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ABSTRACT
◥

Curative therapy for metastatic cancers is equivalent to causing
extinction of a large, heterogeneous, and geographically dispersed
population. Although eradication of dinosaurs is a dramatic exam-
ple of extinction dynamics, similar application of massive eco-
evolutionary force in cancer treatment is typically limited by host
toxicity. Here, we investigate the evolutionary dynamics of
Anthropocene species extinctions as an alternative model for
curative cancer therapy. Human activities can produce extinc-
tions of large, diverse, and geographically distributed popula-
tions. The extinction of a species typically follows a pattern in
which initial demographic and ecological insults reduce the size
and heterogeneity of the population. The surviving individuals,
with decreased genetic diversity and often fragmented ecology,
are then vulnerable to small stochastic perturbations that further
reduce the population until extinction is inevitable. We hypoth-

esize large, diverse, and disseminated cancer populations can be
eradicated using similar evolutionary dynamics. Initial therapy is
applied to reduce population size and diversity and followed by
new treatments to exploit the eco-evolutionary vulnerability of
small and/or declining populations. Mathematical models and
computer simulations demonstrate initial reductive treatment
followed immediately by demographic and ecological perturba-
tions, similar to the empirically derived treatment of pediatric
acute lymphocytic leukemia, can consistently achieve curative
outcomes in nonpediatric cancers.

Significance: Anthropocene extinctions suggest a strategy for
eradicating metastatic cancers in which initial therapy, by reduc-
ing the size and diversity of the population, renders it vulnerable to
extinction by rapidly applied additional perturbations.

Introduction
The ideal outcome of cancer therapy is eradication of the malignant

population without significant harm to the patient. This is achieved in
localized cancers by surgical removal or focused therapy such as
radiation. A curative outcome becomes more difficult and much less
likely in a metastatic setting. The growth of tumors in multiple
locations requires systemic treatment. Walther and colleagues and (1)
and Korolev and colleagues (2) have noted the similarities between
eradicating a cancer and the extinction of natural populations. Here we
propose that the eradication of a disseminated cancer population is
analogous to “Anthropocene extinctions,” the intentional or uninten-
tional eradication of species due to human activities.

Prior theoretical (3–5), experimental (5, 6), and clinical studies (7)
have demonstrated how integrating evolutionary dynamics (Fig. 1)
into cancer therapy can prolong tumor control for incurablemetastatic
cancers. Here, we take these studies a step further. We propose
integrating the ecological and evolutionary dynamics of extinction
into treatment protocols with curative intent. Specifically, we focus on
metastatic cancers that initially show robust responses to therapy, yet
almost always recur and progress as the cancer cells evolve resistance
and ecologically recover.We hypothesize that the probability of cure in
these clinical settings may be increased with existing drugs using a

treatment strategy that integrates the eco-evolutionary dynamics of
anthropogenic extinctions observed in nature.

In general, cancer treatment research, influenced in many ways by
Ehrlich's magic bullet paradigm and the remarkable success of anti-
biotics in eliminating infectious diseases, has focused on drug devel-
opment. This approach has been highly successful. The continuous
emergence of new agents has generally increased overall survival in
patients with metastatic disease. However, despite the introduction of
many highly effective treatment agents, most common metastatic
cancers (e.g., breast, prostate, colon, and lung) remain fatal because
cancer cells have a remarkable capacity to evolve resistance strategies.

Thus, while searching for cancer magic bullets is certainly appro-
priate, it is possible that the size, phenotypic diversity, and ecological
heterogeneity of widely disseminated cancers may preclude consistent
eradication by the continuous application of a single drug or combi-
nation of drugs. However, disseminated cancers may yet be curable
with these same drugs. Here we hypothesize that the limitation of
cancer treatment in some clinical settings is not the efficacy of available
drugs, but rather the efficacy of current treatment tactics.

Most drugs used in cancer therapy are applied at MTDs until
progression (8). The intuitive appeal of this strategy has similarities
to the extinction of dinosaurs following the massive ecological and
evolutionary forces unleashed by a meteor impact at the Cretaceous-
Tertiary boundary (KT impact). While the application of overwhelm-
ing force to eradicate a target population may at times be highly
effective, it is also highly indiscriminate. The KT impact not only
eliminated the entire dinosaur clade it also drove 1 in 3 of all other
species to extinction. Furthermore, extinction events in the distant past
were likely more complex than is apparent in the fossil record. Thus,
we propose it is more useful to examine well-studied recent extinction
events.

Here, we examine cancer therapy in the context of well-studied
extinctions caused by humans during the Anthropocene era. Although
far less dramatic than mass extinctions, the subtle and complex
dynamics that produce the extinction of a single species may be

1Cancer Biology and Evolution Program, Tampa, Florida. 2Department of Radi-
ology, Moffitt Cancer Center, Tampa, Florida. 3Department of Theoretical and
Computational Ecology, IBED, University of Amsterdam, Amsterdam, the
Netherlands. 4Department of Interdisciplinary Cancer Management, Moffitt
Cancer Center, Tampa, Florida.

Corresponding Author: Robert A. Gatenby, Moffitt Cancer Center, 12902
Magnolia Dr., Tampa, FL 33612. Phone: 813-745-2843; Fax: 813-745-6070;
E-mail: Robert.Gatenby@Moffitt.org

Cancer Res 2020;80:613–23

doi: 10.1158/0008-5472.CAN-19-1941

�2019 American Association for Cancer Research.

AACRJournals.org | 613

on February 17, 2020. © 2020 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst November 26, 2019; DOI: 10.1158/0008-5472.CAN-19-1941 

http://crossmark.crossref.org/dialog/?doi=10.1158/0008-5472.CAN-19-1941&domain=pdf&date_stamp=2020-1-17
http://crossmark.crossref.org/dialog/?doi=10.1158/0008-5472.CAN-19-1941&domain=pdf&date_stamp=2020-1-17
http://cancerres.aacrjournals.org/


informative particularly when the species originally had a large, highly
diverse, and geographically dispersed population similar to a meta-
static cancer population.

A number of well-studied, unintended Anthropocene era extinc-
tions, such as the passenger pigeon (9) and heath hen (10), have been
closely investigated. In particular, the recent intentional anthropo-
genic extinction of goats on the Gal�apagos Islands provides a close
analogy to cancer therapy. Beginning in the 18th century, sailors
deposited domesticated animals, including goats, on the Gal�apagos
Islands to provide food for future visits. The feral goat population
remained stable until the late 20th century when it rapidly expanded to
approximately 140,000 to 250,000 individuals spread across the Isa-
bela, Santiago, and Pinta Islands causing significant environmental
damage and threatening native species. Using a grant from the Global
Environment Facility, an eradication effort commenced using sharp-
shooters riding trucks and helicopters. These tactics were highly
successful, eradicating about 90% of the feral goat population. How-
ever, small groups of survivors became uncatchable, perhaps alert to
the noise made by helicopters they learned to escape into the forests.
These “resistant” goats began to breed. Because the initial strategy was
no longer effective, the rangers deployed a new approach, the “Judas
goats.” These females were sterilized, coated with hormones, and wore
a radio-tracking device. When released, they attracted and mingled
with the small surviving groups allowing hunters to locate and kill
them finally eliminating the population in 2005.

The Gal�apagos goat extinction illustrates two-step dynamics
typically found in other observed extinction events including the
passenger pigeon and the heath hen. A population's slide to
extinction begins with an initial perturbation or series of perturba-
tions that greatly reduces the size, spatial distribution, and diversity
of an initially large heterogeneous population. In the case of the
Gal�apagos goats, the initial perturbation was hunting. However, this
“first strike” did not cause extinction because of “evolutionary
rescue.” That is, a population can survive and ultimately recover
from an abrupt and massive perturbation via high genetic, pheno-
typic or behavioral diversity. Large populations have the time and
diversity to allow for resistant variants that rescue the population
from extinction (11, 12). Furthermore, once evolutionary rescue has
produced a resistant population, continued application of the initial
perturbation is futile. However, extinction of the population
remains possible because the surviving population is small, frag-
mented, and lacks the numbers, genetic diversity and spatial
dispersion of the original population. Such a damaged population
has only limited capacity to withstand additional perturbations
especially those that differ from the first strike. For example,
continued hunting of the Gal�apagos goats by helicopter became
futile as the goats became fearful to the danger. But then, the
release of a small number of Judas goats was highly effective. Such
“Judas goats” would have been impractical and less effective when
the goat populations were still large and dispersed.

Figure 1.

IHC stains of two regions from a clin-
ical invasive ductal breast cancer. The
Ki67 stain identifies cells that are pro-
liferating, while the cleaved caspase-
3 (CC3) stain shows cell undergoing
apoptosis. These spatial variations
are governed by variations in the
environmental selection forces (note
associated difference in GLUT1 and
CAIX expression). This continuous
but variable birth and death rate per-
mits evolution and can result in both
tumor growth and tumor extinction.
Note that if the birth/death dynamics
remained unchanged, the tumor
population in the top panels would
become extinct, while the population
in the bottom panels would grow
rapidly. In small populations, stochas-
tic variations in birth and death rates
have a disproportionately large
population effect and can result in
extinction (adapted from Lloyd et al.;
ref. 36).
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An important concept in preventing Anthropocene extinctions is
the minimum viable population (MVP). The MVP estimates the
minimum number of individuals necessary to save a population
threatened with extinction. Small populations are extremely
vulnerable to stochastic demographic and environmental perturba-
tions. Below an MVP, extinction becomes highly probable (13).
These dynamics have been extensively investigated in conservation
studies (14) using population viability analysis (PVA; refs. 15, 16).
PVAs estimate the likelihood of extinction based on the time frame
and given some existing number of individuals. Although cancer
cells differ in important ways (e.g., they reproduce asexually so that
finding a mate is not limiting) from most threatened populations in
nature, many PVA principles can be applied to cancer treatment but
with the somewhat ironic goal of increasing the probability of
extinction.

Materials and Methods
Mathematical model and simulation

The ability to describe and predict tumor growth and decline is
essential for developing strategies to eradicate cancer cell populations.
The kinetics of tumor growth can change in different environments
and as a function of cancer cell population numbers and their
underlying population genetics. Hence, consideration of the kinetics
associated with both low and high cell population numbers is of
importance, because it is processes taking place at the interface of
these regimens that ultimately govern the observed patterns associated
tumor initiation, treatment response and tumor relapse, as well as
cancer evolutionary trajectories, which can change in response to shifts
in selection forces acting on the cancer population in different regimes.
Applying ecological and evolutionary principles at the stage where
there is a fast transition from large tumor sizes to small ones due to
chemotherapy, therefore, could help improve therapeutic strategies,
lowering the probability of relapse and promoting full tumor
eradication. Another aspect that is important to consider is sto-
chastic factors that determine extinction risk (i.e., the likelihood of
successfully eradicating a tumor and avoiding relapse; ref. 17). Of
these, there are three important factors for cancer treatment: (i)
demographic stochasticity (which arises from the probabilistic
nature of birth and death at the level of individual cells); (ii)
population heterogeneity (which is related to variation in vital rates
among individual cells); and (iii) the Allee or “aggregation” effects
(which are the benefits each cancer cells gains during therapy
because it is a member of a group; refs. 18–22). How and to what
extent each of these factors shape extinction risk will likely change
during the course of treatment. Thus, small stochastic fluctuations
in the birth and death rate that would cause no discernible change in
the original metastatic population may have catastrophic effects on
small isolated tumor populations following initial treatment. Each
isolated group of cells may randomly fall below its extinction
threshold, which acts as an “absorbing boundary.” Furthermore,
adding even small changes to this underlying demographic stochas-
ticity through administration of therapy further increases the
probability of extinction. Similarly, decreased cellular heterogeneity
and Allee protective effects in the surviving populations also
increase the potential effects of any given therapy.

Deterministic population model
The two aspects of tumor kinetics discussed above, that is, those

governing large tumor population dynamics and those governing
small ones, are addressed separately in most cancer models. We

therefore begin by defining a population level deterministic
model of tumor dynamics that incorporates both regimes. This
mean-field model is then used as a basis for developing a stochastic
individual-based model for studying the system. The model is based
on a simple ordinary differential equation describing birth death
processes at the population level, with NðtÞ representing the
number of cancer cells and gðtÞ the per capita growth rate of the
population:

dNðtÞ
dt

¼ g tð ÞN tð Þ ðAÞ

In the simplest scenario, the intrinsic tumor growth rate
is proportional to the number of cells present, and can be
captured by a single per capita constant representing the difference
between cells added by birth and those removed by death:

gðtÞ ¼ g ¼ l̂� m̂, where l̂ and m̂ are respectively mean per capita
cancer cell proliferation and death rates assumed to be independent
of population size. Hence, at intermediate tumor sizes cancer cell
numbers usually increase exponentially when g > 0. In contrast, at
low and high tumor cell densities, cell proliferation may be influ-
enced by other factors with growth rates deviating from exponen-
tial. As tumors become larger, growth rate usually slows due to
limitation of resources [e.g., from diminished blood flow (Fig. 1)].
In these large tumor regimes, the per capita growth rate can be

described as gðtÞ ¼ gð1� NðtÞ
K Þ, where K represents a carrying

capacity. Here, the closer the cancer population size is to K , the
slower the per capita growth rate. At the other extreme, when tumor
size becomes small, its growth rate can also slow but due to different
factors. Here, the per capita growth rate can be described as
gðtÞ ¼ gð1� Aþa

NðtÞþaÞ (19), where A is an “Allee” threshold, below

which populations decline, and a is a parameter affecting the shape
of the growth function. Because we are interested in the dynamics of
tumor size at the phase of transition between large tumors (before
initial treatment) and small tumors (which may or may not be
eradicated following treatment), we define the per capita growth
rate as a combination of these functions:

g tð Þ ¼ g|{z}
Maximum per

capita growth

� 1�NðtÞ
K

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Slowing down at

high densities

� 1� Aþ a
NðtÞ þ a

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Slowing down at

low densities

� D tð Þ|ffl{zffl}
Removal of cells

via treatment

ðBÞ

In the presence of chemotherapy, cancer cell mortality will increase
depending on drug concentration, C(t), and the mean susceptibility of
cancer cells to treatment, x̂, such that:

D tð Þ ¼ D C tð Þ; x̂ð Þ: ðCÞ

Stochastic individual-based mode
The mean field model is an idealized representation of the popu-

lation level tumor cell growth and decline. A comparable stochastic
version of the deterministic population model can be created by
assigning probabilities to the discrete events of birth and death (23).
This framework can then be used to accurately simulate demographic
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stochasticity in continuous time (23). The stochastic analogue of the
model considers the following 2 discrete events:

E1: Cell proliferation: division of a mother cell into two daughter

cells N !bðtÞ Nþ1

E2: Cell death N !dðtÞ N � 1

Where b(t) and d(t) are the per capita birth and death rates,
respectively. By defining gðtÞ ¼ bðtÞþ dðtÞ and relying on Eq. B, we
can obtain these as follows:

b tð Þ ¼ l� l� mð Þ NðtÞ
K þ Aþa

NðtÞþa � NðtÞ
K � Aþa

NðtÞþa

��
ðDÞ

d(t) ¼ m þ D

To explicitly incorporate demographic stochasticity as well as
evolutionary changes, we extend the traditional Gillespie algorithm
by tracking each individual cell from the moment of birth to the
moment of death. Hence, the two discrete events defined above are
considered per individual cell. In practice, this implies that intrinsic
rates are now considered on the individual level where probabilities of
birth, l, and death, m, are a function of an individual cell's trait value, x.

Cell variability
The tumor cell population is assumed to be phenotypically hetero-

geneous in terms of trait x. We assume that cancer cells with high x are
less sensitive to the primary chemotherapy drug (see Fig. 2A) at the
cost having lower proliferation rates (see Fig. 2B). This trade-off
represents the cost of producing, maintaining and using the molecular
machinery necessary for resistance (5, 24, 25). In all other aspects,
cancer cells are assumed to be phenotypically identical. As a lower
bound we assume that cancer cells with very low trait values of x
(<0.02) have diminished survival. Figure 2A shows the dependency of
a cell's death rate from treatment, D, on its individual sensitivity level,
xi, and the overall drug concentration at time t, CðtÞ. We assume
DðCðtÞ; xÞ ¼ maxð0;bðCðtÞ � xÞaÞ. Figure 2B shows the relationship
between a cell’s trait value (x) and the expected number of days for
proliferation (1=li). In the absence of drug pressure, we expect

subpopulations with higher proliferation rates to grow faster, and
in the large tumor regime where resources become limited and
competition increases, natural selection will lead the fast replicat-
ing cells to dominate and outcompete the slower replicating cells.
However, we assume that fast replicating cells are also more
sensitive to treatment due to a tradeoff, such that in the presence
of treatment, these fast replicating cells are at a disadvantage,
and slow replicating cells have an opportunity to reappear and
expand. In addition, we assume that during cell proliferation, two
new daughter cells are born replacing the mother cell. Each
daughter cell inherits the value of their maternal trait xmother with
a slight mutation. These new x values are randomly sampled
from a normal distribution with mean xmother and standard devi-
ation of 0.02.

Conceptually, our modeling approach follows the concept of dis-
tributed evolutionary games as defined by Cohen (26, 27). Specifically,
models structured with continuous traits that represent an abstract
level of resistance have been used to study different aspects of
population dynamics in cancer, such as the emergence of drug
resistance (28), the effect of different categories of drugs (cytotoxic
and cytostatic; ref. 29) on tumor populations, and the design of optimal
drug combinations (30).

Implementation of the Gillespie algorithm
We implemented the Gillespie's direct (23) method using the

following steps:

(i) Initialization of the system: define the full list of all possible
demographic events and their respective rates (see E1 and E2,
above); define the initial cell population size (N0) and the initial
distribution of trait x in the tumor population (see next section);
and define the end time of the simulation.

(ii) Iteration of a two-step process:

a. Determine when the next demographic even will occur. For
a given point, this updates the rates of all possible events
that can occur based on the current composition of the
cancer population and the state of therapy. The procedure

Figure 2.

The tumor cell population is assumed to be genetically and phenotypically heterogeneous in the level of expression of trait x (seeMaterials andMethods). Depicted in
A is the dependency of a cell's death rate due to treatment on the overall level of drug pressure (C) and the degree of resistance of the cell to drug treatment (x). This is
an “inverted” IC50 surface, defined asDðC; xÞ ¼ maxð0; bðC� xÞaÞ. For higher levels of resistance (higher values of trait x), death rate remains low even when drug
concentrations increase. For intermediate levels of drug concentration, cancer cells with low resistance are cleared at amuch faster rate, while those with high levels
of resistance remain protected. High resistance comes with a cost, as shown in B, where l ¼ lmax � xsðlmax � lminÞ.
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sums across all individual rates to obtain one total rate for
the occurrence of the next event. We then sample a random
number from a uniform distribution between 0 and 1 and
use it to find the timing of the next event: Dt ¼ �ln
(Random)/Total Rate.

b. Determine what demographic event will occur and for
which individual cell. We turn rates into probabilities by
dividing individual rates by the total sum of rates. We then
sample another random number from a uniform distribu-
tion between 0 and 1 and use the list of individual rates to
determine which of the events occurs next: Random <
(Cumulative list individual rates)/(Total Rate). We then
implement the event that took place, update the population
count (either N ! N þ 1 or N ! N � 1), and the new time
(t ! t þ Dt).

(iii)Once the new time is larger or equal to the end time of the

simulation, terminate and summarize the results.

Initial conditions
The initial distribution of trait x within the tumor population

was randomly sampled from a predefined steady state distribution,
that reflects a balance between natural birth-death-mutation processes
in large population sizes limited by a carrying capacity, where natural
selection favors faster proliferating cells. For a given set of parameters,
we obtained the predefined x distribution as follows. We began with a
small population of N0 ¼ 200 cancer cells, with randomly sampled
values of trait x drawn from a uniform distribution between x2[0,1].
We ran the simulation without treatment, allowing the population

of cells to grow. The population will approach and level off close to
carrying capacity. Selection for the trait that maximizes prolifera-
tion rate and mutation will in time result in a dynamic–equilibrium
distribution of trait values among the cancer cells. We ran the
simulation and at time intervals of 10 days observed the cumulative
probability distribution (CPD). The simulation for determining
initial conditions was stopped once the CPD reached its steady
state for the specific predefined parameter set. To ensure that the
CPD was reliable, we repeated this process 100 times for three
different initial population sizes (N ¼ 5,000, 10,000 and 25,000) and
found that for a given set of parameters, the resulting CPDs were
identical. This distribution of x's among cancer cells was then used
as the tumor's initial condition for the start of simulations with the
various therapy strategies.

Our motivation for constructing the initial conditions in this way
was 2-fold. First, we are interested in studying eco-evolutionary
tumor dynamics as they transition from large tumor regimes
dominated by selection for high proliferation under restricted
carrying capacity, to small tumor regimes dominated by a selection
pressure that is imposed through drug treatment. We therefore
begin our simulations with initial conditions that reflect expected
distributions of x in large tumors. Second, we are interested in
clearly elucidating the effects of different treatment protocols on
tumor dynamics in highly stochastic settings, which are likely
characteristic of small tumors.

Parameters
Intrinsic death rate: m̂ ¼ 0:1; proliferation: lmin ¼ 0.2, lmax ¼ 1,

c ¼ 0.25, K ¼ 10;000, A ¼ �3, a ¼ 100 (for results in Figs. 3–5)

Figure 3.

Effective initial treatment followed by maintenance therapy using the same drug. The histogram shows the phenotypic heterogeneity within the population before
treatment (left), at no evidence of disease (NED; middle), and after recurrence (right). The initial therapy is highly effective, eliminating 90% of the cancer cells and
rendering NED. Although the cancer cell population is small, the selection pressure during therapy eventually results in near universal resistance. Continued
administration of the drug is ineffective because of an evolutionary rescue and the resistant cancer population recovers and then progresses.
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and A ¼ 15, a ¼ 0 (for the results in Fig. 6). First drug treatment
and sensitivity: C ¼ 0:4; a ¼ 0:8; b ¼ 0:2. Second drug treat-
ment: one-time removal of 40% (for result in Fig. 4) and 20% (for
the results in Figs. 5 and 6) of the cells, respectively.

The simulation code is available upon request.

Results
The mathematical model shows heuristically why and how the

sequencing of two therapies can (i) preempt progression as a result of
evolving resistance to the first strike; (ii) can succeed by switching
therapies when tumor burden is declining and cancer cell populations
are most damaged; and (iii) induce what otherwise might be modest
additional mortality to drive the residual disease to below its MVP so
that extinction is more probable.

In the initial set of simulations (Figs. 3–5), both the tumor
burden and phenotypic heterogeneity are shown. In general, the
depth and duration of response to treatment is dependent on the
heterogeneity of the tumor populations (Figs. 3–5). There is,
however, some degree of self-selection since curative treatment can
only be applied after a successful initial treatment, which in turn
requires some limit on heterogeneity in the pre-treatment popula-
tion. Fortunately, an excellent initial response is seen in a wide
range of tumors and treatments so that the proposed strategy can be
applied in a variety of clinical settings.

In Fig. 3, the initial chemotherapy drug is administered at t ¼ 0.
The application of this drug favors higher trait values and does not
affect trait values higher than 0.4. The phenotypic distribution of
traits among cancer cells prior to therapy is shown in the lower left
box of Fig. 3. Note that the mean trait value is about 0.15, which in

the model represents fast replicating cells with a high level of drug
sensitivity. The drug therapy kills about 90% of the initial popu-
lation. This major collapse in population size can be viewed as a
decrease to below the detection threshold (i.e., the patient is
considered to have no evident disease, NED) creating a risk of
extinction. However, the initial population size was sufficiently
large and diverse to permit evolutionary rescue within a sufficiently
fast time frame. As the population declines, the fast-replicating but
drug-sensitive cells are removed, while the slower-replicating yet
more drug-resistant cells are no longer limited by strong compe-
tition. This “competitive release” allows survivors with trait values
closer to 0.4 to replicate more rapidly and evolutionarily explore
higher values of x. Ultimately, population heterogeneity begins
increasing again, which then becomes the basis for evolutionary
rescue of the tumor population. In this simulation, the treatment
protocol remains fixed and so a resistant population emerges and
eventually undergoes unconstrained proliferation. This progression
is inevitable due to the large and heterogeneous starting initial
population.

In Fig. 4, we assume that the patient is treated according to the
standard strategy of MTD until progression. Again, initial therapy
reduces the population of cancer cells to NED. Although no tumor
is visible, the simulation continues with MTD administration of the
initial drug consistent with the standard oncology practice of
“continuous application of drug at MTD until progression.” At the
point of visible and measurable recurrence, a treatment containing
one or more new agents is applied. This treatment is less effective
than the initial therapy, with a killing capacity of only 40%, and a
mortality effect that is independent of the cancer cell's trait values.
This second strike therapy was applied too late to prevent

Figure 4.

Initial therapy achieves a complete response and is continued at MTD until ameasurable recurrence is observed. However, waiting formeasurable tumor has allowed
the tumor population to increase in size and diversity. The second drug is less effective than the first-line treatment and reduces the cancer population by 40%. This
transiently reduces the population belowNED, but resistance rapidly emerges leading to progression. The histogram shows the phenotypic heterogeneity within the
population before treatment (left), just before the second strike (middle), and after recurrence (right).
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evolutionary rescue. This can also be seen in the middle histogram
showing the distribution of trait x at the time of the second strike.
Clearly, the population has shifted from being centered at low
values of x, to values around x ¼ 0.4, allowing resurgence of the
tumor population.

In Fig. 5, we simulated the identical initial therapy, but this time,
the second treatment occurred immediately when the tumor
became NED. Although current oncology practice discourages
treatment in which the effects of treatment cannot be measured,
application of the second therapy when the tumor was not visible
resulted in extinction. The histogram showing the distribution of
trait x at the time of the second strike clearly demonstrates
competitive release has not yet occurred, hence limiting the capacity
for evolutionary rescue of the tumor population.

To further investigate the dynamics of extinction, in Fig. 6A–E
we examined different time points along the tumor trajectory and
minimum requirements for the efficacy of the second strike. Here
we assumed that the second treatment only eliminates 20% of the
surviving cancer population (i.e., even less effective than in the
previous two examples). In Fig. 6B, we demonstrate a conventional
strategy in which the second and first treatments are simply added
together and administered simultaneously. Here, consistent with
clinical observations, time to progression is generally (but not
always) increased and, in a few cases, the tumor recovery is so
slow that it does not become clinically apparent during the sim-
ulation. However, in Fig. 6 we demonstrate that even a marginally
effective second strike (reducing the cancer population by only
20%) can drive the cancer population to extinction when admin-
istered within a “window of opportunity.” Although our original
hypothesis assumed that the optimal time to apply the second strike

for extinction was when the tumor size was at a nadir, we find that
extinction can be achieved over a broader time period. In
particular, Fig. 7A–C demonstrates that this window becomes
broader as Allee effects are enhanced. In practice, such enhance-
ments may be achieved, for example, by strategically applying
additional treatments that promote angiogenesis, increase the
immune response, or add systemic therapy that slightly increases
tumor cell death rate or decreases birth rate. In other words,
elimination of the tumor can be reached by targeting it in the
period when it becomes NED or even earlier, during the initial
period of decline following the first strike. Furthermore, when the
cancer population is at its nadir in size, the extinction strategy may
fail if, during the time it spent NED, the cells were able to adapt
to therapy, thanks to the competitive release allowing an increase in
the population's heterogeneity.

In summary, we find the pathways to cancer extinction are
governed by 3 interacting parameters: population size, population
diversity, and the relative strength of the Allee effect. In general,
consistent with the concept of the extinction vortex, a population in
decline will remain in that trajectory often with relatively small
applications of eco-evolutionary forces. Furthermore, our results
emphasize that perturbations typically have disproportionately
greater effects on small populations, a dynamic that can be exploited
to driver cancers to extinction.

Discussion
Ideally, metastatic cancers will be eradicated by “magic bullet”

agents that kill all cancer cells while sparing all normal ones. Currently
available drugs fall short of this goal and, given the size and diversity of

Figure 5.

Using the proposed extinction strategy, the second treatment is applied when the cancer population reaches no evidence of disease (NED) following first-line
treatment. Note that the tumor is NED and thus the efficacy of treatment is notmeasurable. However, because the population is small and homogeneous, the second
drug, although onlymarginally effective with elimination of 40% of the population, is nonetheless sufficient to drive the small homogeneous tumor to extinction. The
histogram shows the phenotypic heterogeneity within the population before treatment (left) and just before the second strike (right).
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cancer populations, developing one is probably not achievable in the
foreseeable future.Nevertheless, the evolutionary dynamics ofAnthro-
pocene extinctions suggest eradicating metastatic cancers may be
possible through a strategic integration of several therapies, each of
which, individually, cannot achieve a curative outcome and, in fact,
may only be mildly effective.

This potential curative strategy requires two or more steps guided
by eco-evolutionary principles. The first strike applies a therapy that
is effective in reducing the population even though prior clinical
experience has determined that it is rarely or never curative. The

second strike, following immediately after the cancer cell popula-
tion decline, exploits the unique properties of small populations. As
generally seen in background extinctions, an identical perturbation
may result in entirely different outcomes in small populations
compared to large groups of the same species (17). This is due to
the vulnerability of small populations to stochastic changes in birth
and death rates (17), decreased cellular heterogeneity, and Allee
effects that adversely affect small populations (19, 22).

Application of this strategy requires an initially effective first line
treatment or sequence of treatments that can significantly reduce

Figure 6.

Here, we explore treatment outcomes when the second strike is applied at different time points. To easily compare between these outcomes, we display multiple
overlapping simulations in the different subfigures. For each simulation, the second treatmentwas applied only once. Even though the second treatment reduced the
tumor population by only 20%, it proved to be effective when applied in the appropriate timeframe (the times of treatment are marked as red/blue dots). A, The
trajectory of relapse in the absence of a second strike. InB, we show 15 characteristic outcomes of whatwould happen if the first and second treatmentswere applied
simultaneously. In 4 cases, relapse was earlier than it could have been in the absence of a second strike, in 9 cases, relapse was later than it would have been, and in
2 cases, the tumor was eliminated. As shown in C, applying treatment in the time window after the tumor starts to decline due to treatment, but before reaching
the nadir, shows that all cases resulted in successful tumor elimination (blue dots indicate the time of application). D, Applying the second treatment in the time
period where the tumor was near its nadir led to delayed relapses that could last several years. Despite the failure to eliminate the tumor in this window, there are
opportunities to apply additional useful strikes (see Fig. 7). E, Demonstrates the ineffectiveness of a second treatment after the tumor is beyond its nadir and has
begun growing again.
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the cancer population ideally to NED, similar to standard first line
therapy in current oncologic practice. Importantly, first-line treat-
ment does not need to be a magic bullet that eradicates the entire
cancer population. Rather, by significantly reducing the size and
diversity of the cancer population, it renders it vulnerable to
extinction. Effective first strikes are reasonably common. For exam-
ple, androgen deprivation therapy for metastatic prostate cancer
reduces PSA to normal or undetectable in >90% of patients.
Similarly, initial chemotherapy for metastatic pediatric fusion-
positive rhabdomyosarcoma (31, 32) and for small cell lung cancer
renders most patients NED. However, clinical experience shows
that curative outcomes are rare as small surviving resistant clones
eventually repopulate the tumor.

Our proposed strategy differs from standard oncologic practice
because it changes treatment even as the tumor is responding well to
the first therapy. As demonstrated in Figs. 5 and 6, the standard
practice of continued application of the same agent(s) atMTD therapy
until tumor progression following an excellent initial response is
ineffective because the surviving cancer cells are resistant. Further-
more, during tumor growth from NED to measurable disease, the
cancer population increases in both size and diversity. Thus, appli-
cation of second line therapy is too late to produce extinction.

Thus, we hypothesized curative outcomesmay be achievable if, after
effective initial therapy, new treatments are applied immediately after
achievingNED. Figures 5 through 7 are consistent with the hypothesis
but also find the opportunity for extinction is broader than

Figure 7.

Here, we repeat the procedure carried out in Fig. 6, but increase the strength of the Allee effect on the population. Here, too, the figures showmultiple overlapping
simulations, and for each simulation, the second treatment was applied once. A, The trajectory of relapse in the absence of a second strike. B, The application of the
second strike up to, and including, the time period of nadir, showing that all cases resulted in successful tumor elimination (blue dots indicate the time of application).
In C, we see once again the ineffectiveness of a second strike after the tumor reached its minimum size and starts to grow again. The assumption of a stronger Allee
effect can be seen as a proxy for what could be expected if “second strikes” were strategically designed for enhancing the Allee effects in small populations. This
demonstrates that correct selection of second strike treatments can significantly widen the window of opportunity for successful tumor elimination.
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expected. In fact, consistent with the concept of the extinction
vortex, cancers that remain sufficiently large to be observable but
are in decline are also vulnerable to extinction from a second strike.
In contrast, as shown in Figs. 6 and 7, combining the first- and
second-strike agents at the initiation of therapy is ineffective.
However, if applied within an optimal window of opportunity
when the cancer population is small and in decline, simulations
found that addition of an even mildly effective second agent (killing
only 20% of the surviving cells) consistently resulted in extinction of
the cancer population.

Although extinction phase therapy is termed “Second Strike,” it is
notmeant to be a single therapy. Although a single second strategy was
effective in eradicating the Gal�apagos goats, other Anthropocene
extinction involving more numerous and geographically dispersed
populations (e.g., the heath hen, passenger pigeon, and Rocky Moun-
tain Locust) required multiple different perturbations. Second ther-
apies can be theoretically divided into habitat perturbations, demo-
graphic perturbations, predator introduction and foraging restraints.
Habitat disruption might be achievable with angiogenesis inhibitors.
Demographic perturbations are simply treatments that will increase
the death rate or decrease the birthrate of the surviving population.
Similarly, introduction of a predator in the form of immunotherapy
may be disproportionately effective in small populations. In addition,
we point out that cancer cells must “forage” in the sense that theymust
acquire nutrients from their environment. Itmay be possible to disrupt
cancer cell foraging when tumor cells remain in fragmented islands
after the first strike by using, for example, disruption of amino acid
transport or administration of racemic mixes of amino acids.

As an example of the Anthropocene extinction approach, consider
metastatic pediatric fusion positive rhabdomyosarcoma. Typically,
conventional chemotherapy produces NED in >90% of patients.
However, in nearly all cases, the tumor recurs within 6 to 9 months
and is typically resistant to the initial drugs. The most effective second
line agent is vinorelbine, which typically produces a partial response. A
planned trial will investigate introducing vinorelbine either in com-
bination with the known effective first strike chemotherapy (augment-
ed first strike) or as a second strike upon NED. Both interventions
should improve upon traditional therapy. However, our model pre-
dicts the superiority of the sequential first-strike, second-strike strategy
in which vinorelbine is applied when the tumor is small and in decline.
Evolutionary rescue to vinorelbine is higher when all drugs are given
initially and simultaneously in a large, diverse and growing tumor
population.

Importantly, there is a precedent for an Anthropocene extinction
approach in pediatric acute lymphoblastic leukemia. A highly suc-
cessful, empirically derived therapy applies immediate and then

intermediate “intensification” or “consolidation” therapy and then
“maintenance treatment” with different agents following the initial
“induction” therapy (33–35).

Finally, theoretical analysis suggests traditional criteria for cancer
drug approval based on reduction of tumor size when the disease
burden is high (i.e., as an initial therapy) may need to be altered. That
is, some treatments (as shown in the simulations and in the Gal�apagos
goat extinction analogy) that have limited efficacy in treating large
tumor burdens may be quite effective in smaller and more homoge-
neous populations following the evolutionary bottleneck produced by
the initial treatment. This invites a reevaluation and repurposing of
therapeutic agents that otherwise have not been very effective in phase
III trials.When applied strategically as a second-strike, theymay prove
decisive.
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