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Abstract  27 

Consider and infinitely large asexual population without mutations and direct 28 

interactions. The activities of an individual determine the fecundity and the survival 29 

probability of individuals, moreover each activity takes time. We view this population 30 

model as a simple combination of life history and optimal foraging models. The 31 

phenotypes are given by probability distributions on these activities. We concentrate on 32 

the following phenotypes defined by optimization of different objective functions: selfish 33 

individual (maximizes the average offspring number during life span), survival phenotype 34 

(maximizes the probability of non-extinction of descendants) and Darwinian phenotype 35 

(maximizes the phenotypic growth rate).  36 

We find that the objective functions above can achieve their maximum at different 37 

activity distributions, in general. We find that the objective functions above can achieve 38 

their maximum at different activity distributions, in general. The novelty of our work is 39 

that we let natural selection act on the different objective functions. Using the classical 40 

Darwinian reasoning, we show that in our selection model the Darwinian phenotype 41 

outperforms all other phenotypes. 42 

 43 

1. Introduction 44 

Here we consider an asexual, sufficiently large and non-ageing population (i.e., 45 

the survival rate and fecundity of individuals do not depend on their age) and the 46 
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generations are overlapping (i.e., parents and their offspring can reproduce at the same 47 

time). We suppose that the individuals are engaged in different activities, which 48 

determine the fecundity, and the survival rate. All activities have certain time durations. 49 

We emphasize that there are no interactions between individuals. Our basic assumption is 50 

that individuals may only differ in their activity distributions, but they are alike in all 51 

other respects. Consequently, in the present model, the phenotypes are fully defined by 52 

their activity distributions. Finally, we assume that mutation is absent. 53 

We note that from the mathematical point of view, this selection situation is 54 

possibly the first step towards a combination of life history theory (Stearns 1992, 55 

Charnov 1993), and optimal foraging theory (Stephens & Krebs 1986), for it contains the 56 

essential elements of both these theories. Namely, we work with overlapping generations 57 

like life history theory does, but for simplicity we assume there is no aging. Furthermore, 58 

each action takes time as in optimal foraging theory. To keep things simple, in our model 59 

the activity distribution depends exclusively on the phenotype, whereas in optimal 60 

foraging theory the energy intake depends on both the foraging strategy (activity) of the 61 

forager and the actual density of food. In optimal foraging theory it was found that the 62 

time constraints have essential effect on the optimal foraging strategy (e.g., Stephens & 63 

Krebs 1986, Garay & Móri 2010).  64 

Our basic assumption is that the individuals may only differ in their activity 65 

distributions, but they are alike in all other respects. Consequently, in the present model, 66 

the phenotypes are fully defined by their activity distributions. We seek phenotypes 67 

which maximize interesting objective functions (cf. Garay et al. 2016, Garay & Varga 68 

2005). 69 
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The challenge is to find the optimal phenotype, i.e., the optimal distribution on the 70 

activities.  However, this question is ambiguous, since there are trade-offs (i.e., negative 71 

correlations) between either fecundity and survival rate, or fecundity and time duration, 72 

or both. In general no phenotype maximizes fecundity and survival rate simultaneously. 73 

The problem can be made precise mathematically, if we define an objective function, and 74 

find the phenotype that maximizes it, thus we seek the optimal phenotype with respect to 75 

a prescribed objective function. Now we are facing the problem of choosing the “right” 76 

objective function. We mention two biological examples of this trade-off phenomenon, 77 

together with an (incomplete) list of some previously proposed objective functions, to 78 

demonstrate the ambiguity. 79 

 Firstly, in the theory of survival cost of reproduction (e.g., Harshman & Zera 80 

2007, see also life history theory), it is usually assumed that there is a trade-off between 81 

fecundity and survival rate. Four widespread objective functions of this theory are as 82 

follows. Fisher (1930) proposed reproductive value, and later Schaffer (1974) suggested 83 

optimal reproductive effort. The selfish individual maximizes her life reproductive 84 

success (e.g., Yearsley et al. 2002), which is the average number of offspring during the 85 

individual life span. Finally, the fourth objective function is the growth rate of a 86 

phenotype (e.g., Caswell 2001, Garay et al. 2016).  87 

 Secondly, in the theory of optimal foraging under predation risk (e.g., Stephens & 88 

Krebs 1986, Brown & Kotler 2004), it is usually assumed that there is a trade-off between 89 

fecundity and survival rate. A multitude of objective functions have been proposed, as 90 

follows. Gilliam (1982) introduced the mortality per fecundity rule. Houston et al. (1993) 91 

consider two objectives: (a) the animal must collect a fixed amount of food to reproduce; 92 
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(b) the animal must survive for a fixed time. Finally, Brown & Kotler (2004) study (a) 93 

and (b) above, and two further ones: the sum and the product of fecundity and survival 94 

rate (see also Bednekoff & Lima 2011). Observe that all cited objective functions refer to 95 

either an individual or a phenotype.  96 

As noted earlier, the question arises: is there a method for selecting the “correct” 97 

objective function, if any? As we will see, the answer is positive. Based on our earlier 98 

results we propose the following method (Garay et al. 2016, Garay & Varga 2005). 99 

Consider a selection situation with different phenotypes and (at least) two different 100 

objective functions. For any pair of different objective functions, there are two 101 

possibilities: they attain their maximum either at the same phenotype or at different 102 

phenotypes. In the former case there is no difference between them in the given selection 103 

situation, while in the latter case we have an evolutionary selection problem, namely, a 104 

selection situation with different phenotypes, and we can see which phenotype wins the 105 

struggle of coexistence. Thus, we can say that the winner phenotype’s objective function 106 

is maximized by selection. For instance, in the recently introduced kin demographic 107 

selection model (Garay et al. 2016), the Darwinian phenotype (which maximizes the 108 

phenotype’s long term growth rate) is shown to outperform all other possible phenotypes 109 

(maximizing other objective functions). That model is based on the classical Leslie 110 

model, which assumes age dependent survival rate and fecundity. In the present paper, 111 

we investigate whether this recent result remains valid in the different selection situation 112 

considered here.  113 

In Darwinian evolution theory, natural selection maximizes the fitness of a 114 

phenotype. In asexual models, fitness is defined as the average growth rate of the 115 
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phenotype per capita, i.e., the average number of descendants of an individual with the 116 

given phenotype born in a unit of time.  117 

Since phenomena in ecology are the results of evolution (Hutchinson 1965), it is 118 

reasonable to the fitness (i.e., the average growth rate) is the object of maximization in 119 

ecology as well.  120 

In the present paper, we consider three objective functions: the average offspring 121 

number during life span, the probability of non-extinction of descendants, and the 122 

phenotypic growth rate. By finding the optimal phenotypes with respect to these 123 

objective functions, we demonstrate that in the selection situation under study, different 124 

objective functions are maximized by different phenotypes, in general. We emphasize 125 

that from the mathematical point of view all objective functions are possible. 126 

Subsequently, we investigate which phenotype wins the struggle of coexistence. Given 127 

that in our selection situation there are no interactions between individuals, one may ask: 128 

what kind of competition mechanism can arise, if any? Our selection mechanism is based 129 

on the classical Darwinian reasoning (Darwin 1859), namely, though individuals produce 130 

more offspring than the carrying capacity, natural selection keeps the population size 131 

bounded. In our case, every possible phenotype must have an exponential growth rate in 132 

order to exist at all. Since we assumed that phenotypes only differ in their activity 133 

distributions, they are equivalent (interchangeable) in this process of survival according 134 

to the carrying capacity. Thus in our case natural selection is realized by a random and 135 

uniform selection mechanism, where, as we will see, the highest Malthusian parameter 136 

will win the struggle of existence (cf. Garay et al. 2016). 137 

 138 
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2. Phenotypes, objective functions, and optimal strategies 139 

 Suppose an individual member of a population can choose from r activities 140 

(choice does not necessarily presume deliberation, since in biology a lot of species have a 141 

genetically fixed behavior). Her choice is random: activity s is chosen with probability 142 

sp , rs ,,1…= . Clearly, 11 =++ rpp ⋯ . We define a phenotype by this activity 143 

distribution ),,( 1 rpp …=p . Activity s takes time sτ . At the end of the activity the 144 

individual either perishes without descendants, this happens with probability sq , or the 145 

individual gives birth to sc  offspring, and the whole process starts over: independently of 146 

its past, the survivor makes a new choice, and so on. The progeny size sc  can be random, 147 

but finite expectation (and sometimes more, cf (5) in subsection 2.2) is required. We 148 

assume 10 << sq  to exclude trivialities. This ensures that the lifetime of the individual is 149 

finite with probability 1.  150 

Let us extend this model by allowing a more general set of activities. Suppose 151 

activities are parametrized from a general measurable space ( )FS , , where the parameter 152 

set S  is called the activity space, its elements represent different activities, and F  is the 153 

σ-field of measurable subsets of  S.  Every individual chooses an activity at random, 154 

according to an activity distribution (probability measure) ]1,0[: →Fp , called strategy 155 

(phenotype). We suppose that the joint distribution of the triplet ( )sss cq ,,τ  is a 156 

measurable function of s (this condition holds automatically if the activity space is 157 

countable, since in that case every subset of S  is traditionally supposed measurable). By 158 
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the law of total probability, the joint distribution of ( )cq,,τ  is a mixture of the 159 

distributions of  ( )sss cq ,,τ , S∈s , with mixing measure p. 160 

Each child follows her parent’s strategy, and the characteristic triplets of activity 161 

times, terminal probabilities, and offspring numbers of different individuals are 162 

independent and identically distributed.  163 

 Successfulness of a strategy can be measured in several ways. Concentrating on 164 

the individual, the measure of success is the average number of offspring produced 165 

during the whole lifetime. On the other hand, if, following Darwin, we concentrate on the 166 

phenotype, then we have to deal with the growth rate of the number of living 167 

descendants. However, the average size of progeny can also be large in such a way that 168 

with a considerable probability there are no living descendants at all, but otherwise a 169 

reproduction boom takes place. Thus it is meaningful to use the probability of non-170 

extinction of the phenotype as an alternative index.  171 

 Let us compute these quantities. We will also investigate which strategies 172 

optimize them. 173 

 174 

2.1. Selfish individual Ip  maximizes the average offspring number of an individual. 175 

Let X denote the number of descendants produced by an individual during her whole 176 

lifetime (several activity cycles). If the individual does not perish without reproduction at 177 

the end of the first activity period, the remainder of her life has the same distribution as if 178 

it were born at the very moment. Thus, if she chooses activity s, the average number of 179 

her offspring equals zero with probability sq , and Xcs EE +  with probability sq−1 . 180 

Hence, by the theorem of total expectation we can write 181 
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follows, provided the average number of offspring in one cycle is finite, that is, 185 

∞<−∫S )d()1( scq ss pE . In fact, equation (1) is also satisfied by ∞=XE , but it cannot 186 

occur, since the number of activity cycles before death can be majorized by geometric 187 

distribution, which is of finite expectation.  188 

 Note that in the calculation above the activity lengths sτ  did not appear directly. 189 

They are only present in the effect they have on the number of offspring.  190 

 Let us find the strategy Ip  that maximizes EX.   191 
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and equality holds if and only if Ip  is concentrated on activities s for which sa  is equal to 194 

its supremum (if it is attained at all). 195 

 196 

Remark 1. We note that the same objective function is used in the problem of optimal 197 

foraging under predation danger (e.g. Clark & Dukas1994, Higginson & Houston 2015). 198 

 199 
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2.2. Darwinian phenotype Dp  maximizes the average growth rate of the phenotype, i.e., 200 

the growth rate of the expected number of living descendants, as time tends to infinity. 201 

For the computation we need to change our viewpoint. Instead of letting an individual 202 

repeat her activity/reproduction cycles until death, we consider the end of the first activity 203 

period as the end of life, and, in the case where the individual would survive the period, 204 

we consider her as one of her siblings. Thus, we now think of sτ  as life span, and the 205 

offspring number sξ  is defined to be 0 with probability sq , and sc+1  with probability 206 

sq−1 . One can express sq  and sc  in terms of sξ , for )0( == ssq ξP , and the distribution 207 

of sc  is equal to the conditional distribution of 1−sξ , provided 0>sξ . Let τ  and ξ  208 

denote the life span and offspring size of the individual, resp., when it chooses strategy p 209 

(that is, their distribution is a mixture of ),( ss ξτ  with mixing measure p). Let tZ  denote 210 

the population size at time t. This way we obtain an age dependent branching process, or 211 

in other words, a so called Crump–Mode–Jagers (CMJ) process (Haccou et al. 2005), 212 

with reproduction process ∫ ≤
=

≤
=

S

)d(
}}

)( s
tt

t s
s

pξ
τ

ξ
τ

η
{

1
{

1 , where }{⋅1  stands for the 213 

indicator of the event in brackets. ( )(tη  is the number of offspring up to time t: it is either 214 

0 or sc+1  if the activity period, now lifetime, is already over by t, and 0 otherwise.) 215 

Since reproduction is only allowed at the end of the lifetime, we have a well known and 216 

widely studied particular case of CMJ processes: a Sevast’yanov process. An informal 217 

introduction to CMJ processes is provided in Appendix A. We may and will suppose that 218 

our process is supercritical, that is,  219 

∞<+−=< ∫
S

)d()1)(1(1 scq ss pEEξ .   (3) 220 
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From the general theory it follows that tZ  grows exponentially with exponent 0>α  221 

called the Malthusian parameter. It can be obtained as follows. Let )(tµ  denote the 222 

expected number of children born up to time t, that is, 







≤
= ξ

τ
µ

}
)(

t
t

{
1E . Then )(tµ  is 223 

bounded, for ∞<=∞ ξµ E)( . The Malthusian parameter α  is the only positive solution 224 

of the equation  225 

   ∫ ∫
∞

===
−−−

0
1)d()()()d(

S

seete s
st

pξξµ
ατατα EE ,  (4)  226 

see Appendix A. The left hand side, as function of α , is continuous, and strictly 227 

decreases from 1>=∞ ξE)µ(  to 0 by the monotone convergence theorem.  228 

 In order to apply the Theorem and Remark of Appendix A we have to check the 229 

moment condition. Clearly, ξξη ατα ≤== ∫
∞

−−

0

)( edteM t , thus it suffices to require that  230 

 [ ] ∞<++−= ∫
S

)d()1log()1()1()log( sccq sss pEE ξξ .  (5) 231 

Now, using formulae (8) and (9), we can characterize the growth of tZ . 232 

 If the distribution of τ  is non-lattice, that is, not concentrated on any lattice 233 

{ }...,3,2,,0 hhh , 0>h , then 234 

∫
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Moreover, 
tZe

tα−  converges to a random variable W almost surely,  KW =E , and W is 236 

positive almost everywhere outside the set of extinction.  237 
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 If the distribution of τ  is lattice, say τ  is integer valued (the case of discrete 238 

time), then for integer t we have t
eWZ t

α~  as ∞→t , where now 239 

 

∫

∫
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−
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S

S
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s

t
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t

p

p
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ατ

α

E

E
EE . (7) 240 

Consequently, the Malthusian parameter α  appears to be an adequate measure of 241 

successfulness in the Darwinian sense, both in the lattice and non-lattice cases. 242 

 243 

Maximal average growth of phenotype. Let us find the strategy Dp  that maximizes α. 244 

Suppose 1)1)(1( >+−= sss cq EEξ  for some S∈s . Let sα  denote the Malthusian 245 

parameter associated with the pair ),( ss ξτ , that is, the only positive solution of the 246 

equation 1)( =
−

s
se ξ

ατ
E . We will show that the optimal rate is  247 

{ }1:sup >= ssD ξαα E , 248 

and it can be attained if and only if Dp  is concentrated on activities s for which sa  is 249 

maximal. Indeed, for every S∈s  we have 1)( ≤
−

s
sDe ξ

τα
E , hence 250 

1)d()( ≤∫
−

se s
sD p

S
ξ

τα
E , implying Dαα ≤ . The condition of equality is obvious. 251 

In the particular case of constant activity times, the Malthusian equation reads 252 

1)1)(1(
1

=+−∑
=

−
r

s

s
sss ecqp

ατ
E , 253 

and the maximum of the Malthusian parameter is equal to  254 

    
[ ]

s

ss

rs
D

cq

τ
α

)1)(1(log
max
1

E+−
=

≤≤
. 255 

 256 
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Remark 2. When all survival rates are the same (i.e., qqs = ), the maximal possible 257 

growth rate of the phenotype is similar to the objective function of optimal foraging 258 

theory, namely, to the maximum of the intake energy rate in the case when one type of 259 

prey is more profitable than the other ones (e.g., Stephens & Krebs 1986).   260 

 261 

2.3. Survival phenotype ep  minimizes the extinction probability of phenotype, or, in 262 

other words, maximizes the probability of phenotype survival. Though in the supercritical 263 

case the mean population size tends to infinity at an exponential rate, the phenotype can 264 

still become extinct with positive – occasionally high – probability. An alternative 265 

criterion of optimality can be the probability of the survival of the phenotype, that is, one 266 

can aim at minimizing the probability π  of extinction.  267 

 268 

 In the age-dependent branching model this probability can easily be found by 269 

considering the discrete time Galton–Watson process embedded in the general 270 

Sevast’yanov process. Starting from a single ancestor, let us call her offspring the first 271 

generation, the offspring of the first generation the second generation, and so on. Then 272 

the successive generations form a Galton–Watson process with offspring size ξ . The 273 

extinction probability π  is the smallest positive solution of the equation )(ππ g= , 274 

where ))(
ξ

xxg E(= , the probability generating function of  ξ  (see Theorem 2.3.1. of 275 

Jagers 1975). Particularly, let ))1()( s
sss

c
xxqqxg E(−+= , then  ∫=

S

)()()( dsxgxg s p . 276 

 277 
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Minimal extinction probability. Let us find the strategy ep  that minimizes π . First we 278 

show that the infimum of the extinction probability as p runs over all possible strategies 279 

is equal to 
se ππ

S

inf= , where sπ  is the extinction probability under the pure strategy s, 280 

that is, the smallest positive solution of the equation xxgs =)( . Thus, eπ  is the infimum 281 

of  π  over all pure strategies. 282 

 Indeed, since )(xgs , being a probability generating function itself, downcrosses 283 

the identity function at sπ , we have xxg s ≥)(  for sx π≤ . Therefore, 284 

eeese dsdsgg ππππ =≥= ∫∫
SS

)()()()( pp , 285 

implying that eπ  is less than or equal to the extinction probability under an arbitrary 286 

strategy p. On the other hand, we can get arbitrarily close to eπ  by using pure strategies 287 

only. 288 

 An equivalent characterization of eπ  is the following. Introduce the function 289 

)(inf)( xgxf s
S

= , 10 ≤≤ x . 290 

Then eπ  is the largest solution of the equation )(xfx =  in the interval [0, 1). Indeed, for 291 

every positive ε  there exists an S∈s  such that εππ +≤ es , hence 292 

επππππ +≤=≤≤ esssse gff )()()( . 293 

Thus eef ππ ≤)( . On the other hand, for every positive ε  there exists an S∈s  such that 294 

εππ +≤ )()( ees fg . Since se ππ ≤ , we have )( ese g ππ ≤ , and by that, ).( ee f ππ ≤  295 

Finally, if 1<< xeπ , then there exists an S∈s  such that xs <π , thus xxgxf s <≤ )()( . 296 
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 Clearly, strategy p attains eπ  if and only if it is concentrated on activities s for 297 

which es ππ = . 298 

 299 

 Observe that the above objective functions can generally take their maximums at 300 

different strategies p. On the other hand, if the same activity has the largest survival 301 

probability, the highest fecundity, and the shortest time duration, then it maximizes all 302 

considered objective functions simultaneously.  303 

 304 

Example 1.  Consider the following parameters. For the sake of simplicity, both the 305 

offspring size and the time duration are non-random. 306 

 
Activity 1 Activity 2 Activity 3 

Probability of death, q   4.01 =q   4.02 =q   2.03 =q   

Offspring size, c   111 =c   82 =c   33 =c    

Time duration τ   51 =τ   12 =τ   53 =τ   

Table 1. A simple model with three activities. 307 

 For the pair of activities 1 and 2, there is a trade-off between fecundity and time 308 

duration. Moreover, for the pair of activities 2 and 3, there is a trade-off between 309 

fecundity and survival rate. Simple calculations show that the selfish individual must 310 

choose activity 1, the Darwinian phenotype activity 2, while the survival phenotype uses 311 

activity 3.  312 
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 313 

 
Activity 1 Activity 2 Activity 3 

Mean offspring size   5.16=XE   12=XE   12=XE   

Growth rate (Malthusian parameter )  394.01 =α   686.12 =α   232.03 =α    

Probability of extinction  400.01 =π   400.02 =π   201.03 =π   

Table 2. Values of objective functions for the activities in Table 1. 314 

 Intuitively, the selfish individual concentrates on the number of her own 315 

offspring. The Darwinian phenotype also takes account of the number of its children, 316 

grandchildren, great-grandchildren, and so on, and how fast its reproduction can be. The 317 

survival phenotype concentrates on the long time survival of its posterity.  318 

 For deeper biological insight, we describe a theoretical selection situation during 319 

reproductive season, where the above example is reasonable. Firstly, assume that if a 320 

parent dies before her offspring grow up, then so do all her offspring. Consider three 321 

types of non-exhausted patches, i.e. 3=r . Parents have to stay in the same patch during 322 

one reproduction cycle. In patch s the parent’s survival rate is sq−1 , her fecundity is sc , 323 

and the development time of her offspring (from birth to the first reproduction, while 324 

parental care is needed for the survival of the juveniles) is sτ . Observe that here the patch 325 

type determines the survival rate and fecundity of parents and the development time of 326 

her offspring. Furthermore, the different objective functions determine different patch 327 

preference.  328 

 329 

3. A simple selection model 330 
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 We consider a monomorphic model where in a resident population a mutant 331 

phenotype appears, and natural selection has sufficient time to select out the less fit 332 

phenotype.  333 

In Section 2 we determined the optimal phenotypes corresponding to different 334 

objective functions. Clearly, if two phenotypes have different activity distributions, they 335 

generally have different growth rates (Malthusian parameters) α . Let us consider the 336 

Darwinian phenotype with Malthusian parameter Dα  and a mutant phenotype with a 337 

smaller DM αα < . Let fD resp. fM denote the frequencies of Darwinian resp. mutant 338 

phenotypes.  339 

When the rare mutants appear, there are two possibilities: they either die out 340 

within a short time due to random fluctuation (we will not investigate this case), or the 341 

mutant phenotype survives for such a long time that it reaches its asymptotic growth rate. 342 

Since evolution is a long process, we are interested in the second possibility. Let RT  343 

denote the time duration of the long reproductive season, when different phenotypes 344 

reproduce according to their activity distributions. When the reproductive season is over, 345 

the size of the population decreases in accordance with the carrying capacity.  One may 346 

think of the reproductive season as taking place during spring and summer time, when the 347 

activity determines the survival rate and the fecundity of individuals; moreover, the 348 

average number of generations during the reproductive season is determined by the time 349 

durations. Assume that the reproductive season is long enough to allow a high number of 350 

generations, i.e. iRT τmax>> . The carrying capacity is determined by the winter time, 351 

when the whole population size is reduced to the carrying capacity by a uniform survival 352 
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process, which equally affects all phenotypes, i.e., the survival rates are all equal (by our 353 

basic assumption, phenotypes differ only in their activity distribution).  354 

Let us denote the carrying capacity by C, supposed sufficiently large. Clearly, 355 

MD ffC += . Since C is large, we can describe selection as a “mass process”, i.e., 356 

random fluctuations have no effect on the number of individuals (at least in the order of 357 

magnitude). If there are many individuals of a given phenotype, the probability of 358 

eventual extinction, being a negative exponential function of the phenotype size, is 359 

negligible. Hence, at the end of the reproductive season (before the selection according to 360 

carrying capacity) the approximate sizes of the Darwinian, resp. mutant phenotypes are 361 

RD
DD

T
eKf

α
 and RM

MM

T
eKf

α
, where DK  and MK  denote the current values of the 362 

constant K appearing in formulae (6) and (7). Since the considered phenotypes are 363 

equivalent with respect to the carrying capacity, each individual will survive with 364 

probability 
RM

MM
RD

DD

TT
eKfeKf

C
αα

ρ
+

≈ , so after selection, at the beginning of the 365 

next reproductive season, the phenotype sizes are RD
DDD

T
eKff

α
ρ≈′  and 366 

RM
MMM

T
eKff

α
ρ≈′ , resp. Therefore, the ratio of mutant and Darwinian phenotype 367 

frequencies will decrease very fast, namely, at a rate exponential in the number of 368 

reproductive seasons: 369 

Q
f

f

f

f

D

M

D

M ⋅≈
′

′
, where 1

)(
<<=

−−
RMD

D

M T
e

K

K
Q

αα
. 370 

 We emphasize that Darwinian phenotype does not only win against selfish and 371 

survival phenotypes, but it outperforms all other phenotypes based on different objective 372 
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functions mentioned in Introduction (unless an objective function happens to take its 373 

maximum just at the Darwinian phenotype). 374 

  375 

5. Conclusion 376 

We considered an asexual, sufficiently large and non-ageing population, where 377 

the generations are overlapping, and there is no mutation and no interaction between 378 

individuals. The individuals engage in activities, which determine their fecundity and 379 

survival probability, moreover these activities take time. A phenotype is identified with a 380 

probability distribution on the activities. Our aim was to find the phenotype with optimal 381 

evolutionary behavior. The natural candidates are phenotypes which maximize one or 382 

another objective function, a multitude of which have already been proposed in the 383 

literature. Generally, different objective functions are maximized by different 384 

phenotypes. However, without introducing a selection mechanism we cannot find out 385 

which phenotype outperforms all other ones. To this end, we proposed a selection 386 

method: since in our case the individuals do not interact, and all phenotypes contend 387 

under the same conditions, therefore the competition of phenotypes must be uniform. We 388 

pointed out that actually the different objective functions (e.g., different definitions of 389 

fitness) are the objects of natural selection.  We showed that the Darwinian phenotype, 390 

which maximizes the average growth rate of the phenotype, outperforms all other 391 

phenotypes under consideration (those maximizing the individual’s average offspring 392 

number during life span or minimizing the extinction probability of descendants, and so 393 

on). From the aspect of theoretical biology, this means that the fitness of a phenotype is 394 
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best defined by the average growth rate of the phenotype in the selection situation where 395 

each activity may have different survival rate, fecundity, and time duration.  396 

We have already mentioned that, from the mathematical point of view, our 397 

selection situation is possibly the simplest mathematical combination of life history 398 

theory and optimal foraging theory. Our objective functions correspond to some objective 399 

functions already introduced in optimal foraging theory (Remarks 1 and 2). We 400 

conjecture that the Darwinian phenotype wins the struggle of existence more generally, 401 

namely, if one lets the time durations of activities be influenced by prey densities in an 402 

unbounded and aging population, As an outlook, we mention a few selection situations, 403 

where the Darwinian phenotype outperforms other ones. Firstly, in kin selection theory 404 

(Hamilton 1964), the altruistic phenotype (at a cost to the own survival and reproduction) 405 

helps the reproductive success of one of its own relatives. Secondly, in the kin 406 

demography model, it can be pointed out that sib cannibalism between closest relatives 407 

can be considered as an extreme mutualism (Garay et al. 2016).  408 

Finally, we note that our result could be applied in both optimal foraging theory 409 

and life history theory, where there is a trade-off between any pair of the offspring 410 

number, survival rate, and time duration. Our model can deal with these trade-offs, since 411 

we do not impose assumptions on the correlation between parameters. An important 412 

consequence of our model is that, independently of the “objective functions”, the optimal 413 

behavior can always be achieved by pure strategies, i.e., with a single activity. Thus, our 414 

results offer the possibility to test, either by experiment or by field observation, which 415 

objective function is optimized by natural selection.   416 

 417 
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 477 

Appendix A.  478 

In this section, we give an informal introduction to general time dependent 479 

branching processes, or Crump–Mode–Jagers (CMJ) processes. The interested reader 480 

may find more formal descriptions in the monographs (Jagers 1975) or (Haccou et al. 481 

2005). 482 

In a CMJ branching process there are individuals who reproduce and die. This is 483 

characterized by a random point process ,0),( ≥ttη  called the reproduction process, and 484 

a nonnegative random variable τ , which is the life span. They are not supposed 485 
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independent. The random variable )(tη  is the number of offspring up to time t. Most 486 

often there is no reproduction after death, i.e., )()( τηη =t  for τ>t  (but this is not 487 

necessarily required). 488 

The life history of every individual e is described by the pair ( )ee τη (.), ; they are 489 

independent and identically distributed copies of ( )τη(.),  introduced above. If individual 490 

e was born at time eσ , then at time t the number of her children (dead or alive) is 491 

)( ee t ση −  ( )(teη  is defined as zero for negative t), and it deceases at time ee τσ + . We 492 

are interested in the number of individuals alive at time t, which we will denote by tZ . 493 

A CMJ process is called subcritical, critical, or supercritical, according that the 494 

expected number of offspring of an individual, )]([ ∞ηE , is less than, equal to, or greater 495 

than 1, respectively. In the sequel we are interested in supercritical processes. For the 496 

sake of simplicity we only formulate the basic limit theorem in the form we need it, not in 497 

its most general form, because we want to apply it to a model with nice properties. 498 

Therefore we suppose that ∞<∞< )]([1 ηE . Such processes grow exponentially fast on 499 

the event of non-extinction. The rate of growth is described by the so called Malthusian 500 

parameter α .  It is the only positive solution of the equation ∫
∞

=−
0

1)d( te t µα , where 501 

)]([)( tt ηµ E= , the expected number of offspring of an individual up to time t after her 502 

birth. 503 

Combining Proposition 2.2, Theorems 3.1 and 5.4 of (Nerman 1981), we get the 504 

following limit theorem. 505 

 506 
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Theorem.  With the definition ∫
∞ −=

0
)d( teM

tηα
, suppose that ∞<+ ]log[ MME  holds. 507 

Furthermore, suppose the Lebesgue–Stieltjes measure generated by µ  is not lattice, i.e., 508 

)(tµ  is not a piecewise constant function with points of increase all belonging to a lattice 509 

{ }...,3,2,,0 hhh , 0>h .  Then  510 

 

∫

∫
∞

∞
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−

−
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==

0

0
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tte
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t

t

t
t

t µ

τ

α

α

α
P

E .   (8) 511 

Moreover, tZe tα−  converges to a random variable W almost surely, KW =E , and W is 512 

positive almost everywhere outside the set of extinction.  513 

 514 

Remark.  If µ is lattice, that is, when an individual can reproduce only at times that are 515 

multiples of h (the case of discrete time), then formula (8) slightly changes. Without loss 516 

of generality we can suppose that 1=h . Then for integer t we have teWZt

α~  as 517 

∞→t , where 518 
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