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Abstract

Game theory focuses on payoffs and typically ignores time constraints
that play an important role in evolutionary processes where the repeti-
tion of games can depend on the strategies, too. We introduce a matrix
game under time constraints, where each pairwise interaction has two con-
sequences: both players receive a payoff and they cannot play the next
game for a specified time duration. Thus our model is defined by two
matrices: a payoff matrix and an average time duration matrix. May-
nard Smith’s concept of evolutionary stability is extended to this class of
games.

We illustrate the effect of time constraints by the well-known prisoner’s
dilemma game, where additional time constraints can ensure the existence
of unique evolutionary stable strategies (ESS), both pure and mixed, or
the coexistence of two pure ESS.

Our general results may be useful in several fields of biology where
evolutionary game theory is applied, principally in ecological games, where
time constraints play an inevitable role.

Keywords: evolutionary stability, matrix game, prisoner’s dilemma, shar-
ing problem, time constraint

1 Introduction

Every interaction takes time. In classical economical and evolutionary game
theory, the time durations of different interactions are not widely considered.
However, in ecology, activity-dependent time constraints are important. For
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instance, Holling-type functional response [14] takes into account that the num-
ber of active predators is less than their total number, since after a success-
ful attack predators have to handle and digest their prey before they continue
hunting. Moreover, in optimal foraging theory [7, 8], in ecological games on
kleptoparasitism [3, 4, 5, 6, 26], and in the dispersal-foraging game [9, 10], time
constraints have an essential effect on optimal behavior. Thus our main ques-
tion arises: What is the effect of time constraints on the concept of evolutionary
stability in games within one species?

Our question is motivated by the following lines of research. Our primary
motivation originates in ecological games with time constraints describing the
complex phenomenon of kleptoparasitism (e.g. [3, 4, 5, 6, 26]). The overwhelm-
ing majority of models on kleptoparasitism consider polymorphic populations
[12]. The aim of this paper is to adapt Maynard Smith’s standard concept of
evolutionary stability to matrix games with time constraints in a monomorphic
population.

Our secondary motivation comes from the classical prisoner’s dilemma (PD)
game, where cooperation can be achieved by taking account of some extra spe-
cific mechanism (e.g. [19, 21, 25, 27, 28]). Notice however that the original
payoff matrix of the PD game is given by time (term of imprisonment, while the
prisoner can not go out to rob). It is natural to ask whether the evolutionary
stability of cooperation can be achieved by suitable time constraints. Accord-
ing to our knowledge, this is the first attempt to investigate the effect of time
constraint in the PD.

To answer our main question, we introduce matrix games under time con-
straints, in which the players must wait after each interaction before they engage
in the next one, and these waiting times depend on the pure strategies followed
by the players. Then we conceive the definiton of ESS for this class of games.
First, we derive formulas for the players’ average payoff via heuristic calcula-
tion under two assumptions, then we introduce an exact mathematical model,
where those requirements are met and the heuristic calculations get justified
with rigorous proofs. For that we assume that the waiting times are expo-
nentially distributed, thus we can use the standard method of continuous time
Markov processes to describe the stationary state of the population (cf. [2, 30]).
However, we emphasize the possibility that other, non-Markovian models could
also statisfy our assumptions, and the heuristic calculations would remain valid
for them.

We were also motivated by the “dynamical linking” model by Pacheco et
al. [22, 23], where the number of repetitions of the interactions between two
individuals depends on the payoff from the given interaction. That pair forming
process modifies one of the basic assumptions of classical evolutionary games,
namely, the randomness of interactions between players, since the connections
between different phenotypes have different repetition numbers. In contrast,
our model keeps the randomness of the pair forming process at each interaction,
and after the interaction players have to wait before they get ready for the next
interaction. We emphasize that both models have the same consequence: the
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average interaction rates between different phenotypes are not proportional to
the relative frequencies of phenotypes, unlike in classical evolutionary games.

Finally, we apply our general results in the following two cases. In the
introduced prisoner’s sharing game, the time constraints are given by the matrix
of the prisoner’s dilemma and the payoff matrix defines how the fraternal sharing
is distorted by a symmetric zero-sum component with a strength of s that favors
mutual cooperation if s > 0. When increasing s, first the defector, then a mixed
strategy, and finally the cooperator is the unique evolutionarily stable strategy.
In the second case, the prisoners’ dilemma occurs for the payoff matrix. As
the average time duration of defector strategy increases, first the defector is the
unique evolutionarily stable strategy, after that the game becomes bistable, and
finally the cooperator is the unique evolutionarily stable strategy.

2 A heuristic calculation of evolutionary stabil-
ity

We consider pairwise interactions having different time durations. We have n
pure strategies, and the phenotype is a probability distribution p = (p1, . . . , pn)>

on these pure strategies. (Vectors are meant as columns; > stands for transpose.)
A matrix game under time constraints is defined by the following parameters.
If the focal individual uses the i-th pure strategy and its opponent the j-th one,
the focal individual’s payoff is aij , and the focal individual can not play the
next game during an average time duration τij > 0. Thus, each individual is
either non-active or active; and only active individuals are ready to play the
next game round. Hence our game is characterized by two matrices, the intake
matrix A = (aij)n×n, and the time constraint matrix T = (τij)n×n.

In our heuristic calculation of evolutionary stability, we strictly follow May-
nard Smith’s monomorphic setup [16], as much as possible. The population is
assumed to be sufficiently large and the generations do not overlap. All individ-
uals can only differ in the strategy p and all individuals are the same from all
other points of view of natural selection. Let us consider a resident population
in which every individual has a resident phenotype p∗. Assume that mutation
is rare enough and denote by ε the relative frequency of mutants. The rarity
of mutation has two consequences: Firstly, the relative frequency of mutants is
small, secondly, the time between two consecutive mutations is sufficiently long
so that less fit phenotypes get selected out by natural selection. Thus only one
mutant and one resident phenotype coexist at the same time. Then the relative
frequency of residents is ε∗ = 1− ε. The interaction is well mixed: each active
individual finds another active individual uniformly at random. Assume that
the lifetime D of one generation is large enough and individuals play the above
game during the whole D.

After an individual finishes an interaction, it looks for an opponent for the
next interaction, which also takes time. The searching time depends on the
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searching process. For instance, if active individuals A and B are looking for
opponents, and each of them covers the average distance between them during
τ0, then the encounter only takes time τS = τ0/2, since until the encounter both
cover half the distance between them. The same is true if the random searching
times are independent and exponentially distributed with equal means. In this
case the interaction can follow as a result of either participant’s finding the
other one, hence the waiting time in fact is the minimum of two exponentially
distributed searching times with mean τ0, which is exponential with mean τ0/2.
By symmetry, at every encounter both players must have the same probability
to select and to be selected.

Of course, it can happen that a searching individual finds an inactive one;
in this case the searching period starts over. We will term the time span be-
tween two searches (that is, τS plus the time of interaction, when the searching
individual finds an active opponent) a turn of activity.

Our heuristic calculation is based on the following two assumptions.
Assumption 1. The population is in a stationary state, i.e., each individual

having the same phenotype possesses the same activity distribution.
Assumption 2. The total intake of each phenotype is equal to the average

intake in its stationary state (cf. [15]).
In order to calculate the fitness of mutant and resident phenotypes, we will

consider a focal mutant, resp. a focal resident individual, who plays against
the whole population. Since the interaction is well mixed, a focal individual
(independently of its phenotype) has the following encounter distribution based
on the stationary state of the whole population (r, ε− r, r∗, ε∗ − r∗), where r
and r∗ are the relative frequencies of active (interaction is possible) mutants and
residents, resp., while ε − r and ε∗ − r∗ are the relative frequencies of inactive
(interaction is not possible) mutants and residents, resp. We emphasize that
these proportions are defined by the stationary distribution, thus ε, ε∗, r, r∗

do not vary with time: the main point is that the state of the population is
aperiodic. Furthermore, the encounter distribution depends on the phenotypes
of resident and mutant.

Now, the time average of an arbitrary activity turn of a focal mutant indi-
vidual is

Ep = τS + r p>Tp + r∗p>Tp∗.

Indeed, τS is the time to find the next opponent to play the game against, r
and r∗ are the probabilities that the focal mutant meets an active mutant or
an active resident individual in a stationary population, respectively. Finally,
p>Tp resp. p>Tp∗ is the average time duration when the focal mutant plays the
game with a mutant or a resident opponent. Similarly, the time average of one
turn of activity of a focal resident is

Ep∗ = τS + r p∗>Tp + r∗p∗>Tp∗.

The time constraint on interactions determines the average number of interac-
tions of individuals during the lifetime D of one generation, thus the number of
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games played by the mutant and that by the resident phenotype are defined as

Gp :=
D

Ep
and Gp∗ :=

D

Ep∗
,

respectively.
Since the interactions are well mixed during D (i.e., each individual interacts

with mutant and resident with probability r and r∗, respectively), each mutant
individual has the following total average payoff,

Gp(r p>Ap + r∗p>Ap∗).

Indeed, here r p>Ap+r∗p>Ap∗ is the average intake of the focal mutant individ-
ual from one turn of interaction. Similarly, the total average payoff of a resident
individual is

Gp∗(r p∗>Ap + r∗p∗>Ap∗).

Based on classical Darwinism, supposing that the mutant is rare enough, the
mutant phenotype is outperformed by the resident phenotype if the fitness of
the resident phenotype is higher than that of the mutant one, that is,

r p∗>Ap + r∗p∗>Ap∗

τS + r p∗>Tp + r∗p∗>Tp∗
>

r p>Ap + r∗p>Ap∗

τS + r p>Tp + r∗p>Tp∗
. (1)

When the population is sufficiently large and the mutation is rare enough, p∗ is
an ESS if in (1) strict inequality holds for all possible mutant strategies p 6= p∗.

We emphasize that the above formalism includes the original ESS definition
of Maynard Smith [16]. Indeed, if each interaction takes the same amount of
time, i.e., τij = τ for all i, j, then Ep = Ep∗ holds for all mutant phenotypes p,
so we get back to the traditional definition of an ESS.

The assumption that the population is in a stationary state is a crucial one,
since if the active and non-active states of the population follow periodically,
then our heuristic calculation does not work, because the ”speed” over the
period affects the average payoff and the average time duration of one interaction
for the phenotypes. However, fast convergence to equilibrium in a well mixed
population can reasonably be assumed in most cases (see [15]).

The obstacle to an analytical condition for (1) is that the stationary dis-
tribution of the population depends on the time constraint matrix T , and the
strategies of mutant and resident phenotypes. We will make the assumption
that the mutant’s frequency is arbitrarily small. Formally, if ε → 0, then r → 0,
thus, from (1) we get

p∗>Ap∗

τS + r∗(0) p∗>Tp∗
≥ p>Ap∗

τS + r∗(0) p>Tp∗
, (2)

where r∗(0) denotes the limit of r∗ as the relative frequency ε of mutants tends
to zero, thus r∗(0) is the proportion of active residents in the pure resident
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population in the stationary state. Obviously, though (1) implies (2), the reverse
does not hold in general (cf. Theorem 2 later). However, if (2) holds with strict
inequality, then condition (1) is satisfied provided the frequency of mutants is
sufficiently small.

Next, we will compute r∗(0) in particular cases. Since we concentrate on the
case where ε → 0, we can suppose that the whole population consists of resident
individuals. Remember that the population is supposed to be in stationary state.
In this case, the average duration of one turn of activity of an arbitrary resident
individual is

τS + r∗(0) p∗>Tp∗.

During this period, τS is the time when the individual is active. Consequently,
the proportion of time when an individual is active, is equal to

τS

τS + r∗(0) p∗>Tp∗
,

and by stationarity, this is just the probability that an individual is active at a
given moment. Hence, it must be equal to the proportion of active individuals
in the population, as well, leading to the following equation.

r∗(0) =
τS

τS + r∗(0) p∗>Tp∗
. (3)

The only positive solution of (3) is

r∗(0) =
2

1 +
√

1 + 4
τS

p∗>Tp∗
. (4)

Thus our heuristic calculation ends at the following Nash equilibrium condition,
for all possible mutant strategies p 6= p∗

p∗>Ap∗

τS + 2
1 +

√
1 + 4

τS
p∗>Tp∗

p∗>Tp∗
≥ p>Ap∗

τS + 2
1 +

√
1 + 4

τS
p∗>Tp∗

p>Tp∗
.

In section 4 and in subsection 3.3.3 we give examples where the above Nash
equilibrium is strict.

Clearly, the above intuitive reasoning is strictly based on Assumptions 1 and
2. In Section 3, in the framework of a continuous time Markov model, we will see
that the above reasoning works, if the searching and waiting times are supposed
to be independent and exponentially distributed, with means contained in the
time constraint matrix T . The main point is that this kind of Markov process
always has a stationary distribution and, in the long run, it leads to the same
results that our intuitive calculations give. Furthermore, in the framework of
our Markov process we calculate the stability condition for a matrix game under
time constraints.
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3 A Markov model

In this section, we introduce a more general mathematical model where the
assumptions we needed for the heuristic calculations are met. Detailed proofs
of this section’s results can be found in Appendix A.1.

Consider a polymorphic population with m phenotypes, consisting of N1, N2

. . . , Nm individuals, resp. Let N = N1 + · · ·+ Nm, the total size of the popu-
lation.

Each individual can be either active or inactive. Active individuals are
searching for opponents to interact with. Searching takes time τ0 on average.
In this period the searching individual can also be selected by another active one
for interaction. Should it not be the case, at the end of the searching period the
searching individual selects an opponent uniformly at random. If the selected
opponent turns out to be inactive, the searching period starts over. Interaction
is assumed to be instantaneous, but it is followed by a time of inactivity before
participants become active again. In an interaction both participants can choose
one of n possible pure strategies. Their choice is independent and random (a
mixed strategy), and the probability disribution depends on the phenotype: a
type i individual chooses strategy u with probability piu, 1 ≤ i ≤ m, 1 ≤ u ≤ n.
When an individual following strategy u interacts with one following strategy
v, its intake is auv, and it will be inactive for time τuv in average. Active and
inactive periods follow each other alternately.

Thus, the environment is characterized by the mean searching time τ0 and
two n × n matrices: the intake matrix A = (auv), and the inactivity time
matrix T = (τuv). Note that these matrices need not be symmetric. Further
parameters of the model are the phenotype sizes N1, . . . , Nm and the mixed
strategies p1, . . . , pm.

We are interested in the average intake of each phenotype per individual
and per unit time in the long run, as a function of the strategy distributions.
For a continuous time Markov model we suppose all waiting times independent
and exponentially distributed with prescribed mean. Each individual can be in
the state of activity, denoted by zero, or in state (u, v), which means that it is
inactive after an interaction of type (u, v). The state of the whole population is
therefore described by an N -vector in segmented form

s = (s11, . . . , s1,N1 | s21, . . . , s2,N2 | . . . | sm1, . . . , sm,Nm) ,

where each coordinate belongs to the set

{0} ∪ {(u, v) : 1 ≤ u ≤ n, 1 ≤ v ≤ n}.

The set S of such vectors is the state space of our continuous time homogeneous
Markov chain. Though this state space is huge, |S| = (n2 + 1)N , it is still finite.
To describe the transition rates we only indicate the coordinates that change.
There are two kinds of transitions: firstly, when two active individuals meet and
interact; secondly, when an inactive individual becomes active again.
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• sij : 0 7→ (u, v) and sk` : 0 7→ (v, u), where either i < k, or i = k and
j < `, with rate

2
τ0
· piupkv

N − 1
(here the multiplier 2 is present because both individuals can be the
chooser).

• sij : (u, v) 7→ 0, with rate
1

τuv
.

This Markov chain is clearly irreducible, hence ergodic (positive recurrent).
It has a unique stationary distribution, which can be obtained by solving a sys-
tem of linear equations. Let us label the states from 1 to |S| arbitrarily (e.g.,
if zero coordinates are replaced with pairs (0, 0), then S can be considered a
subset of {0, 1, 2, . . . }2N , and lexicographic labelling can be applied). Construct
the infinitesimal generator matrix Λ by writing the transition rates at the off-
diagonal positions, while the leading diagonal terms are such that all row sums
are 0. Then the row vector q> of the stationary distribution satisfies q>Λ = 0.
Properties of continuous time Markov chains can be found e.g. in [18].

3.1 Average intake

Theorem 1. Let Wi denote the limit of the average intake of phenotype i per
individual and per time unit, as first the time of observation, then also the size
N of the whole population tends to infinity, in such a way that the proportions
Ni/N converge to εi, 0 < εi < 1, i = 1, . . . ,m. Then

Wi =
2%i

τ0

m∑
j=1

p>i Apj εj%j , 1 ≤ i ≤ m, (5)

where %1, . . . , %m are the only nonnegative solution of the system of equations

%i =
1

1 + 2
τ0

∑m
j=1 p>i Tpj εj%j

, 1 ≤ i ≤ m. (6)

Remark 1. Equivalently,

Wi =
p>i Az

1 + p>i Tz
, 1 ≤ i ≤ m, (7)

where the vector z ∈ Rn satisfies

z =
2
τ0

m∑
j=1

εj pj

1 + p>j Tz
. (8)

3.2 Particular cases

Let us examine how our formulas are simplified in certain particular cases.
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3.2.1 Rare mutations

Suppose ε1 → 1. This is the case when rare mutations attempt to invade a large
resident population. Phenotype 1 is resident, phenotypes 2, . . . , m are different
types of mutants. Then in the limit we obtain that

%i =
1

1 + 2
τ0

p>i Tp1 %1

, 1 ≤ i ≤ m.

Particularly, by setting i = 1 we get a quadratic equation for %1, from where

%1 =
2

1 +
√

1 + 8
τ0

p>1 Tp1

.

The average intake of phenotype i is

Wi =
2
τ0

p>i Ap1 %1

1 + 2
τ0

p>i Tp1 %1

=
p>i Ap1

τ0
4

(
1 +

√
1 + 8

τ0
p>1 Tp1

)
+ p>i Tp1

Since W1 does not depend on the competing strategies pi, i ≥ 2, and for
i ≥ 2, Wi only depends on p1 and pi, it follows that if p1 is an ESS, then it still
prevents invasion in the presence of arbitrary many invading phenotypes pro-
vided they are rare enough. (Note that ESS is defined as the strategy protecting
against one rare invading mutant phenotype.) This may serve as a starting point
for extending evolutionary stability from a monomorhic to a polymorphic setup.

3.2.2 Negligible searching time

Suppose that τ0 → 0. If there is no searching time at all, then there cannot be
more than one active individuals. Either every individual is inactive, or, when
one becomes active, it has to wait for another one to be active. As soon as it
occurs, they interact, and a new period of no active individuals begins. This
means that all %i = 0, and our formulas (5), (6), and (8) take the form of 0/0.
Notice that %i tends to 0 in the order of

√
τ0. Let %i = σi

√
τ0, then

σi =
1

√
τ0 + 2

∑m
j=1 p>i Tpj εjσj

,

hence, in the limit we have

σi =
1

2
∑m

j=1 p>i Tpj εjσj

and

Wi = 2σi

m∑
j=1

p>i Apj εjσj =

∑m
j=1 p>i Apj εjσj∑m
j=1 p>i Tpj εjσj

.
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3.2.3 The length of the inactive period is proportional to the intake

Suppose A = κT . In this case from (5) and (6) we get

Wi =
2%iκ

τ0

m∑
j=1

p>i Tpj εj%j = %iκ
( 1

%i
− 1
)

= κ(1− %i);

that is, the less time is spent active (waiting for interaction), the larger the
average intake is. Thus, a mixed strategy pi outperforms all the others if and
only if %i < %j for all j 6= i.

3.2.4 Constant mean length of inactivity

Suppose the length of inactivity does not depend on the type of interaction. By
changing the time unit one can always achieve τij = 1 for all pairs (i, j). Now,
from (6) we can compute %i explicitly. Since p>i Tpj = 1, we have

%i =
1

1 + 2
τ0

∑m
j=1 εj%j

;

thus %1 = %2 = · · · = %m = %, where

% =
1

1 + 2
τ0

%
.

Solving the quadratic equation we get

% =
τ0

4

(
− 1 +

√
1 +

8
τ0

)
=

2

1 +
√

1 + 8
τ0

,

and finally

Wi =
2%2

τ0

m∑
j=1

εj p>i Apj .

That is, the proportion of active individuals is the same for each phenotype,
and the average intake is proportional to the expected intake in one interaction,
where the opponent is chosen from the whole population uniformly at random.

3.3 Evolutionarily stable strategies

As we have seen in 3.2.1, it is sufficient to consider only one mutant phenotype.
Let us modify our notations a little. Instead of using numerical subscripts, we
will mark quantities corresponding to the residents by a superscript ∗, while the
same quantity without asterisk refers to mutants. Thus, we will write p∗, p, ε∗,
ε, %∗, %, W ∗, and W .
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3.3.1 Conditions for ESS

Recall that a strategy p∗ is called an ESS, if for an arbitrary mutant strategy
p 6= p∗ we have W ∗ > W ; that is, the inequality

%∗ (p∗>Ap∗ε∗%∗ + p∗>Ap ε%) > % (p>Ap∗ε∗%∗ + p>Ap ε%) (9)

holds for every ε small enough. Note that %∗ and % depend on ε, and this
dependence will be denoted when necessary. Namely, they can be obtained as
the only nonnegative solution of the system

%∗
[
1 + 2

τ0
(p∗>Tp∗ε∗%∗ + p∗>Tp ε%)

]
= 1,

%
[
1 + 2

τ0
(p>Tp∗ε∗%∗ + p>Tp ε%)

]
= 1.

(10)

Theorem 2. Strategy p∗ is an ESS if for every strategy p 6= p∗

%∗0 p∗>Ap∗ ≥ %0 p>Ap∗, (11)

and, if
%∗0 p∗>Ap∗ = %0 p>Ap∗, (12)

then
%∗0 (ϑ∗ p∗>Ap∗ + p∗>Ap) > %0 (ϑ p>Ap∗ + p>Ap) , (13)

where
%∗0 =

2

1 +
√

1 + 8
τ0

p∗>Tp∗
, %0 =

1

1 + 2
τ0

p>Tp∗%∗0

, (14)

ϑ∗ =
1− %∗0
2− %∗0

(
%∗0
%0

− p∗>Tp

p∗>Tp∗

)
, (15)

ϑ = (1− %0)
(

%∗0
%0

− p>Tp

p>Tp∗
− ϑ∗

)
. (16)

If (11) holds for every p 6= p∗ we speak of a Nash equilibrium, while formula
(13) is referred to as the stability condition.

Remark 2. Suppose equality ϑ = ϑ∗ happens to hold true in addition to (12).
This can be rewritten in the following symmetric form,

1− %∗0
2− %∗0

(
%∗0
%0

− p∗>Tp

p∗>Tp∗

)
=

1− %0

2− %0

(
%∗0
%0

− p>Tp

p>Tp∗

)
.

Then condition (13) reduces to

%∗0 p∗>Ap > %0 p>Ap,

which resembles what is sometimes called Maynard Smith’s second (stability)
condition [17].
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3.3.2 Negligible searching time

Here we will study how the conditions of an ESS change if the mean searching
time τ0 becomes negligible. Let τ0 → 0. In the limit we obtain the following
sufficient conditions for a strategy p∗ to be ESS.

Theorem 3. Strategy p∗ is an ESS if for every strategy p 6= p∗

p∗>Ap∗

p∗>Tp∗
≥ p>Ap∗

p>Tp∗
, (17)

and, if
p>Tp∗ · p∗>Ap∗ = p∗>Tp∗ · p>Ap∗, (18)

then

p>Tp · p∗>Ap∗ + p>Tp∗ · p∗>Ap > p∗>Tp · p>Ap∗ + p∗>Tp∗ · p>Ap . (19)

3.3.3 NE and ESS

A plausible question is whether an ESS under time constraint always exists. The
answer is, of course, negative, since an ESS does not always exist in standard
games either, which constitute a particular case. The following examples utilize
that the matrix game with time constraints in consideration can be connected
with games without time constraints.

Example 1. Elementary calculation shows that a classical totally mixed NE of a
matrix game A (i.e., all coordinates of p∗ are positive) satisfies p∗>Ap∗ = p>Ap∗

for all p 6= p∗, hence it satisfies

p∗>Ap∗

1 + 2
τ0

p∗>Tp∗%∗0
≥ p>Ap∗

1 + 2
τ0

p>Tp∗%∗0

(which is necessary for p∗ to be an ESS), if and only if p∗>Tp∗ = p>Tp∗ for all
p 6= p∗, which means that p∗ is a mixed NE for matrix T , as well.

Example 2. Elementary calculation shows that, if both inequalities p>Ap∗ ≤
p∗>Ap∗ and p∗>Ap∗

p∗>Tp∗
≥ p>Ap∗

p>Tp∗
hold, and at least one of them is strict, then a strict

inequality holds in (2). In other words, (2) is satisfied with strict inequality, if
p∗ is a NE for the matrix game defined by matrix A, and p∗ is also a NE for
the game where the payoff function of a p-strategist against a q-strategist is
p>Aq/p>Tq (cf. [9]), and, furthermore, at least one of these NE-s is a strict one.

Example 3. If A is a positive matrix, both inequalities p>Ap∗ ≤ p∗>Ap∗ and
p>Tp∗ ≥ p∗>Tp∗ hold, and at least one of them is strict, then so is inequality
(2). Consider a positive matrix A for which p∗ is a strict ESS. Let T = −A+C,
where all entries of matrix C are equal to 1 + max aij . Clearly, matrix T is also
positive, and p>Ap∗ < p∗>Ap∗ for all p 6= p∗ implies that p>Tp∗ > p∗>Tp∗. (Of
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course, this can only hold for pure strategies p∗.) So in this special class of matrix
games under time constraint there exists ESS. Observe that an individual, by
choosing strategy p∗, simultaneously maximizes its average intake and minimizes
the average time duration of one round.

Example 4. One can ask wether the well-known fact that there is no classical
mixed ESS in a zero-sum matrix game (see [13]) remains valid for the matrix
game under time constraint. Zero sum matrix games are associated with skew
symmetric matrices A, that is, for which aij = −aji for every i, j. By symmetry,
the value of the game is 0, and both players have the same mixed NE strategy.
Note that p>Aq = −q>Ap, and hence p>Ap = 0 for all vectors p and q.

Take an arbitrary time duration matrix T . Condition (9) for a resident
strategy p∗ to be ESS reduces to

p>Ap∗ε∗%∗

1
2 τ0 + p>Tp ε% + p>Tp∗ε∗%∗

<
p∗>Ap ε%

1
2 τ0 + p∗>Tp ε% + p∗>Tp∗ε∗%∗

(ε is small enough). Since there is no mixed ESS in the original game, for
every mixed resident strategy p∗ there exists a mutant strategy p such that
p>Ap∗ ≥ 0 ≥ p∗>Ap. Consequently,

p>Ap∗ε∗%∗

1
2 τ0 + p>Tp ε % + p>Tp∗ε∗%∗

≥ 0 ≥ p∗>Ap ε %
1
2 τ0 + p∗>Tp ε % + p∗>Tp∗ε∗%∗

.

Thus, introduction of time constraints would not make p∗ an ESS, either.

4 Prisoner’s dilemma revisited

Now, we are going to answer the question whether time constraints can guaran-
tee the evolutionary stability of the cooperator. We consider two matrix games
under time constraint: firstly, the time constraint matrix, and secondly, the
intake matrix is of PD type. In both games, prisoners aim at maximizing their
average loot during their life. Though our examples are quite arbitrary, they
illustrate the possibility of a unique ESS, pure or mixed, and the coexistence of
two pure ESS.

For computational details see section A.2 of the Appendix.

4.1 Prisoner’s sharing game

Start from the original story of the PD with the following matrix of time to be
served in prison

Cooperate Defect
Cooperate 2 years 4 years
Defect 1 year 3 years

, thus T =
[
2 4
1 3

]
.
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It is well-known that the defector strategy minimizes the average waiting
time. However, the original story does not consider what the prisoners had
done before they got arrested. There are plausible scenarios where the loot is
not exactly halved. E.g., assume the two robbers agree to deposit a part of
the loot with a fence who does not trust in a person who collaborates with the
police. In such a case the cooperator gets more. On the other hand, since the
defector has less time to serve in prison, he can access the hidden loot earlier
and take more. Intuitively, if the cooperator gets the smaller part of the loot,
then the defector strategy maximizes the intake and minimizes the waiting time
simultaneously, so the defector must be evolutionarily stable. However, if the
cooperator gets the bigger part of the loot, then the defector strategy minimizes
the waiting time, but the cooperator strategy maximizes the intake, so there
is a trade-off between intake and waiting time. Based on that we consider the
following intake matrix.

Cooperate Defect
Cooperate 1

2
1+s
2

Defect 1−s
2

1
2

, thus A =
1
2

[
1 1 + s

1− s 1

]
.

A natural question is whether there exists a sharing parameter s such that
purely “rational” robbers might cooperate? For the sake of simplicity, let τ0 =
2 (the arrangement of the robbery is quite a long process, compared to the
punishment). Then, if s ≤ s1 = 0.188, the possibly increased share of loot still
cannot compensate for longer time served in prison, so the defector strategy is
the only ESS. On the other hand, if s ≥ s2 = 0.25, the situation is reversed,
and the cooperator strategy proves to be an ESS. For every s1 < s < s2 there
exists a unique ESS, which is a mixed strategy, see Appendix A.2.1.

4.2 Prisoner’s dilemma under time constraint

Consider the canonical PD payoff matrix as the intake matrix

Cooperate Defect
Cooperate R = 3 S = 1
Defect T = 4 P = 2

, thus A =
[
3 1
4 2

]
.

It is a prisoners’ dilemma game in the strong sense, because T > R > P > S.
In addition, 2R > T + S, which is the condition for stability of cooperation
in the iterated PD. In the framework of classical matrix games, without loss
of generality, we assume that S > 0, which only means that the robbery is
remunerative. Without loss of generality we can assume that τ0 = 2. Now, we
have to set the time constraints. Intuitively, if the defector has sufficiently long
inactivity time, then his average intake will be smaller than the cooperator’s.
In addition, if the average waiting time of defectors increases then so does
the interaction rate between cooperators, and this increases the cooperator’s
average intake. Thus, for the sake of simplicity let us consider the following
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time duration matrix,

Cooperate Defect
Cooperate τ11 = 1 τ12 = 1
Defect τ21 = t τ22 = t

, so T =
[
1 1
t t

]
.

In this game we get, on the one hand, that if t ≤ t1 = 1.872, then the defector
strategy is the only ESS. On the other hand, if t ≥ t2 = 4.982, the cooperator
strategy is the only ESS. Finally, for t strictly between t1 and t2 there are two
ESS: both the cooperator and the defector are pure ESS (bistable case). In this
game no mixed strategy can be an ESS (see Appendix A.2.2).

5 Summary

The evolutionary stability of cooperative strategies is well studied; for instance,
when the interactions occur either on a social network [25, 24, 1] or locally on
a two dimensional surface [20, 21]. Our results point out that time costraints
can also guarantee the evolutionary stability of cooperation. Similar conclu-
sions are reported by Pacheco et al. [22, 23], who studied the consequences of
dynamical linking, where the number of repetitions of the interactions between
two individuals depends on the payoff from the given interaction. We note that
both in the dynamical linking model and in our example in subsection 4.2, the
same factor implies the evolutionary stability of cooperation: namely that the
interaction rate between cooperators is high enough.

Finally, as we have already mentioned in the introduction, time constraints
have an essential effect on the solution in optimal foraging theory. We think
that our concept presented here will be useful in the study of ecological games.
For instance, the Hawk-Dove game can be used to model territorial fights and
kleptoparasitism. In both these ecological selection situations, time constraints
are important. In kleptoparasitism, the time duration of a fight for a food item
is not equal to that of searching for a food item. In the Hawk-Dove game, on
the other hand, the presence of recovery time decreases the number of active
hawk strategists. In general, in all selection situations when matrix games are
used and there are time constraints, the ESS will change, as we have shown in
the PD game.
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A Appendix

In this section, we present the proofs of Theorems 1–3, and detailed computa-
tions for the numerical examples of Section 4.

A.1 Proofs of Theorems 1–3

First we need two auxiliary lemmas, interesting in their own right.
The following simple result, stated in a more general form, implies that for

each phenotype the limit of the average intake per individual and per time unit
as the time of observation tends to infinity exists almost surely.

Lemma 1. Consider a continuous time irreducible Markov chain with finite
state space S. Let λij denote the rate of transition i → j (i 6= j), and let
(qi, i ∈ S) be the (unique) stationary distribution. Let Nij(t) denote the number
of i → j transitions up to time t, and finally, let f : S × S → R be an arbitrary
function. Then

V (t) =
1
t

∑
i 6=j

Nij(t)f(i, j) → V =
∑
i 6=j

qiλijf(i, j)

almost surely as t →∞, independently of the initial state.

Proof. It is clearly sufficient to show that limt→∞ t−1Nij(t) = qiλij . This is
intuitively clear, because the probability that an i → j transition occurs in a
time interval of infinitesimally small length δt is just qiλijδt. More precisely, let
Ri(t) denote the number of visits at state i. By the ergodicity of the process the
time spent in state i up to t is asymptotically equal to qit as t →∞, i.e., the ratio
of the two quantities converges to 1 with probability 1. On the other hand, the

duration of a stay in state i is exponential with mean
(∑

k 6=i λik

)−1

, hence, by
the strong law of large numbers, the time spent in state i is asymptotically equal

to Ri(t)
(∑

k 6=i λik

)−1

. Consequently, Ri(t) ∼ qi

∑
k 6=i λik t (here, as usual, ∼

stands for “asymptotically equal”). The probability that the chain, staying in

state i, will step to j the next time, is λij

(∑
k 6=i λik

)−1

, hence

Nij(t) ∼ Ri(t)
λij∑

k 6=i λik
∼ qiλijt

with probability 1, as t →∞.

When applying this lemma we can always suppose that our Markov process
is stationary, for the limit is independent of the initial distribution.
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Lemma 2. The following system of nonlinear equations in m variables,

xi =
1

1 +
∑m

j=1 cijxj
, 1 ≤ i ≤ m,

where the cij are positive numbers, has a unique solution in the unit hypercube
[0, 1]m.

Proof. The function

f(x) =

(
1

1 +
∑m

j=1 cijxj
, 1 ≤ i ≤ m

)

continuously maps the hypercube into itself. By Brouwer’s fixed point theorem
[11, Ch.5] there exists an x ∈ [0, 1]m such that x = f(x). We have to show
that this fixed point is unique. Suppose x and y are different fixed points.
Every coordinate function of f is strictly decreasing in all its variables, hence
if x ≤ y held coordinatewise, then x = f(x) > f(y) = y would also follow, a
contradiction. We therefore have M = max1≤i≤m(xi/yi) > 1. Consequently,

yi

xi
=

1 +
∑m

j=1 cijxj

1 +
∑m

j=1 cijyj
≤

1 +
∑m

j=1 cijyjM

1 +
∑m

j=1 cijyj
< M,

thus
max

1≤i≤m

yi

xi
< max

1≤i≤m

xi

yi
.

By symmetry, the opposite inequality must be true as well, thus there cannot
be more than one fixed points.

Proof of Theorem 1. By Lemma 1, for the computations we may suppose that
our Markov process started from the stationary distribution, hence it is a sta-
tionary process.

The transition rate matrix Λ does not change if we permute the states of our
Markov chain in such a way that only individuals of the same phenotype can
be permuted. Consequently, the stationary distribution is also invariant to such
permutations. Let us denote the state of the jth individual of the ith phenotype
at time 0 by Xij . It follows that Xi1 Xi2, . . . , Xi,Ni

are exchangeable random
variables. Introduce πi = P

(
Xij = 0

)
, and let Yi denote the proportion of active

individuals in phenotype i at time 0. Then the total intake of type i individuals
in the infinitesimally small time interval [0, δt) is equal to

NiYi(NiYi − 1)
N − 1

p>i Api ·
2
τ0

δt +
∑
j 6=i

NiNjYiYj

N − 1
p>i Apj ·

2
τ0

δt,

where the first term stands for the intake from interaction between two individ-
uals of phenotype i, while the second sum contains the intake from interactions
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of type i individuals with those of a different type. By Lemma 1 the time av-
erage of the per individual intake over a long interval converges almost surely
to

1
N − 1

[
Ni E

(
Yi

(
Yi − 1

Ni

))
p>i Api +

∑
j 6=i

Nj E (YiYj) p>i Apj

]
2
τ0

. (20)

Writing T in place of A we get the average proportion of time an individual
of phenotype i spends inactive. Thus,

1− πi =
1

N − 1

[
Ni E

(
Yi

(
Yi − 1

Ni

))
p>i Tpi

+
∑
j 6=i

Nj E (YiYj) p>i Tpj

]
2
τ0

. (21)

Now, let N →∞. We will show that

lim
N→∞

E
(
Yi

(
Yi − 1

Ni

))
= %2

i , lim
N→∞

E
(
YiYj

)
= %i%j ,

where the limiting proportions %1, . . . , %m satisfy (6).
Let ηij denote the indicator of the event {Xij = 0}, then Yi = (ηi1 + · · · +

ηi,Ni
)/Ni, and ηi1, ηi2, . . . , ηi,Ni

are exchangeable for every fixed i. Moreover,
they are negatively correlated, because the more active individuals are present,
the easier can a fixed one find an active opponent, hence, the less is the station-
ary probability that it is active. Consequently,

Var(Yi) ≤
1
Ni

Var(ηi1) =
πi(1− πi)

Ni
.

It follows that the proportion of active individuals of phenotype i is more and
more concentrated around its expectation, that is, Yi = πi + op(1), as N →∞,
where op(1) denotes a remainder tending to 0 in probability. Note that πi

also varies with N , though this dependence is suppressed in the notation. By
boundedness we have

E
(
Yi

(
Yi − 1

Ni

))
− π2

i → 0, E
(
YiYj

)
− πiπj → 0,

as N →∞.
Consider an arbitrary subsequence (N ′) ⊂ (N). Then one can pick a sub-

subsequence from it, along which the probabilities πi converge. Let %i denote
their limit, then from (21) we get that

1− %i =
2
τ0

[
εi%

2
i p

>
i Tpi +

∑
j 6=i

εj%i%j p>i Tpj

]
=

2%i

τ0

m∑
j=1

εjp
>
i Tpj %j ,

which is tantamount to (6). Let us apply Lemma 2 with xi = %i and cij =
2
τ0

p>i Tpj εj . It follows that the limits %i are the same for all subsequences (N ′).
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This implies that limN→∞ πi exists and is equal to %i. Finally, (5) is obtained
by taking limit in (20) as N →∞.

For Remark 1 introduce z = 2
τ0

∑m
j=1 εj%jpj and plug it back into (5) and

(6) to obtain (7) and (8).

Proof of Theorem 2. Let ε → 0. Then (9) can be written as

[%∗0 + %∗′0 ε + o(ε)] p∗>Ap∗ε∗%∗(ε) + ε%∗(ε)%(ε) p∗>Ap

> [%0 + %′0 ε + o(ε)] p>Ap∗ε∗%∗(ε) + ε%(ε)2 p>Ap,

where %∗0 and %0 are right limits of %∗(ε), resp. %(ε) at zero; %∗′0 and %′0 are right
derivatives. Now, (9) holds for every sufficiently small positive ε, if (11), that
is, equivalently,

p∗>Ap∗

1 + 2
τ0

p∗>Tp∗%∗0
≥ p>Ap∗

1 + 2
τ0

p>Tp∗%∗0
, (22)

and, in addition, if
%∗0 p∗>Ap∗ = %0 p>Ap∗, (23)

then
%∗0%

∗′
0 p∗>Ap∗ + %∗0%0 p∗>Ap > %∗0%

′
0 p>Ap∗ + %2

0 p>Ap, (24)

holds. Note that the quantities %∗′0 , %0 and %′0 depend on the inactivity time
matrix T , but not on the intake matrix A. Let us compute them.

From 3.2.1 we already know (14).
For the derivatives let us differentiate (10). Then we get

%∗′0 + 2
τ0

p∗>Tp∗
(
2%∗0%

∗′
0 − (%∗0)2

)
+ 2

τ0
p∗>Tp %∗0%0 = 0, (25)

%′0 + 2
τ0

p>Tp∗
(
%∗0%

′
0 + %0%

∗′
0 − %0%

∗
0

)
+ 2

τ0
p>Tp %2

0 = 0. (26)

Multiplying (25) by %∗0, and substituting (1− %∗0)/p∗>Tp∗ for 2
τ0

(%∗0)2 we finally
obtain

%∗′0 =
1− %∗0
2− %∗0

(
%∗0 −

p∗>Tp

p∗>Tp∗
%0

)
. (27)

Similarly, multiplying (26) by %0, then substituting 1 − %0 for 2
τ0

p>Tp∗%0%
∗
0

yields

%′0 = %0(1− %0)
(

1− %∗′0
%∗0

− p>Tp

p>Tp∗
%0

%∗0

)
. (28)

In (13) ϑ∗ = %∗′0 /%0, and ϑ = %∗0%
′
0/%2

0. Hence (27) implies (15), and (28) implies
(16).

Proof of Theorem 3. From 3.2.2 we already know that % ∼ σ
√

τ0, and %∗ ∼
σ∗
√

τ0 as τ0 → 0, where

2σ∗ (p∗>Tp∗ε∗σ∗ + p∗>Tp εσ) = 1, (29)
2σ (p>Tp∗ε∗σ∗ + p>Tp εσ) = 1. (30)
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In these terms, the limiting payoffs are

W ∗ = 2σ∗ (p∗>Ap∗ε∗σ∗ + p∗>Ap εσ) ,

W = 2σ (p>Ap∗ε∗σ∗ + p>Ap εσ) .

Here all quantities W , W ∗, σ, σ∗ depend on ε. Now let ε → 0. Then p∗ is ESS
if and only if W ∗ > W holds for every mutant strategy p and every sufficiently
small ε. Thus, (9) must hold with σ and σ∗ in place of % and %∗. Again, it
follows that p∗ is ESS, if

σ∗0 p∗>Ap∗ ≥ σ0 p>Ap∗, (31)

and, if
σ∗0 p∗>Ap∗ = σ0 p>Ap∗, (32)

then
σ∗0σ∗′0 p∗>Ap∗ + σ∗0σ0 p∗>Ap > σ∗0σ′0 p>Ap∗ + σ2

0 p>Ap, (33)

analogously to (11) and (23)-(24). From (29) and (30) we now have

2σ∗20 p∗>Tp∗ = 1, 2σ∗0σ0 p>Tp∗ = 1, (34)

hence
σ∗0
σ0

=
p>Tp∗

p∗>Tp∗
, 2σ2

0 p>Tp∗ =
p∗>Tp∗

p>Tp∗
. (35)

Let us differentiate (29) and (30). We get, on the one hand,(
2σ∗0σ∗′0 − σ∗20

)
p∗>Tp∗ + σ∗0σ0 p∗>Tp = 0,

which, combined with (34), implies

2σ0σ
∗′
0 p>Tp∗ = 2σ∗0σ∗′0 p∗>Tp∗ =

1
2

(
1− p∗>Tp

p>Tp∗

)
. (36)

On the other hand,

2 (σ∗0σ′0 + σ0σ
∗′
0 − σ∗0σ0) p>Tp∗ + 2σ2

0 p>Tp = 0,

consequently, by (34), (35) and (36),

2σ∗0σ′0 p>Tp∗ =
1
2

(
1 +

p∗>Tp

p>Tp∗

)
− p>Tp · p∗>Tp∗

(p>Tp∗)2
. (37)

Now, (31) and (35) gives (17), and (18) is derived similarly. Multiplying (33)
by 2p>Tp∗, and using (34)–(37) we obtain

1
2

(
1− p∗>Tp

p>Tp∗

)
p>Tp∗

p∗>Tp∗
p∗>Ap∗ + p∗>Ap∗

>
1
2

(
1 +

p∗>Tp

p>Tp∗

)
p>Ap∗ − p>Tp · p∗>Tp∗

(p>Tp∗)2
p>Ap∗

+
p∗>Tp∗

p>Tp∗
p>Ap.
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In the first line, substitute p>Ap∗ for
p>Tp∗

p∗>Tp∗
p∗>Ap∗, and in the second line

p∗>Ap∗ for
p∗>Tp∗

p>Tp∗
p>Ap∗. After rearranging and multiplying by p>Tp∗ we get

(19).

A.2 Numerical examples

A.2.1 Prisoner’s sharing game

In our first example let

τ0 = 2, A =
[

1 1 + s
1− s 1

]
, T =

[
2 4
1 3

]
,

where −1 ≤ s ≤ 1. We are looking for an evolutionarily stable strategy of the
form p∗ = [y, 1− y]>, 0 ≤ y ≤ 1, as a function of parameter s.

We will prove that for every s ∈ [−1, 1] there exists a unique ESS of the
form p∗ = [y, 1− y]>, namely,

– if −1 ≤ s ≤ s1 =
7−

√
13

18
= 0.188 . . . , then y = 0,

– if s1 < s < s2 = 1/4, then y = 3− s−1 + s−1/2,

– if s2 ≤ s ≤ 1, then y = 1.

For the proof let p = [x, 1−x]> be an arbitrary mutant strategy, x 6= y, and
let z = x− y. Then p∗>Ap∗ = y2 + 2y(1− y) + (1− y)2 = 1,

p∗>Ap = yx + (1 + s)y(1− x) + (1− s)(1− y)x + (1− y)(1− x) = 1− sz,

and by symmetry, p>Ap = 1, p>Ap∗ = 1 + sz.
Furthermore, p∗>Tp∗ = 2y2 + 5y(1− y) + 3(1− y)2 = 3− y,

p∗>Tp = 2yx + 4y(1− x) + (1− y)x + 3(1− y)(1− x)
= 3 + x− 2y = 3− y + z,

hence p>Tp = 3− x = 3− y − z, p>Tp∗ = 3 + y − 2x = 3− y − 2z.
For checking (11) we first compute %∗0/%0. Remembering the equation 2

τ0
(%∗0)2 =

(1− %∗0)/p∗>Tp∗ we can write

%∗0
%0

= %∗0

(
1 +

2
τ0

p>Tp∗%∗0

)
= %∗0 +

p>Tp∗

p∗>Tp∗
(1− %∗0)

= 1 +
p>Tp∗ − p∗>Tp∗

p∗>Tp∗
(1− %∗0) = 1 +

1− %∗0
p∗>Tp∗

[1,−1]Tp∗z

= 1 +
2
τ0

(%∗0)2 [1,−1]Tp∗z, (38)
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which now yields
%∗0
%0

= 1 + z(%∗0)2.

Clearly, inequality (11) is strict if and only if

%∗0
%0

= 1 + z(%∗0)2 >
p>Ap∗

p∗>Ap∗
= 1 + sz,

that is,
(
(%∗0)2 − s

)
z > 0.

If y = 0, then z > 0, hence s < (%∗0)2 is needed. By (14) we have

%∗0 =
2

1 +
√

13− y
=

2
1 +

√
13

=
√

13− 1
6

,

hence the condition for y = 0 to be a strict NE is

s <

(√
13− 1

6

)2

=
7−

√
13

18
= s1.

Analogously, if y = 1 then z < 0, thus the condition is

s > (%∗0)2 =
(

1
2

)2 = 1
4 .

If 0 < y < 1, (11) cannot hold with strict inequality. Let us continue with
(12) and (13). Then

s = (%∗0)2 =
1− %∗0
3− y

,

hence %∗0 =
√

s, s =
(

2
1 +

√
13− y

)2

, and 3−y =
1
s
− 1√

s
. It is easy to see that

this defines a one-to-one correspondence s ↔ y between the intervals [s1,
1
4 ] and

[0, 1]. Furthermore, by (15),

ϑ∗ =
1−

√
s

2−
√

s

(
1 + sz − 3− y − 2z

3− y

)
=

1−
√

s

2−
√

s

(
s +

2
3− y

)
z

=
1−

√
s

2−
√

s

(
s +

2s

1−
√

s

)
=

3−
√

s

2−
√

s
sz,

%0 = %∗0

(
%∗0
%0

)−1

=
√

s

1 + sz
, and finally, by (16),

ϑ =
(

1−
√

s

1 + sz

)(
1 + sz − 3− y − z

3− y + z
− 3−

√
s

2−
√

s
sz

)
=
(

1−
√

s

1 + sz

)(
2

3− y + z
− s

2−
√

s

)
z

=
1−

√
s + sz

1 + sz

(
2

1−
√

s + sz
− 1

2−
√

s

)
sz.
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Dividing (13) by %0, and plugging the expressions above into it we get the
following stability condition to check.

(1 + sz)
(

3−
√

s

2−
√

s
sz + 1− sz

)
>

1−
√

s + sz

1 + sz

(
2

1−
√

s + sz
− 1

2−
√

s

)
sz(1 + sz) + 1.

After some calculus this can be transformed into the inequality

2(sz)2

2−
√

s
> 0,

which is obviously satisfied.

A.2.2 Prisoner’s dilemma under time constraint

In our second example let

τ0 = 2, A =
[
3 1
4 2

]
, T =

[
1 1
t t

]
,

where t > 0. Again, we will find evolutionarily stable strategies of the form
p∗ = [y, 1− y]>, 0 ≤ y ≤ 1 for every fixed t.

We will prove the following facts.

– If 0 < t ≤ t1 =
9 +

√
5

6
= 1.872 . . . , then y = 0 is the only ESS.

– If t ≥ t2 = 3 +
√

3 = 4.732 . . . , then y = 1 is the only ESS.

– If t1 < t < t2, then both y = 0 and y = 1 are ESS (and no other ESS
exists).

For the proof let p and z denote the same as in A.2.1. Let us fix y ∈ [0, 1]
and try to find all values of t for which p∗ is ESS.

Since T =
[
1
t

]
[1, 1], we have Tp = Tp∗ =

[
1
t

]
, thus

p∗>Tp∗ = p∗>Tp = y + t(1− y) = t− (t− 1)y,

p>Tp∗ = p>Tp = t− (t− 1)x = t− (t− 1)y − (t− 1)z.

Furthermore,

p∗>Ap∗ = 3y2 + 5y(1− y) + 2(1− y)2 = 2 + y,

p>Ap∗ = 3xy + x(1− y) + 4(1− x)y + 2(1− x)(1− y)
= 2 + 2y − x = 2 + y − z,
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and, by symmetry,

p>Ap = 2 + x = 2 + y + z, p∗>Ap = 2 + 2x− y = 2 + y + 2z.

From (38) it follows that

%∗0
%0

= 1− (%∗0)2(t− 1)z.

By this, inequality (11) is strict if and only if

1− (%∗0)2(t− 1)z >
2 + y − z

2 + y
= 1− z

2 + y
;

that is, (
1

2 + y
− (%∗0)2(t− 1)

)
z > 0.

If y = 0 then z > 0, hence the condition is (%∗0)2(t − 1) < 1
2 . Using that

(%∗0)2 = (1− %∗0)/t, we get 2(1− %∗0)(t− 1) < t. This obviously holds for t ≤ 2,
thus we can suppose t > 2. By (14)

%∗0 =
2

1 +
√

1 + 4t− 4(t− 1)y
=

2
1 +

√
1 + 4t

,

therefore the condition is equivalent to the inequality

√
1 + 4t <

3t− 2
t− 2

.

Taking squares we arrive at the cubic inequality 4t(t2−6t+6) < 0, which yields
t < 3 +

√
3 = t2.

Next, let y = 1. Then z < 0, and we need (%∗0)2(t − 1) > 1
3 . This time

%∗0 =
2

1 +
√

5
, consequently y = 1 is a strict NE if and only if t >

9 +
√

5
6

= t1.

Finally, let y be arbitrary, and suppose (12) is satisfied. We will show that
in (13) the opposite inequality is valid, thus in this way no ESS can be obtained.

Indeed, by (12) we have

%∗0
%0

= 1− z

2 + y
, %0 =

(2 + y)%∗0
2 + y − z

,

ϑ∗ =
1− %∗0
2− %∗0

(
1− z

2 + y
− 1
)

= − (1− %∗0)z
(2− %∗0)(2 + y)

,

ϑ =
(

1− (2 + y)%∗0
2 + y − z

)(
1− z

2 + y
+

(1− %∗0)z
(2− %∗0)(2 + y)

− 1
)

= −
(

1− (2 + y)%∗0
2 + y − z

)
z

(2− %∗0)(2 + y)
.
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Hence the condition to be checked is(
1− z

2 + y

)(
− (1− %∗0)z

(2− %∗0)(2 + y)
(2 + y) + (2 + y + 2z)

)
> −

(
1− (2 + y)%∗0

2 + y − z

)
z(2 + y − z)

(2− %∗0)(2 + y)
+ (2 + y + z).

After cancellation and rearrangement it reduces to the inequality

− %∗0 z2

(2− %∗0)(2 + y)
> 0,

which is obviously false.

Remark 3. For every t ∈ [t1, t2] there exists a unique y ∈ [0, 1] such that (12)
is satisfied. In this way we obtain a one to one correspondence between the two
intervals. These strategies are unstable Nash equilibrium points.

Indeed, (12) implies

1
2 + y

= (%∗0)2(t− 1) =
(1− %∗0)(t− 1)

t− (t− 1)y
.

Note that t must be greater than 1. For the sake of convenience introduce
u = 3

2 t− 1 and v = t− (t− 1)y. Then 1 ≤ v ≤ t. By some algebra we arrive at
the equation √

1 + 4v =
u

u− v
.

If u is negative, the right hand side is less than 1, while the left hand side is
greater than 1. Thus u > v is required. Taking squares and rearranging leads
to

v
[
4v2 − (8u− 1)v + (4u2 − 2u)

]
= 0,

from which

v =
8u− 1−

√
16u + 1

8
, that is, y =

9− 4t +
√

24t− 15
8(t− 1)

(the other root of the quadratic equation is greater than u.)

From condition 1 ≤ v we get u ≥ 5 +
√

5
4

, that is, t ≥ t1. On the other

hand, v ≤ t = 2
3 (u + 1) is equivalent to u ≤ 7 + 3

√
3

2
, that is, t ≤ t2. Since

dv

du
= 1− 1√

16u + 1
> 0,

the correspondence u ↔ v is one to one, and the same holds for t ↔ y.
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