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ABSTRACT
Integration of rich sensor technologies with everyday applications,

such as gesture recognition and health monitoring, has raised the

importance of the ability to e�ectively search and analyze multi-

variate time series data. Consequently, various time series distance

measures (such as Euclidean distance, edit distance, and dynamic

time warping) have been extended from uni-variate to multi-variate

time series. In this paper, we note that the naive extensions of these

measures may not necessarily be e�ective when analyzing multi-

variate time series data. We present several algorithms, some of

which leverage external metadata describing the potential relation-

ships, either learned from the data or captured from the metadata,

among the variates. We then experimentally study the e�ective-

ness of multi-variate time series distance measures against human

motion data sets.
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1 INTRODUCTION
In recent years, time series data have become increasingly critical in

organizational awareness, prediction, and decision making. Appli-

cations that require time series search and analysis include health-

care [8], surveillance [11], and motion and gesture recognition [16]
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(a) Sample motion data (b) Sensors

Figure 1: A samplemulti-variate time series, tracking 62 sen-
sors, created by body motion capture [1]

(Figure 1). When comparing two sequences or time series, exact

alignment is not required in most applications. Instead, whether

two sequences are to be treated as matching or not depends on

the amount of di�erence, quanti�ed through distance measures[7]

(see Section 1.1). Edit-distance measures quantify the minimum

number (or cost) of symbol insertions, deletions, and substitutions
needed to convert one sequence to the other [12]. Dynamic time
warping (DTW) distance [3, 6], used commonly when comparing

continuous sequences or time series (especially in scenarios where

the sequences carry similar underlying pa�erns, but are di�erent

from each other due to temporal deformations, such as shi�s and

stretches), is a related distance measure.

1.1 Related Work
Euclidean distance and, more generally Lp − norm measures, were

among the �rst used to determine the similarity between two time

series. Euclidean distance requires that the time series being com-

pared are of same temporal length and, since it assumes a strict

synchrony among time series, it is not suitable when two time

series can have di�erent speeds or are o�set in time [6]. Other

measures that require equal length and perfect synchrony across

time series include cosine and correlation similarity [14].

In the 1970s, Sakoe [13] and in the 1990s, Berndt [3] proposed

an edit distance like dynamic time warping (DTW) technique to

�nd an optimal alignment between two given (time-dependent)

sequences under certain restrictions. Intuitively, DTW considers

all possible warping paths that can warp (or transform) one series

into the other, and picks the warping path that has the lowest cost.

DTW has found wide acceptance, and the last two decades have

seen several innovations [4, 6]. For example, while the original

DTW is not metric (does not satisfy the triangular inequality), [4]

proposed an extended version of DTW that does satisfy the tri-

angular inequality. [10] proposed a SAX representation of input
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sequences, which divides them into �xed-sized “frames”, thus trans-

forming the sequences into a reduce space where distance can be

computed e�ciently.

An alternative approach to the above techniques is to extract

features from the given time series and use these features to com-

pute similarity/distance instead of the original series. [5] proposed

a feature-extraction algorithm that extracts minimal distinguishing

subsequences that can be used as features. [16] proposed to extract

and use SIFT-like robust multi-variate temporal features to deter-

mine similarity between multi-variate time series. In contrast, edit

distance [9] measures aim to determine the minimum sequence of

edit operations that are required to measure similarity.

1.2 Comparing Multi-Variate Time Series
Naive extensions of the uni-variate measures discussed above might

not always work, as we may need to take into account (a) asyn-

chrony among variates, (b) varying scales and importance of the

di�erent variates, as well as (c) dependency among the various

variates that constitute a multi-variate time series . For example,

nearby sensors in a sensor network may observe similar values,

or sensors located on a human limb may be constrained to move

together, except for some local variations. In this paper, we present,

discuss, and evaluate several approaches to computing distances

among multi-variate time series.

2 DISTANCE MEASURES FOR
MULTI-VARIATE TIME SERIES

In this section, we start by formally de�ning uni-variate and multi-

variate time series.

Definition 2.1 (Uni-Variate Time Series). A uni-variate time

series, T = (d1,d2, ...,dN ), is a �nite sequence of data values. Here,
N denotes the length of the time series; and di ∈ R.

Multi-variate time series extend the uni-variate time series de�ni-

tion above by encapsulating multiple uni-variate series:

Definition 2.2 (Multi-Variate Time Series). A multi-variate

time series, T, is an ordered set of equi-length time series; that record
di�erent observations (or variates):

T = [T1,T2, ...,Tv ].
Here, v > 1 is the number of variates for time series, T.

2.1 Metadata-Enriched Multi-Variate Series
Following [16], we de�ne metadata-enriched multi-variate time

seriesas follows:

Definition 2.3. (Metadata-Enriched Multi-Variate Time Series) A
metadata-enriched multi-variate time series, TR , is a multi-variate
time series annotated with a data structure, R, that encodes the rela-
tionships among the variates; i.e. TR = [T,R].

While in general the metadata R can be complex, here we assume

that R is encoded in the form of a relationship matrix:

Definition 2.4 (Relationship Matrix). A v ×v relationship

matrix, R, encodes the pairwise relationships among the variates; i.e.,

∀1≤i, j≤v R[i, j] = ρ(Ti ,Tj )

where ρ() is an application-speci�c function to determine the rela-
tionship between a given pair of variates.

Example 2.1 (Encoding Spatial Relationships). Let us consider a

set, S, of in-situ sensors distributed in a spatial area, and let us

assume that we can compute the spatial distance, ∆sp , between any

given pair of sensors. Under the assumption that two nearby sensors

are likely to observe more similar processes than sensors that are

far apart from each other, we can encode a spatial relationship

matrix, Rsp , as follows:

∀si ,sj ∈S Rsp [i, j] = max
sh,sk ∈S

(
∆sp (h,k)

)
− ∆sp (i, j).

Intuitively, the di�erence operation above converts distances to

proximities, such that the larger values in the relationship matrix

correspond to more-related sensor pairs.

2.2 Synchronized Distance Measures
Dynamic time warping (DTW)[3, 6] is a common technique for com-

paring sequences or time series by searching for optimal alignments,

described in terms of warp paths. Recently, various extensions of

DTW have been proposed for multi-dimensional time series [15].

�e most prevalent of these are the vectorized and independent ex-

tensions. In the vectorized approach, a multi-variate time series is

considered as a sequence of vectors, where the length of a vector is

equal to number of variates in the time series. �e DTW algorithm

is then applied using the distances among these vectors, instead

of di�erences in signal amplitude. In the independent approach,

however, each variate is treated independently from the others

and DTW is applied separately to each; �nally, these independent

distances are added to compute the overall distance between the

given pair of multi-variate time series.

2.2.1 Independent DTW. Given two sequences, X and Y, each

with v variates, the independent DTW measure is computed by

treating each variate separately from the others:

I DTW =
v∑
i=1

DTW (Xi ,Yi ).

2.2.2 Vectorized DTW. In contrast, vectorized DTW consid-

ers X and Y as sequences of vectors, where the length of a vec-

tor is equal to the number of variates in the time series; i.e,

X = (®x1, ®x2, . . . , ®xN ) and Y = (®y1, ®y2, . . . , ®yM ), such that each

®x∗ and ®y∗ is a v-dimensional vector. �e DTW algorithm is then

applied considering the di�erences among these vectors; i.e.,

V DTW = DTWv (X,Y),

2.2.3 SAX based DTW. SAX [10] transforms a sequence of

length n into a string of a length determined by the size of win-

dow w . At the same time, SAX can transform two sequences to

strings of equal length, thus allowing linear comparison between

them. A uni-variate time series, T = (d1,d2, ...,dN ), can be wri�en

as TS = 〈C1, ...,Cm〉 where m is the number of words extracted

using aggregation. Similar to the independent DTW, DTW measure

between two sequences in SAX representation, XS and YS, each

with v variates, can be computed as follows:

SAX DTW =
v∑
i=1

DTW (XSi ,YSi ).
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(c) Projecting time series onto orthogonal variates

Figure 2: Weight extraction andprojection of amulti-variate
time series onto an orthogonal variate basis using relation-
ship matrix R.

2.3 Metadata-Driven Distance Measures
In this section, we discuss two approaches to account for the con-

textual relationships among the variates:

– metadata-driven weighting, and

– orthogonal latent variates.

2.3.1 Metadata-Driven Weights. Given a relationship matrix

R → v ×v , representing the contextual relationship between the

variates, we can leverage eigen-decomposition to extract the pat-

terns encoded in R,

[U R , SR ,V R ] = eiдen(R),

where the c ×c diagonal matrix SR and theV ×c matrixU R
encode

the strengths of pa�ern and the participation of the variates to

these pa�erns.

Given this, we can calculate variate weights, ®wR , by combining

the pa�ern membership degrees of the variates encoded in U R

with the pa�ern strengths scores encoded in SR . In particular, we

consider both positive and negative weights:

®w+R = U R ∗ ®sR ,
®w−R = U R ∗ 1/®sR ,

where the vector ®sR = diaд(SR ) encodes the strengths of the

latent pa�erns in the relationship matrix R. Once these weights are

extracted, we can adapt uni-variate similarity and distance (such as

DTW) measures to account for metadata-driven weights; e.g.,

weiдhted DTW =
v∑
i=1

®w[i] × DTW (Xi ,Yi ).
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Figure 3: A sample gesture from the Kaggle data set and the
corresponding structural groupings of the body sensors [2]

2.3.2 Orthogonal Latent Variates. As discussed in Section 1.1,

a major di�culty with existing multi-variate distance/similarity

measures is that they assume either that (a) the di�erent variates

in the data are completely independent from each other, or that (b)

the variates move in perfectly synchronized lock-step fashion.

Here, we note that one way to leverage groupings of variates

is to map (or project) the given time series onto an alternative set

of latent, orthogonal variates. Intuitively, since each orthogonal

variate would correspond to a di�erent structural grouping of the

original variates, assuming that these groupings re�ect the way

temporal observations of the variates vary together, we expect

that the observations mapped on to these latent variates would be

independent from each other. We can achieve this goal by relying on

orthogonal variate bases obtained through eigen-decompositions

of the relationship matrix
1
. More speci�cally, given a relationship

matrix, R, we �rst obtain its eigen-decomposition as before:

[U R , SR , V R ] = eiдen(R).
However, instead of relying on U R

and SR to assign weights to the

existing variates, we leverage the c×v matrixV R
to help project the

two time series, X and Y, onto a set of orthogonal latent variates:

X† = V R X and Y† = V R Y.

�is process is visualized in Figure 2. �e resulting time series,

X† and Y†, can now be used as inputs to any independent or syn-

chronized multi-variate distance/similarity measure, as discussed

in Section 2.2. While evaluating the proposed approach, we will

consider orthogonal projection-based independent and vectorized

approaches.

3 EXPERIMENTAL EVALUATION
In this section, we evaluate the presented approaches on two human

action datasets, Mocap[1] and Kaggle[2] and assess their e�ective-

ness in similarity search. While both record human motion, the

Mocap and Kaggle data sets are very di�erent from each other: as

we see in Figure 1, the variates in the Mocap data all record varying

degrees of repeated motion; in contrast, as Figure 3 illustrates, the

motions in Kaggle show signi�cant degrees of variate localization

(with only a few sensors recording active motion during a gesture)

1
In this case, eigen-decompositions of the input time series are not useful, as individu-

ally decomposing the two time series would project them onto di�erent orthogonal

bases.



ICMR ’17, , June 6–9, 2017, Bucharest, Romania Garg et al.

Algorithms Top-5 % Accuracy Class Tightness

Original Data Space
V-DTW 87.83 1.62

V-SAX 67.83 1.38

I-DTW 95.43 1.91

I-SAX 71.74 1.49

MW-DTW(w+R ) 95.33 1.91

MW-DTW(w−R ) 95.87 1.93
MW-SAX(w+R ) 72.28 1.49

MW-SAX(w−R ) 71.52 1.48

Orthogonal Latent Space
V-DTW 72.07 1.43

V-SAX 71.41 1.41

I-DTW 77.72 1.57

I-SAX 65.98 1.26

MW-DTW(SR ) 69.46 1.56

MW-DTW(1/SR ) 81.74 1.92
MW-SAX(SR ) 56.20 1.23

MW-SAX(1/SR ) 63.80 1.27

Table 1: Percent retrieval accuracy & class tightness for Mo-
cap data set for DTW & SAX (window size =20) measures.

and do not include repeated pa�erns. �ese di�erences among the

motion data sets enable us to study the various algorithms within

di�erent contexts. As metadata, we use the sensors’ spatial rela-

tionship; for latent-space approaches, we preserve 100% energy

(variance). For this experiment, to generate SAX representations,

we use window size 20 and 2 for Mocap and Kaggle respectively.

3.1 Evaluation Criteria
To assess the e�ectiveness of the algorithms, we considered two

main criteria: retrieval accuracy and class tightness.

Retrieval Accuracy (ACC). To quantify retrieval accuracy

provided by a given distance function, ∆, we execute k-nearest

neighbor (k − NN ) queries (for varying k , excluding itself) and

measure accuracy as

ACC(k, ∆) = AVG
C∈Classes

AVG
si ∈C

(
#match(si , k, ∆, C)

k

)
,

Class Tightness (CT). Given a distance function, ∆, we consider

a set of classes tight if the following measure is proportionately

large:

CT (∆) = AVG
C∈Classes

avд inter dist (C, ∆)
avд intra dist (C, ∆) .

where,

avд inter dist (C, ∆) = AVG
si ∈C

(
AVG
sj <C

(
∆(si , sj )

) )
avд intra dist (C, ∆) = AVG

si ∈C

(
AVG

sj (,si )∈C

(
∆(si , sj )

))
.

3.2 Results
Mocap dataset: Table 1 presents the results. It can be seen that

metadata adds more discriminatory power to the distance measure,

which in turn leads to a be�er retrieval accuracy and class tightness

as compared to the naive extensions of both DTW and SAX. While

Algorithms Top-5 % Accuracy Class Tightness

Original Data Space
V-DTW 44.63 1.30

V-SAX 35.78 1.31

I-DTW 41.78 1.32

I-SAX 32.81 1.32

MW-DTW(w+R ) 41.49 1.35
MW-DTW(w−R ) 41.81 1.32

MW-SAX(w+R ) 22.44 1.34

MW-SAX(w−R ) 33.16 1.35
Orthogonal Latent Space

V-DTW 23.65 1.12

V-SAX 27.88 1.18

I-DTW 21.85 1.15

I-SAX 24.91 1.22

MW-DTW(SR ) 21.85 1.15

MW-DTW(1/SR ) 21.84 1.15

MW-SAX(SR ) 18.15 1.25
MW-SAX(1/SR ) 21.90 1.20

Table 2: Percent retrieval accuracy & class tightness for Kag-
gle data set for DTW & SAX (window size =2) measures.

latent space mappings overall result in reduced accuracy, we see

that metadata support again provides a signi�cant boost.

Kaggle dataset: Table 2 presents the results. Note that for this data

set, retrieval is more di�cult, and vectorized approaches, which

assume full synchrony, provide an overall be�er retrieval accuracy.

Yet, once again, metadata weighting helps improve the separation

between classes, both in original and latent spaces.

4 CONCLUSIONS AND FUTUREWORK
As seen in Section 3, overall we observe a positive impact from

the use of metadata, which describes contextual relationships, in

computing distances among multi-variate time series.

Naturally, the impact of the use of metadata depends on the type

of series we consider, the degree of inherent synchrony/asynchrony

amongst the variates in the data, and the quality of metadata rep-

resentation used to capture the relationships among the variates.

�erefore, signi�cant research needs to be done on automated mech-

anisms to characterize multi-variate data and extract informative

metadata. We also note that the degree of synchrony/asynchrony

may be di�erent for di�erent groupings of sensors; therefore, we

may also seek to identify and leverage sub-groupings of relatively

synchronous sensors to improve accuracy.

Another challenge is that, while here we assume that the meta-

data is common to all series, it is possible that in practice, each

individual series will have its own metadata (e.g., each user has

their own body shape), and the alignment of these metadata needs

to be considered while measuring the similarities and di�erences

among the corresponding multi-variate time series.

In this paper we disregarded (a) feature-based approaches to

multi-variate time series comparison, (b) use of distance measures

for searching for multi-variate motifs, (c) metadata-supported dy-

namic topic modeling and deep learning over multi-variate time

series, and (d) execution time issues and other performance opti-

mizations. �ese constitute our future work.
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