.

To consider this fact, suppose that the resident phenotype is in the convex
hull of p1,p2, ...,pm. That is,

p∗ =
m∑
i=1

αipi, where all αi ≥ 0 and
m∑
i=1

αi = 1.

Define %∗(0) and %i(0) as the unique positive solution of (5) when x = 0.
That is,

%∗(0) =
1

1 + p∗T%∗(0)p∗

%i(0) =
1

1 + piT%∗(0)p∗ 1 ≤ i ≤ m.

Now take x̂i(x) = xαi%
∗(0)/%i(0) for an arbitrary 0 ≤ x ≤ 1. Then

m∑
i=1

x̂i(x) = x
m∑
i=1

αi
%∗(0)

%i(0)
= x

m∑
i=1

αi%
∗(0) [1 + piT%

∗(0)p∗]

= x%∗(0) (1 + p∗T%∗(0)p∗) = x

and so x̂(x) ≡ (1 − x, x̂1(x), . . . , x̂m(x)) ∈ Sm+1. Since T [(1 − x)%∗(0)p∗ +∑m
j=1 x̂j(x)%j(0)pj] = T [(1− x)%∗(0)p∗ +

∑m
j=1 xαj

%∗(0)
%j(0)

%j(0)pj] = T%∗(0)p∗,

the system (5) for the distribution x̂(x) satisfies

%∗(0) =
1

1 + p∗T [(1− x)%∗(0)p∗ +
∑m

j=1 x̂j(x)%j(0)pj]
=

1

1 + p∗T%∗(0)p∗

%i(0) =
1

1 + piT [(1− x)%∗(0)p∗ +
∑m

j=1 x̂j(x)%j(0)pj]
=

1

1 + piT%∗(0)p∗ 1 ≤ i ≤ m.

That is, the unique solution to (5) for x̂(x) is (%∗(0), %1(0), ..., %m(0)). In
particular, %∗(x̂(x)) = %∗(0) and %j(x̂(x)) = %j(0). From this, it follows that

%̃(x̂(x)) =
1

x

m∑
j=1

x̂j(x)%j(x̂(x)) =
1

x
x

m∑
j=1

αj
%∗(0)

%j(0)
%j(0) = %∗(0)

h̃(x(x)) =
1

x%̃(x̂(x))

m∑
i=1

x̂i(x)%i(x̂(x))pi =
x

x%∗(0)

m∑
i=1

αi
%∗(0)

%i(0)
%i(0)pi = p∗.
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Thus, by Proposition 3.1

W ∗(x̂(x)) = ωp∗(p∗, h̃(x̂(x)), x) = ωp∗(p∗,p∗, x)

= ωp∗(p∗,p∗, 0) = W ∗(x̂(0))

and

W̃ (x̂(x)) = ωh̃(x̂(x))(p
∗, h̃(x̃(x)), x) = ωp∗(p∗,p∗, x)

= ωp∗(p∗,p∗, 0) = W ∗(x̂(0)),

respectively. In summary, if p∗ is a convex combination of p1,p2, ...,pm,
then there is always a state x̂(x) ∈ Sm+1 for any x ∈ [0, 1] in the polymor-
phic model with W ∗(x̂(0)) = W ∗(x̂(x)) = W̃ (x̂(x)). In particular, for this
polymorphic model, it is always possible that a combination of the mutant
phenotypes has the same average fitness W̃ as the fitness W ∗ of the resident
strategy p∗ no matter how small the total frequency of mutant phenotypes
is.9

In this sense, a monomorphic ESS p∗ can be invaded in the polymorphic
model. For this reason, we turn our attention to the standard pure-strategy
polymorphic model in the following section. Before doing so, it is important
to mention that a NE p∗ does correspond to an equilibrium of the polymor-
phic model by the following result.

Lemma 3.2 Suppose p∗ is a NE according to Definition 2.2. Then W ∗(x̂(0))
≥ Wi(x̂(0)) for all i = 1, ...,m. Moreover, Wi(x̂(x)) = W ∗(x̂(0)) for every
x ∈ [0, 1] whenever x̂i(x) = xαi%

∗(0)/%i(0) > 0. That is, x̂(x) is an equilib-
rium of the polymorphic model.

Proof. From Definition 2.2, W ∗(x̂(0)) =ρ∗(0)p∗Ap∗ρ∗(0)≥ ρi(0)piAp∗ρ∗(0)
= Wi(x̂(0)) for all i = 1, ...,m. On the other hand, we have just seen that
W ∗(x̂(0)) = W ∗(x̂(x)) = W̃ (x̂(x)) =

∑m
i=1 x̂i(x)Wi(x̂(x)) for every x ∈ [0, 1].

This is possible if and only if Wi(x̂(x)) = W ∗(x̂(0)) for every x ∈ [0, 1] when-
ever x̂i(x) > 0. �

9This generalizes the classic result (Cressman 1992; Hofbauer and Sigmund 1998) that,
in a mixed-strategy model, the average fitness of mutant phenotypes equals the fitness of
their convex combination.
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4 Evolutionary and Dynamic Stability in the

Pure-Strategy Model

In the standard polymorphic population, there are m = n phenotypes and
each individual uses one of the pure strategies ei ∈ Sn where ei denotes the
n-dimensional vector the i-th coordinate of which is 1 and the others are 0.
Since we do not distinguish a strategy10 in the polymorphic population in
the present reasoning and we need the average frequency of active individuals
and the average strategy of active individuals, we define %̄ and h̄ copying the
definition of %̃ and h̃ in (7) and (8) as follows:

%̄(x) =
n∑
i=1

xi%i(x) (14)

and
1

%̄(x)

n∑
i=1

xi%i(x)ei (15)

respectively, where x ∈ [0, 1]n with
∑
xi = 1. In other words, %̄(x) =

%̃(0,x) = %̃(0, x1, . . . , xn) and h̄(x) = h̃(0,x). Then there is a unique x ∈ Sn
with h̄(x) = p∗ (see Corollary 6.3 (iii) and (iv) in A.1).This is given by the
frequency distribution

xi =
ρ∗

ρi
p∗i (16)

where ρ∗ = ρp∗ is the unique solution in [0, 1] to the equation

ρ∗ =
1

1 + p∗Tρ∗p∗ (17)

and ρi = ρi(p
∗) is the expression

1

1 + eiTρ∗p∗ 1 ≤ i ≤ n. (18)

Now consider the standard replicator equation

ẋi = xi[Wi(x)− W̄ (x)], (19)

10see footnote 6 on page 10
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for the pure-strategy model where, as before, Wi(x), i ∈ {1, ..., n}, is the
fitness of the i-th phenotype and W̄ (x) =

∑
xiWi(x) is the average fitness of

the whole polymorphic population. From Lemma 3.2 (apply it with x = 1), if
p∗ is an ESS of the monomorphic model with h̄(x) = p∗, then Wi(x) = W̄ (x)
whenever xi > 0 and so x is a rest point of the replicator equation. The
question of most interest now is whether such an x is a stable equilibrium of
the replicator equation. Our first result is that this is true if p∗ is a strict
NE (and so an ESS).11

Theorem 4.1 A strict NE must be a pure strategy. Without loss of gener-
ality, suppose that e1 is a strict NE. Then the state x∗ = (1, 0, ..., 0) ∈ S1+m

is a locally asymptotically stable rest point of the replicator equation (19).

Proof. Assume that p∗ is a strict NE. Then, according to Lemma 3.2,
ωp∗(p

∗, ei, 0) = W ∗(x̂(0)) = Wi(x̂(0)) = ωei(p
∗, ei, 0) for every i with

p∗i 6= 0. (Note that x̂(0) = x∗.) Since p∗ is a strict NE, this is possible if and
only if p∗ is a pure strategy. It can be assumed without loss of generality
that p∗ = e1.

We prove that if we consider the replicator dynamics for a population con-
sisting of individuals using one of the (pairwise distinct) strategies e1,p1, . . . ,pm
then x∗ = (1, 0, . . . , 0) ∈ S1+m is a locally asymptotically stable rest point.
We are looking for a δi > 0 such that

e1A(1− x)%∗e1 + e1A
[∑m

j=1 xj%jpj
]

1 + e1T (1− x)%∗e1 + e1T
[∑m

j=1 xj%jpj
]

−
piA(1− x)%∗e1 + piA

[∑m
j=1 xj%jpj

]
1 + piT (1− x)%∗e1 + piT

[∑m
j=1 xj%jpj

] > 0 (20)

hold whenever 0 < ||x − x∗|| ≤ δi. Since e1 is a strict Nash equilibrium we
have

e1A%
∗(x∗)e1

1 + e1T%∗(x∗)e1

− piA%
∗(x∗)e1

1 + piT%∗(x∗)e1

> 0. (21)

The left-hand side of (20) is continuous in x (see Corollary 6.3) and, at
x = x∗, it is just equal to the left-hand side of (21). This continuity implies
the existence of δi.

11The proof of Theorem 4.1 shows that this result generalizes to the polymorphic model
of the previous section in that stability of a strict NE p∗ continues to hold for the replicator
equation extended to sets of mixed strategy phenotypes that include p∗.
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Now, let δ := min(δ1, . . . , δm). Then (20) holds for every 1 ≤ i ≤ m
whenever 0 < ||x−x∗|| ≤ δ . Since W̄ (x) = (1−x)W ∗(x) +

∑
i xiWi(x), one

can immediately conclude that W ∗(x) > W̄ (x) whenever 0 < ||x− x∗|| ≤ δ.
�

Theorem 4.1 is a well-known result for evolutionary games without time
constraints, forming one part of the folk theorem of evolutionary game theory
(Hofbauer and Sigmund, 1998; Cressman, 2003). Another part of the folk
theorem states that an interior ESS (i.e. all components p∗i of p∗ are positive)
is globally asymptotically stable under the replicator equation. This is no
longer true for time constrained games as the following two-strategy example
shows.

Example 1. Consider the two-strategy game with time constraint matrix
and intake matrix given by

T :=

(
1 0
0 1

)
and A :=

(
1 1
c d

)
,

respectively, where c and d are defined below. For the pure-strategy model,
%i(x) for i = 1, 2 is the solution of the equation

%i =
1

1 + eiT [x%1e1 + (1− x)%2e2]
.

That is,

%1(x) =
−1 +

√
1 + 4x

2x
, %2(x) =

−1 +
√

5− 4x

2(1− x)
.

A state (x, 1 − x) is an interior rest point of the two-dimensional replicator
equation if and only if W1(x) = W2(x); that is

%1(x)e1A[x%1(x)e1 + (1− x)%2(x)e2] = %2(x)e2A[x%1(x)e1 + (1− x)%2(x)e2].

Thus, u 6= v in (0, 1) are both rest points if

u%1(u)2 + (1− u)%1(u)%2(u) = u%1(u)%2(u)c+ (1− u)%2(u)2d

v%1(v)2 + (1− v)%1(v)%2(v) = v%1(v)%2(v)c+ (1− v)%2(v)2d

17



which gives us two equations with unknowns c, d. For instance, if u = 1/4 and
v = 1/2, one can straightforwardly solve this system to find that c =

√
2− 1

while d = 3−
√

2. Moreover, for these values of c, d,

d

dx
[W1(x)−W2(x)]

∣∣
x=1/4

=
7
√

2− 10

3
< 0

while

d

dx
[W1(x)−W2(x)]

∣∣
x=1/2

=
2(
√

3− 1)(6− 2
√

3−
√

6)

3
> 0.

Since the replicator equation for two-strategy games is the one-dimensional
dynamics ẋ1 = x1(1−x1)[W1(x)−W2(x)], the state x̂ = (x̂1, x̂2) = (1/4, 3/4)
is locally asymptotically stable but not globally because there is another
interior rest point.

Note that, by Theorem 4.2 below, strategy

p∗ :=
1

4

%1(1/4)

%̄(1/4)
e1 +

3

4

%2(1/4)

%̄(1/4)
e2 =

(
1−
√

2

2
,

√
2

2

)

is an ESS of this two-strategy time constrained game. Furthermore, it is
straightforward to show that e1 is a strict NE (and so an ESS) while e2 is
not. This contrasts with the evolutionary game without time constraints and
payoff matrix A where e1 and e2 are both strict NE and the only interior NE(

1
2
, 1

2

)
is not an ESS.

By the following result, local asymptotic stability under the replicator
equation does correspond to an ESS for two-strategy games.

Theorem 4.2 Given p∗ ∈ S2, the unique solution x̂ = (x̂1, x̂2) ∈ S2 of
h̄(x) = p∗12 is locally asymptotically stable under the replicator equation
(19) if and only if p∗ is an ESS of the monomorphic model.

Proof. By Lemma 6.5 in A.2, given p∗ ∈ S2, there is an ε0 > 0 such that

x̂1W1(x) + x̂2W2(x) > W̄ (x) (22)

12 From (16), x̂1 = p∗1
ρp∗

ρ1(p∗) and x̂2 = p∗2
ρp∗

ρ2(p∗) .
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for all x = (x1, x2) ∈ S2 with 0 < |x1 − x̂1| < ε0 if and only if p∗ is an
ESS. Since W̄ (x) = x1W1(x) + x2W2(x), x̂2 = 1 − x̂1 and x2 = 1 − x1, this
inequality is equivalent to

(x̂1 − x1)[W1(x)−W2(x)] > 0

which holds if and only if, with x ∈ S2, W1(x) − W2(x) > 0 if x1 < x̂1

and W1(x) − W2(x) < 0 if x1 > x̂1. From the replicator equation ẋ1 =
x1(1 − x1)[W1(x) −W2(x)], the stability of a rest point x̂ is determined by
the sign of the expression W1(x)−W2(x): x̂ is asymptotically stable if and
only if W1(x) −W2(x) > 0 if x1 < x̂1 and W1(x) −W2(x) < 0 if x1 > x̂1

whenever x1 ∈ [0, 1] is close enough to x̂1. �

Remark. The proof of Theorem 4.2 uses the same method as Hofbauer
and Sigmund (1998) who showed an interior ESS is globally asymptotically
stable under the replicator equation for n-strategy matrix games without
time constraint. The key to this proof is inequality (22), which for n-strategy
games where x̂ ·W(x) :=

∑n
i=1 x̂iWi(x) becomes

x̂ ·W(x) > x ·W(x) (23)

for all x ∈ Sn sufficiently close (but not equal) to x̂. The biological inter-
pretation of inequality (23) is that, for all polymorphic population states
near x̂, the average fitness of phenotype x̂ is higher than that of the whole
population.

In Hofbauer and Sigmund (1998) (see especially their Section 6.5 on pop-
ulation games and equation (6.21)), such an x̂ ∈ Sn is defined as a local
ESS (of the polymorphic pure-strategy model). To avoid confusion with our
Definition 2.1 of an ESS for the monomorphic model, we will call an x̂ that
satisfies (23) a polymorphic stable state (PSS) instead. Theorem 4.2 then
states that, for two-strategy games, p∗ is an ESS if and only if x̂ is a PSS (see
Corollary 4.3 below). It is an open problem whether this equivalence extends
to n-strategy matrix games with time constraint. In fact, we conjecture this
equivalence is not true when n > 2 but have no counterexample at this time.
On the other hand, the proof of Theorem 4.2 generalizes to show that a PSS
is always asymptotically stable under the replicator equation for any n.
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Corollary 4.3 Let p∗ = (p∗1, p
∗
2) ∈ S2 and let

x̂i := p∗i
ρ∗

ρ
i
(p∗)

i = 1, 2

where ρ∗ and ρi(p
∗) are defined in (17) and (18). Then the following three

conditions are equivalent:

(i) p∗ is an ESS;

(ii) (x̂1, x̂2) is a PSS;

(iii) (x̂1, x̂2) is a locally asymptotically stable rest point of the replicator
equation.

5 Discussion

We have generalized two parts of the folk theorem of evolutionary game
theory to the class of matrix games under time constraints. Specifically,
Theorems 4.1 and 4.2 respectively show that a strict NE is locally asymptot-
ically stable under the replicator equation and that, for two-strategy games,
strategy x̂ is locally asymptotically stable under the replicator equation if
and only if its corresponding monomorphism h(x̂) is an ESS according to
Definition 2.1.

Given the prominence of two-strategy games in applications of evolution-
ary game theory, these results mean that evolutionary outcomes of ecological
models that incorporate the dynamic effects of different individual behav-
iors may continue to be predicted through static game-theoretic reasoning.
In this regard, we emphasize that the replicator equation is an ecological
model since the question it addresses is whether the long time existence of
different strategies (i.e. different ecotypes) is possible. Moreover, the PSS
defining condition (23) (which corresponds to ESS for two-strategy games by
Corollary 4.3) is based on the ecological intuition that a state x̂ is stable if
its fitness in a slightly perturbed ecological state is always higher than the
average fitness in this perturbed state.13

13Another connection between ecology and our evolutionary dynamics is the fact that
the replicator equation with n pure strategies in classical matrix games is equivalent to a
Lotka-Volterra system with n− 1 species (Hofbauer & Sigmund 1998).
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The effect of time constraints on evolutionary outcomes has been studied
elsewhere in the literature. Besides our recent article (Garay et al 2017) that
provides the foundation of the current investigation, Krivan and Cressman
(2017) analyze general two-strategy matrix games when individuals are al-
ways paired, as in classical matrix games, but their interaction times depend
on the strategies used in the pair. They were able to give an explicit formula
for the stationary distribution for the standard polymorphic model in this
case, in contrast to the implicit form we are forced to use in (2). On the other
hand, our model extends theirs to include other activities beyond pair inter-
actions that are essential to include for more realistic models of ecological
systems.
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6 Appendix

A.1. Preliminaries

We first state some technical lemmas necessary later, although sometimes
they are used only tacitly.

Lemma 6.1 (Garay et al. 2017, Lemma 2, p. 7) The following system
of nonlinear equations in n variables,

ui =
1

1 +
∑n

j=1 cijuj
, 1 ≤ i ≤ n, (24)

where the coefficients cij are positive numbers, has a unique solution in the
unit hypercube [0, 1]n.

We also claim the following.

Lemma 6.2 The solution u = (u1, u2, . . . , un) ∈ [0, 1]n of (24)

(i) is a continuous function in

c := (c11, . . . , c1n, c21, . . . , c2n, . . . , cn1, . . . , cnn) ∈ Rn2

≥0,

(ii) has positive coordinates uniformly separated from zero, namely

1

1 +
∑
ijcij

≤ ul ≤ 1 (1 ≤ l ≤ n).

Proof. To the proof of (i), assume that the sequence

ck = (c
(k)
11 , . . . , c

(k)
1n , c

(k)
21 , . . . , c

(k)
2n , . . . , c

(k)
n1 , . . . , c

(k)
nn )→ c.

For each positive integer k, let uk = (u
(k)
1 , u

(k)
2 , . . . , u

(k)
n ) be the unique solu-

tion of the system of equations

ui =
1

1 +
∑n

j=1 c
(k)
ij uj

, 1 ≤ i ≤ n,
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in the unit hypercube [0, 1]n. As uk ∈ [0, 1]n it is a bounded sequence. To
see that uk tends to u it, therefore, suffices to prove that any ukl convergent
subsequence of uk tends to the same u. Denote by û the limit of ukl . Since

1

1 +
∑n

j=1 bijxj
− xi

is a continuous function in (b,x) (consider it as a function of n2 +n variables
on Rn2

≥0 × [0, 1]n), it follows that

0 =
1

1 +
∑n

j=1 c
(kl)
ij u

(kl)
j

− u(kl)
i → 1

1 +
∑n

j=1 cijûj
− ûi

which implies that

0 =
1

1 +
∑n

j=1 cijûj
− ûi or, equivalently, ûi =

1

1 +
∑n

j=1 cijûj
.

Because of the uniqueness of the solution, the limit û must be the same for
any convergent subsequent of u(k) and û must be equal to u. Since u(k) tends
to this unique solution in [0, 1]n, the solution is continuous in c.

The lower estimate in (ii) is apparent from (24) because ui ≤ 1 for every
1 ≤ i ≤ n. �

Corollary 6.3 Consider a population of types p0,p1, . . . ,pm ∈ Sn with fre-
quencies x0, x1, . . . , xm.

(i) The active part %i of the different types given by the solution of the
system:

%i =
1

1 + piT [
∑m

j=0 xj%jpj]

continuously depends on x = (x0, x1, . . . , xm). We use the notation
%i(x) = %i(x,p0, . . . ,pm) in this sense.

(ii) Let

%̄(x) = %̄(x,p0, . . . ,pm) :=
m∑
i=0

xi%i(x,p0, . . . ,pm)

and

h̄(x) = h̄(x,p0, . . . ,pm) :=
m∑
i=0

xi%i(x,p0, . . . ,pm)

%̄(x,p0, . . . ,pm)
pi.

24



If y is another frequency distribution such that h̄(y) = h̄(x) =: h̄, then
both %̄(x) = %̄(y) and %i(x) = %i(y) (0 ≤ i ≤ m).

(iii) If h̄ can be uniquely represented as a convex combination of p0, . . . ,pm
14

then xi must be equal to yi for every i.

(iv) If p is a convex combination of p0, . . . ,pm then there is an x = (x0, x1,
. . . , xm) ∈ Sm+1 such that h̄(x) = p. Namely, if p =

∑m
i=0 αipi then

xi =
ρp
ρi(p)

αi

where ρp is the unique solution in [0, 1] to the equation

ρ =
1

1 + pTρp
(25)

and ρi(p) denotes the expression

1

1 + piTρpp
0 ≤ i ≤ m. (26)

Proof.

(i) The continuity of %i in x immediately follows from Lemma 6.2. (Set
cij equal to piTxjpj.)

(ii) Since %̄(x) = (1− x)%0(x) + x%̃(x), Proposition 3.1 shows that

%̄(x) =
1

1 + h̄T %̄(x)h̄

and

%̄(y) =
1

1 + h̄T %̄(y)h̄

hold (as if the population consisted of only h̄-strategists). Lemma 6.1
says that the equation

%̄ =
1

1 + h̄T %̄h̄

14This is always true in the two cases (i) m = 1 and p0 6= p1 and (ii) p0, . . . ,pm are
distinct pure strategies.
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(with %̄ as the unknown) has a unique solution in [0, 1] which implies
at once that %̄(x) = %̄(y). Also,

%i =
1

1 + piT
∑

j xj%jpj
=

1

1 + piT %̄h̄

has a unique solution (in the unknowns %i) in [0, 1]n+1 for every i from
which %i(x) = %i(y) follows for every 0 ≤ i ≤ m.

(iii) This is an immediate consequence of (ii) by comparing the coefficients
in the representations h̄(x) and h̄(y).

(iv) Take the frequencies

xi =
ρp
ρi(p)

αi.

Then, by (25) and (26), we have that

m∑
i=0

xi =
m∑
i=0

ρp
ρi(p)

αi =
m∑
i=0

αi
1 + piTρpp

1 + pTρpp
= 1,

that is x = (x0, x1, . . . , xm) is a frequency distribution. Consider the
polymorphic population of strategies p0,p1, . . . ,pm with this frequency
distribution x. Then, ρ0(p), ρ1(p), . . . , ρm(p) satisfy the following sys-
tem of equations corresponding the system (5) with p∗ = p0:

%i =
1

1 + piT
[∑m

j=0 xj%jpj
] . (27)

Indeed, by a simple replacement, we get that

1

1 + piT
[∑m

j=0 xjρj(p)pj
] =

1

1 + piT
[∑m

j=0 αj
ρp
ρj(p)

ρj(p)pj
]

=
1

1 + piT
[∑m

j=0 ρpαjpj
] =

1

1 + piTρpp
= ρi(p)

On the other hand, %0(x), %1(x), . . . , %n(x) are also the solutions of the
system of equations (27). By the uniqueness (see Lemma 6.1 in A.1.)
we have that %i(x) = ρi(p). Consequently, we have that

%̄(x) =
m∑
i=0

xi%i(x) =
m∑
i=0

xiρi(p) =
m∑
i=0

(
ρp
ρi(p)

αi

)
ρi(p) = ρp

m∑
i=0

αi = ρp
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and

h̄(x) =
1

%̄(x)

m∑
i=0

xi%i(x)pi =
1

ρp

m∑
i=0

(
ρp
ρi(p)

αi

)
ρi(p)pi =

m∑
i=0

αipi = p.

�

Lemma 6.4 Let p, r ∈ S2. Denote by %p(ε), %r(ε) the unique solution in
[0, 1]2 of the system:

%p =
1

1 + pT [(1− ε)%pp + ε%rr]
,

%r =
1

1 + rT [(1− ε)%pp + ε%rr]
.

Furthermore, %̄(ε) := (1− ε)%p(ε) + ε%r(ε) and

q(ε) :=
1

%̄(ε)
[(1− ε)%p(ε)p + ε%r(ε)r].

Then q(0) = p, q(1) = r and q(ε) uniquely runs through the line segment
between p and r as ε runs from 0 to 1 in such a way that 0 ≤ ε1 < ε2 ≤ 1
implies that ||q(ε1)− p|| < ||q(ε2)− p||.

Proof. Corollary 6.3 (i) with the choice p0 = p and p1 = r shows that
%p(ε) and %r(ε) are continuous in ε ∈ [0, 1]. Therefore, both %̄(ε) and q(ε)
are continuous in ε. Since q(0) = p and q(1) = q the Bolzano-Darboux
property of continuous function (intermediate value theorem) ensures that
q(ε) runs through the line segment between p and r as ε runs from 0 to 1.
Furthermore, by Corollary 6.3 (iii), q(ε1) 6= q(ε2) also holds. Since q(0) = p,
it follows that ||q(ε1)− p|| < ||q(ε2)− p||. �

A.2.

Lemma 6.5 Let p∗ ∈ S2 and x̂ = (x̂1, x̂2) ∈ S2 be the unique solution of
h̄(x) = p∗. Then p∗ is an ESS if and only if there is a δ > 0 such that

x̂1W1(x) + x̂2W2(x) > x1W1(x) + x2W2(x) = W̄ (x)

whenever |x1 − x̂1| < δ.
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Proof. Consider a p∗ ∈ S2. Without loss of generality, it can be assumed
that p∗ 6= e2. We use the following notations:

%̄(x) := x1%1(x) + x2%2(x) and h̄(x) := x1
%1(x)

%̄(x)
e1 + x2

%2(x)

%̄(x)
e2. (28)

Similarly, we introduce the notations %̂(x) and ĥ(x), respectively, as follows:

%̂(x) := x̂1%1(x) + x̂2%2(x) and ĥ(x) := x̂1
%1(x)

%̂(x)
e1 + x̂2

%2(x)

%̂(x)
e2. (29)

Assume that x̂2 < x2 (the case x2 < x̂2 can be handled in the same way). It
is easy to check this is equivalent to the inequality

x̂2
%2(x)

%̂(x)
< x2

%2(x)

%̄(x)

which implies that h̄(x) lies on the line segment between ĥ(x) and e2. By
Lemma 6.4, it is also true that h̄(x) is located on the line segment between
p∗ and e2. Thus, there is an η̂ = η̂(x) and an η = η(x), respectively, between
0 and 1, such that

h̄(x) = (1− η̂)
ρĥ(x)(ĥ(x), e2, η̂)

ρ̄(ĥ(x), e2, η̂)
ĥ(x) + η̂

ρe2(ĥ(x), e2, η̂)

ρ̄(ĥ(x), e2, η̂)
e2 (30)

and

h̄(x) = (1− η)
ρp∗(p∗, e2, η)

ρ̄(p∗, e2, η)
p∗ + η

ρe2(p
∗, e2, η)

ρ̄(p∗, e2, η)
e2, (31)

respectively. Observe that ρ̄(ĥ(x), e2, η̂) = ρ̄(p∗, e2, η) = %̄(x) and ρe2(ĥ(x), e2, η̂)
= ρe2(p

∗, e2, η) = %2(x).15 Note that η and x2 mutually determine each other
so we can write η = η(x2) or x2 = x2(η) depending on what is given. A
similar observation is true for the relationship between η̂ and x2.

Suppose, for some x2, we have

ρp∗(p∗, e2, η)p∗A ρ̄(p∗, e2, η)

[
(1− η)

ρp∗(p∗, e2, η)

ρ̄(p∗, e2, η)
p∗ + η

ρe2(p
∗, e2, η)

ρ̄(p∗, e2, η)
e2

]
︸ ︷︷ ︸

%̄(x)h̄(x)

> ρe2(p
∗, e2, η)e2A%̄(x)h̄(x) = %2(x)e2A%̄(x)h̄(x). (32)

15For example, to see that ρ̄(ĥ(x), e2, η̂) = ρ̄(p∗, e2, η) = %̄(x) it is enough to observe
that they satisfy the equation % = 1/[1 + h̄(x)T%h̄(x)] with % as the unknown and use
Lemma 6.1 about uniqueness.
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Multiply both sides of inequality (32) by (1−η) then add η%2(x)e2A%̄(x)h̄(x)
to get that

%̄(x)h̄(x)A%̄(x)h̄(x) > %2(x)e2A%̄(x)h̄(x) (33)

By subtracting η̂%2(x)e2A%̄(x)h̄(x) from both sides of (33), simplifying by
(1− η̂) and using (30) we obtain inequality:

ρĥ(x)(ĥ(x), e2, η̂)ĥ(x)A%̄(x)h̄(x) > %2(x)e2A%̄(x)h̄(x). (34)

Multiplying (34) by η̂ and adding (1− η̂)ρĥ(x)(ĥ(x), e2, η̂)ĥ(x)A%̄(x)h̄(x) to
both sides results in

ρĥ(x)(ĥ(x), e2, η̂)ĥ(x)A%̄(x)h̄(x) > %̄(x)h̄(x)A%̄(x)h̄(x) (35)

where the right-hand side is just equal to x1W1(x) + x2W2(x). As regards
the left-hand side, observe that, by Lemma 6.1, ρĥ(x)(ĥ(x), e2, η̂) = %̂(x).16

Therefore the left-hand side just equals x̂1W1(x) + x̂2W2(x). The above
reasoning shows the equivalence of inequalities (32), (33), (34) and (35) which
means that

x̂1W1(x) + x̂2W2(x) > x1W1(x) + x2W2(x) (36)

holds if and only if inequality (32) does.
If p∗ is an ESS then consider ε0 from Definition 2.1. By continuity (see

Corollary 6.3), there exists a δ > 0 such that if 0 < |x2 − x̂2| < δ then 0 <
η(x2) < ε0. Therefore, (32) holds which, as we have just seen, is equivalent
to (36).

Conversely, assume the existence of a δ > 0 such that (36) holds whenever
0 < |x2 − x̂2| < δ. By Corollary 6.3 and Lemma 6.4, there is an ε0(e2) such
that 0 < |x2(η) − x̂2| < δ whenever 0 < η < ε0.17 Consider the strategy
r ∈ S2 with r2 > p∗2 (the case r2 < p∗2 can be treated in a similar way). Then
r is on the segment between p∗ and

h(e2, ε0(e2)) := (1− ε0(e2))
ρp∗(p∗, e2, ε0(e2))

ρ̄(p∗, e2, ε0(e2))
p∗ + ε0(e2)

ρe2(p
∗, e2, ε0(e2))

ρ̄(p∗, e2, ε0(e2))
e2

16Both of them are equal to 1/[1 + ĥ(x)T %̄(x)h̄(x)] as can be seen by mimicking the
calculation from (11) to (13).

17If p∗ 6= e1 we can similarly find an appropriate ε0(e1) and if p∗ = e1 then all other
strategies lie on the segment between p∗ and e2, so we should only deal with the “side”
of p∗ between p∗ and e2.
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or on the segment between h(e2, ε0(e2)) and e2. In the former case set
ε0(r) to be 1, in the latter one set ε0(r) to be the unique ζ0 for which
h(e2, ε0(e2)) = h(r, ζ0) (such ζ0 exists by Lemma 6.4). Then, again by
Lemma 6.4, for any 0 < ζ < ε0(r) there is an 0 < η < ε0(e2) with
h(e2, η) = h(r, ζ). Following the reasoning in the proof of Proposition 3.1
we see that ρ̄(p∗, e2, η) = ρ̄(p∗, r, ζ) and, hence, ρp∗(p∗, e2, η) = ρp∗(p∗, r, ζ).
From these observations and the argument above that inequalities (32), (33),
(34) and (35) are equivalent, we conclude that the ensuing inequalities are
equivalent with each other:

ρp∗(p∗, r, ζ)p∗A

[
(1− ζ)

ρp∗(p∗, r, ζ)

ρ̄(p∗, r, ζ)
p∗ + ζ

ρp∗(p∗, r, ζ)

ρ̄(p∗, r, ζ)
r

]
︸ ︷︷ ︸

ρ̄(p∗,r,ζ)h(r,ζ)

>

(37)

> ρr(p
∗, r, ζ)rAρ̄(p∗, r, ζ)h(r, ζ)

ρp∗(p∗, r, ζ)p∗Aρ̄(p∗, r, ζ)h(r, ζ) > ρ̄(p∗, r, ζ)h(r, ζ)Aρ̄(p∗, r, ζ)h(r, ζ)

ρp∗(p∗, e2, η)p∗Aρ̄(p∗, e2, η)h(e2, η) > ρ̄(p∗, e2, η)h(e2, η)Aρ̄(p∗, e2, η)h(e2, η)

ρp∗(p∗, e2, η)p∗Aρ̄(p∗, e2, η)h(e2, η) > ρe2(p
∗, e2, η)e2Aρ̄(p∗, e2, η)h(e2, η).

We have seen that the last inequality is true for any 0 < η < ε0(e2) whenever
(36) holds for (x̂1, x̂2). This proves that p∗ is an ESS. �
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