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When should animals share food? Game theory
applied to kleptoparasitic populations with
food sharing

Christoforos Hadjichrysanthou and Mark Broom
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Animals adopt varied foraging tactics in order to survive. Kleptoparasitism, where animals attempt to steal food already discov-
ered by others, is very common among animal species. In this situation, depending on the ecological conditions, challenged
animals might defend, share, or even retreat and leave their food to the challenger. A key determinant of the likely behavior is the
nature of the food itself. If food is discovered in divisible clumps, it can be divided between animals in a number of ways. This is
the general assumption in one type of game-theoretical model of food stealing, producer–scrounger models. Alternatively, food
items may be essentially indivisible, so that sharing is impossible and either the attacker or the defender must retain control of all
of the food. This is the assumption of the alternative game-theoretical models of kleptoparasitism. In this paper, using a game-
theoretic approach, we relax this assumption of indivisibility and introduce the possibility of limited food sharing behavior
between animals in kleptoparasitic populations. Considering the conditions under which food sharing is likely to be common, it
is shown that food sharing should occur in a wide range of ecological conditions. In particular, if food availability is limited, the
sharing process does not greatly reduce the short-term consumption rate of food and food defense has a high cost and/or a low
probability of success, then the use of the food sharing strategy is beneficial. Thus, the assumption of the indivisibility of food
items is an important component of previous models. Key words: ESS, evolutionary games, food stealing, strategy, social
foraging. [Behav Ecol]

INTRODUCTION

In many biological situations, animals may decide to share
their food in order to avoid injuries or energetic and time

costs of a possible conflict with an attacking foraging animal
or to obtain other immediate or delayed benefits such as mat-
ing opportunities and reciprocal altruism. Food sharing is com-
monly observed in animal populations in a wide range of
species, including social carnivores, insects, birds, cetaceans,
vampire bats, and primates (for reviews, see Feistner and
McGrew 1989; Stevens and Gilby 2004). In the literature, food
sharing is defined in many different ways and various theoret-
ical models have been developed to consider the different
biological situations where food sharing among animals oc-
curs. In the rest of this paper, we consider food sharing in
kleptoparasitic populations, populations where foraging ani-
mals steal food discovered by others. We define food sharing
to be the situation where the resource owner shows tolerance
and allows a competitor animal to consume a part of its food
although it has the ability to fight and try to keep all of its
food.

Kleptoparasitism is a common foraging strategy. Different
forms of kleptoparasitic behavior are observed in many species
of animals, for example, species of spiders (e.g., Coyl et al.
1991), birds (e.g., Brockman and Barnard 1979), snails (e.g.,

Iyengar 2002), lizards (e.g., Cooper and Perez-Mellado 2003),
fish (e.g., Hamilton and Dill 2003), primates (e.g., Janson
1985), carnivores (e.g., Carbone et al. 2005), and insects (e.g.,
Erlandsson 1988). This behavior of animals has been recently
well documented in a review paper (Iyengar 2008). The bi-
ological phenomenon of kleptoparasitism has attracted the
interest of many researchers from different areas. There are
a number of theoretical models focused on the kleptopara-
sitic behavior of animals using different mathematical meth-
ods, in particular evolutionary game theory. Two of the
fundamental game-theoretical models that consider klepto-
parasitic behavior are the producer–scrounger model, orig-
inally introduced by Barnard and Sibly (1981), and the
model of Broom and Ruxton (1998).

In its original form, the producer–scrounger game is a
frequency-dependent game where animals forage for food us-
ing 2 strategies. They either search for food (producer’s
strategy) or search for opportunities to kleptoparasitize
(scrounger’s strategy). The scrounger strategy does better
when scroungers are rare and worse when they are common.
When the frequency of the 2 strategies is such that the payoff
obtained by each strategy is the same, there is a stable equilib-
rium where the 2 strategies coexist. Many variations of this
model have followed in order to consider different factors that
might affect the foraging process (e.g., Caraco and Giraldeau
1991; Vickery et al. 1991; Dubois and Giraldeau 2005). One
key feature of this type of model is that food is usually dis-
covered in patches and can be easily split between foraging
animals. Hence, the concept of food sharing is central to
these models. In addition, in these models costs from ag-
gressive strategies are energetic rather than time costs. Thus,
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the different strategies do not directly affect the distribution
of feeding and foraging animals, and the main effect of
population density is to reduce the ‘‘finder’s share’’, the
portion of the food eaten by a finder before other foragers
discover it.

The model of Broom and Ruxton (1998), based on the
mechanistic model of Ruxton and Moody (1997), follows a dif-
ferent approach. Food comes in single indivisible items, which
must be consumed completely by an individual. Thus, food
can never be shared and challenging animals attempt to steal
the whole item from the owner (or not). In particular, in this
model, it is assumed that each of the animals in the popu-
lation either searches for food, has already acquired, and is
handling a food item prior to its consumption or fights with
another animal over a food item. When foraging animals
encounter an animal in the handling state, they can either
decide to attack in order to steal the prey or ignore the
handler animal and continue searching. Attacked animals
always defend their food and a fight takes place. The pop-
ulation density has a direct effect in this model as fights take
time; this loss of time is the cost to more aggressive strate-
gies, and thus, the more potential kleptoparasites there are,
the more time is wasted on fighting. The model predicts the
optimal strategy for a foraging animal (to attack or not to
attack) under varying food availability and fight time cost.
Broom et al. (2004) later reconstructed this model in a more
general framework by introducing different competitive
abilities between the attacker and the attacked animal and
allowing the attacked animal to surrender its food to the
attacker avoiding the time cost of a fight. A series of publi-
cations has appeared developing the original model of
Broom and Ruxton (1998) in a number of ways (e.g., Broom
and Ruxton 2003; Broom and Rychtar 2007, 2009, 2011;
Luther et al. 2007; Yates and Broom 2007; Broom et al.
2008). Crowe et al. (2009) provide a brief review on the
main theoretical work on kleptoparasitism prior to the
investigation of a stochastic model of kleptoparasitism in
finite populations. A comparison between some main mod-
els of kleptoparasitism following the 2 fundamental game-
theoretic approaches is discussed in Vahl (2006) (see
Chapter 6) and an alternative model is presented. There is
also a series of related mechanistic, but not game-theoretic,
models that investigate interference competition where for-
aging animals engage in aggressive interactions in order, for
example, to defend their territory, resulting in negative ef-
fects on their foraging efficiency (e.g., Beddington 1975;
Ruxton et al. 1992; van der Meer and Ens 1997; Vahl 2006;
van der Meer and Smallegange 2009; Smallegange and van
der Meer 2009).

There are many game-theoretical models that investigate
food sharing behavior as an alternative strategy of foraging ani-
mals in aggressive populations. The Dove strategy in the fa-
mous and widely used Hawk–Dove game (Maynard Smith
and Price 1973; Maynard Smith 1982) can be thought of as
an example of this nonaggressive behavior. However, the
Hawk–Dove game and a large number of variations of this
game (e.g., Sirot 2000; Dubois et al. 2003) are unable to show
why in many biological situations animals prefer to share
the acquired prey avoiding any contests. The nonaggressive
behavior of the Dove is shown to never be a pure evolution-
arily stable strategy (ESS), that is, a strategy that if adopted by
the population cannot be invaded by any alternative strategy,
and can only exist as a mixed ESS (with Hawks) in a propor-
tion depending on the value of the resource and the cost of a
potential contest. This is mainly due to the fact that the
Hawk–Dove game considers just a single contest between
the 2 strategies, the Hawk and the Dove strategy. Although
the reward for adopting the Hawk strategy against an animal

playing Hawk might be equal to or lower than the reward of
adopting the Dove strategy, in a contest between a Hawk and
a Dove the Hawk always receives the greater reward. How-
ever, in group foraging populations, animals usually have
repeated interactions over food items. In iterated Hawk–
Dove type games, it has been shown that if the attacked
animal can adopt the strategy of its opponent (e.g., play
a Retaliator type strategy [Maynard Smith and Price 1973;
Maynard Smith 1982] or a tit-for-tat type strategy [Axelrod
and Hamilton 1981]), then, under some circumstances, food
sharing without any aggressive interactions might be an
ESS (Dubois and Giraldeau 2003, 2007). A different game-
theoretical food sharing model is considered in Stevens and
Stephens (2002) in a situation where the owner of the food
might decide to share its food with a beggar due to the
fitness costs of harassment or interference (e.g., screams,
slapping of the ground, grabbing at the food). In this case,
it is shown that food sharing might be the optimal choice for
the food owner in situations where the fitness cost caused by
the beggar’s harassment, if the food is defended, exceeds the
fitness cost of sharing.

In this paper, we extend the model of kleptoparasitism pre-
sented in Broom et al. (2004) by assuming divisible food
items and allowing animals to share their prey with attacking
foraging animals. A foraging animal, encountering an ani-
mal handling a food item has the possibility to either attack
attempting to steal or share the food, or just ignore it and
continue foraging. On the other hand, an attacked animal,
which owns a food item, has the possibility to defend its food,
to share it, or to retreat leaving all the food to the attacking
animal. Through a game-theoretic approach, we examine
the optimal strategy for an animal under different ecological
circumstances.

THE MODEL

In a population of foragers of density P, each animal might
either be in the state of searching for food or the state where
it is handling a food item that it has acquired. Let S denote
the density of searchers and H the density of handlers. Each
handler consumes the food item and resumes searching in
a time drawn from an exponential distribution with mean th,
so equivalently following a Markov process at rate t21

h . There
is a constant density of food items f available, and searchers
cover an area mf per unit time whilst searching for food, so
that they find food at rate mf f. As well as finding food them-
selves when foraging, searchers can acquire food by trying to
steal it from a handler, and they can search an area mh per
unit time for handlers. Once a searcher comes upon a han-
dler, it attacks to either steal or share the food item with
probability p1 or ignores the handler with probability 1 2
p1 and continues searching for food. If the searcher attacks,
the handler might decide to resist and defend its food item.
This happens with probability, p3. In this case, the attacking
searcher and the defender engage in a fight. Let A and R
denote the density of attacking searchers and defenders, re-
spectively. The rate at which searchers encounter handlers
and engage in a fight (become attackers, A) is equal to p1 p3

mh H, whereas handlers are found by searchers and resist
a possible attack (become defenders, R) with rate p1 p3 mh
S. The fight lasts for a time drawn from an exponential dis-
tribution with mean ta/2. The attacker animal wins the fight
and becomes a handler with probability a and thus, with the
same probability, the defender loses its food and starts
searching again; so this happens at rate 2 a/ta. Otherwise,
the attacking searcher loses the fight and returns to the
searching state with rate 2 (1 2 a)/ta, and thus, with the
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same rate, the defender wins and continues handling its
food. Note that the winner of the fight might face other
subsequent challenges. In general, the circumstances un-
der which fights occur might give a high advantage to de-
fender or attacker (the attacker might have to catch the
defender in the air, but the defender may be hampered
by a heavy food item) and so a may be significantly greater
or less than 0.5.

So far, the model described is the same as the model in-
vestigated in Broom et al. (2004). In this paper, this model
is extended by assuming that attacked animals can share
a food item as follows. Assume that food items are divisible.
The attacked handler might decide to share its food with an
attacking searcher, with probability p2. In this case, search-
ers become sharers with rate p1 p2 mh H and the attacked
handlers with rate p1 p2 mh S. Let C be the density of sharers.
If the handler decides to share its food with the searcher,
both take a half of the food. It is assumed, for reasons of
simplicity, that both of the 2 sharers hold the food item and
feed simultaneously on it. This discourages other animals
from attempting to steal or share the food because this
would be a difficult, risky, and dangerous venture. So, food
sharing results in the mutual protection of the 2 sharers
from other predators. As a result, a sharer animal consumes
its portion of the food item without any interruptions. Shar-
ers eat their food unperturbed in a time drawn from an
exponential distribution with mean tc, or equivalently with
rate t21

c . Once the halves of the food item have been con-
sumed, sharers start foraging again. Throughout the paper,
it is assumed that 2 tc � th, that is, the decision of food sharing
might either have no time cost or has some cost but is never
beneficial with respect to the handling time. The attacked han-
dler, in order to avoid any time cost either from a fight or from
the sharing process, might decide neither to defend its food
item nor to share it but to leave it to the attacking animal

and return to the searching state. This happens with probability
1 2 p2 2 p3 for any challenge, and so occurs at rate p1 (1 2 p2 2
p3) mh H for each searcher and rate p1 (1 2 p2 2 p3) mh S for
each handler.

It should be noted that in the case where all the members of
the population do not challenge, the strategy used by an ani-
mal in the handling position may be thought irrelevant be-
cause none of the animals will ever be attacked and thus
each searcher finds a food item for itself in an average time
equal to 1/mf f and each handler consumes a discovered food
item in time th. However, we assume that occasionally a chal-
lenge occurs ‘‘by mistake’’ (this is a version of the classical
trembling hand argument of Selten 1975). Thus, a handler
animal of a population where animals never challenge, at
some point might be faced by a foraging animal, which at-
tempts to steal or share the food.

The model parameters and notation are summarized in
Table 1.

The differential equation based compartmental model that
describes the dynamic of the different groups of the popula-
tion in the above situation is the following:

dS

dt
¼ 1

th
H1

1

tc
C1

2

ta
ð12aÞA1

2

ta
aR2 mffS2 p1ðp2 1 p3ÞmhSH;

ð1Þ

dH

dt
¼ mffS1

2

ta
aA1

2

ta
ð12 aÞR2

1

th
H2 p1ðp2 1 p3ÞmhSH;

ð2Þ

dC

dt
¼ 2p1p2mhSH2

1

tc
C; ð3Þ

dA

dt
¼ p1p3mhSH2

2

ta
A; ð4Þ

dR

dt
¼ p1p3mhSH2

2

ta
R: ð5Þ

The above system of equations is a closed system where the
population density, P, remains constant, that is,

P ¼ S1H1C1A1R; ð6Þ

and one of the Equations (1–5) is thus redundant. Note that
because only 2 animals can be involved in a fight over a spe-
cific food item, the density of the attacking animals, A, is
always equal to that of the attacked animals, R. Hence,
mathematically, the variables A and R could be defined as
one variable, for example, F = A 1 R, and therefore,
the system of Equations (1–5) could be reduced to 4 equa-
tions. However, because the attacking and the attacked an-
imals might have different competitive abilities (a 6¼ 0.5),
we distinguish the 2 classes. This distinction is useful
in subsequent calculations when we consider the average
time to the consumption of a food item, since when
a 6¼ 0.5, the time needed for the animals in each of the
2 classes is different (see OPTIMAL STRATEGIES and
APPENDIX B).

We assume that the population rapidly converges to the equi-
librium state (for a proof of this assumption for the original
model of Broom and Ruxton 1998, see Luther and Broom
2004). In the equilibrium conditions, the densities of the dif-
ferent groups of the population, S, H, C, A, and R, are given by
(see APPENDIX A)

Table 1

The model notation

Population’s densities Meaning

P Density of the population
S, H, C, A, R Density of searchers, handlers, sharers,

attackers and defenders

Model parameters Meaning

mf f Rate at which foragers find undiscovered
food

mh H Rate at which foragers encounter handlers
th Expected time for a handler to consume a food

item if it is not attacked
tc Expected time for a sharer to consume the half

of a food item
ta/2 Expected duration of a fight
a The probability that the attacker wins the

fight

Strategies Meaning

p1 The probability that a searcher attacks
a handler when they meet

p2 The probability that an attacked handler shares
its food item

p3 The probability that an attacked handler
defends its food item
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ðS;H;C;A;RÞ ¼�
H

thdðH; p1; p2Þ
; H;

2p1p2tcmhH2

thdðH; p1; p2Þ
;
1

2

p1p3tamhH2

thdðH; p1; p2Þ
;
1

2

p1p3tamhH2

thdðH; p1; p2Þ

�
;

ð7Þ

where d (H, p1, p2) = mf f 2 p1 p2 mh H, that is, the difference
between the rate at which searchers discover food items and
the rate at which they become sharers. Note that this term is
clearly positive because every food item can be shared at most
once (and some are not shared), and it must be discovered
beforehand. By Equations 6 and 7, H is given by the biologi-
cally relevant solution of the quadratic equation

p1ðp2ð2tc 2 thÞ1 p3taÞmhH2 1
�
p1p2thmhP 1 thmff 1 1

�
H2 thmf fP ¼ 0;

ð8Þ

that is, the positive solution,

given that 2 p1 mh (p2 (2 tc 2 th) 1 p3 ta) . 0.

OPTIMAL STRATEGIES

We are interested in finding conditions under which animals
playing strategy (p1, p2, p3), that is, animals that attack han-
dlers with probability p1 and share or defend their food when
they are attacked with probability p2 and p3, respectively, have
greater fitness than animals playing any other strategy (q1, q2,
q3). We are ultimately looking for conditions when the overall
strategy (p1, p2, p3) is an ESS.

A strategy is considered to be optimal if it minimizes the av-
erage time needed to the consumption of a food item. This
minimization results in the maximizing of the long-term food
intake rate of an animal playing this strategy and thus its fitness.

Average time for a single animal to consume a food item

Assume that a mutant animal playing strategy (q1, q2, q3) in-
vades into a population playing strategy (p1, p2, p3).

If the mutant is in the searching state and encounters a han-
dler it has 2 options:

- It attacks in order to share or steal the food item with
probability q1. Note that once it attacks, what will happen
next depends on the handler’s strategy.
- It ignores the handler animal and continues searching for
a food item for itself with probability 1 2 q1.
The time needed for the mutant searcher, who has just come

upon a handler playing the population strategy, to consume
a food item, T �

SA, in the different scenarios is represented
schematically in the diagram shown in Figure 1. The notation

H ¼
2
�
p1p2thmhP 1 thmff1 1

�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p1p2thmhP 1 thmff 1 1

�2
1 4p1thmffmhP ðp2ð2tc 2 thÞ1 p3taÞ

q
2p1mhðp2ð2tc 2 thÞ1 p3taÞ

; ð9Þ

Figure 1
Schematic representation of all the possible events that might happen until the consumption of a food item by a mutant searcher playing strategy
(q1, q2, q3) who encounters a handler of a population playing strategy (p1, p2, p3). The transition probabilities and the expected times (in bold) to
move from one state to another are shown.

Table 2

Notation of the required times to the consumption of a food item
from the different foraging states

Notation Meaning

TSA The average time needed for a searcher animal who has just
encountered a handler to consume a food item

THA The average time needed for a handler animal who has just
encountered a searcher to consume a food item

TS The average time needed for an animal who has just
become a searcher to consume a food item

TH The average time needed for an animal who has just
become a handler to consume a food item

TA The average time needed for an attacker who has just
engaged in a fight to consume a food item

TR The average time needed for a defender who has just
engaged in a fight to consume a food item

TC The average time needed for a sharer to consume a food item
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of food consumption times from the different foraging states
is shown in Table 2.

If the mutant is in the handling state and is attacked by a
searcher animal playing the population strategy it has 3 options:

- It shares the food item with probability q2.
- It defends its food and a fight takes place with probability
q3.

- It leaves the food to the attacker and resumes searching
with probability 1 2 q2 2 q3.

The time required for the attacked mutant handler to con-
sume a food item, T �

HA, in the different scenarios is repre-
sented schematically in the diagram shown in Figure 2.

It is shown (see APPENDIX B) that T �
SA and T �

HA are given by
the solution of the following system of equations:

�
12

�
12 q1 1

q1p2

2
1 ð12aÞq1p3

�
mhH

mf f1 mhH

�
T �

SA ¼ q1p2tc 1 q1p3
ta
2

1

�
12 q1 1

q1p2

2
1 ð12 aÞq1p3

�
1

mf f 1 mhH

1

��
12

q1p2

2

�
mf f 1 q1ð12 p2 2 ð12aÞp3ÞmhH

�
th
�
11 mhST �

HA

�
ð11 thmhSÞ

�
mf f1 mhH

�;
ð10Þ

�
12

��
12 p1q2

2

�
mf f 1 ð12 p1 1 ð12 aÞp1q3ÞmhH

�
thmhS

ð11 thmhSÞ
�
mf f 1 mhH

�
�
T �

HA ¼ p1q2tc

1 p1q3
ta
2
1

��
12

p1q2

2

�
mf f1 ð12 p1 1 ð12aÞp1q3ÞmhH

�

3
th

ð11 thmhSÞ
�
mf f1 mhH

�1 p1

�
12

q2

2
2 ð12aÞq3

�
11 mhHT �

SA

mf f1 mhH
:

ð11Þ

The average time required to the consumption of a food item
for a single searcher animal who has just met a handler in a pop-
ulation where all animals play strategy (p1, p2, p3), TSA, and the
respective time of a single handler of the same population
who has just met a searcher, THA, can be found by solving
the system of Equations 10 and 11 substituting (p1, p2, p3)
for (q1, q2, q3).

In the case where none of the animals of the population
challenges any other animal, that is, p1 = q1 = 0, but a challenge
occasionally occurs by mistake, the average time needed for
the attacked handler animal to consume a food item if it

adopts a different strategy from the population, (0, q2, q3),
is given by (see APPENDIX B)

T �
HA ¼ q2

�
tc 2

1

2

�
1

mff
1 th

��
1 q3

�
ta
2
2 ð12 aÞ 1

mff

�
1

1

mff
1 th:

ð12Þ

If a mutant animal can invade a population then its strategy
(q1, q2, q3) is a better strategy than that of the population (p1,
p2, p3) at least at 1 of the 2 decision points, when a searcher
and potentially making a challenge or when receiving a chal-
lenge as a handler. A mutant that follows a different strategy
from that of the population at just one decision point and the
strategy that is followed is better than that of the population
can obviously invade. When considering whether a particular
strategy is an ESS or not, it is sufficient to investigate invasion
by mutants, which differ in strategy at 1 of the 2 decision
points only. This is because if a mutant that differs in strategy
at both of the decision points can invade, it must have a supe-
rior strategy at at least one of the decision points, and so an
animal that shares the same strategy as the mutant at this
decision point and the same strategy as the population at
the other could also invade.

A mutant that uses a strategy different from that of the pop-
ulation at just the searching state is able to invade if T �

SA � TSA,
that is, if the decision that it will make at the point when it will
meet a handler, when searching for food, will lead to at least
as small a time until the consumption of a food item. Simi-
larly, a mutant that plays differently from the population just
at the handling state is considered to be able to invade if the
decision it will make in an encounter with a searcher, when
handling a food item, will not lengthen the time to the con-
sumption of a food item, that is, if T �

HA � THA. Note that it is
possible that under certain parameters T �

SA is independent of
q1 and all values 0 � q1 � 1 give identical times. Similarly, T �

HA
might be independent of q2 and q3. In these circumstances, in
such asymmetric games, the population can still be invaded by
genetic drift.

APPENDIX C investigates the possible existence of mixed
strategy ESSs. In some cases, it is proved that at least for non-
generic parameter sets, there is no mixed strategy ESS. In
other cases, it is not proved but extensive numerical investi-
gation yields results consistent with no mixed strategy ESS.

Figure 2
Schematic representation of all the possible events that might happen until the consumption of a food item by a mutant handler playing strategy
(q1, q2, q3) who encounters a searcher of a population playing strategy (p1, p2, p3). The transition probabilities and the expected times (in bold) to
move from one state to another are shown.
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Our working assumption from these results is that there are
no mixed strategy ESSs. Thus, if the population plays a non-
pure strategy (p1, p2, p3), for an invading animal there will be
a pure strategy that will do at least as well as playing the
population strategy, and so (p1, p2, p3) could not be an ESS
because this pure strategy would invade the population.
Hence, we need to consider only 2 strategies for a foraging
animal (always or never attempt to steal or share the prey of
the other animal when the opportunities arise) and 3 strate-
gic choices for an attacked animal (always share the food,
always defend the food, or always surrender it to the attack-
ing animal) as the components of the potential optimal strat-
egy in any given population. Therefore, there are 6 possible
pure strategies that an animal can use and need to be
considered:

- Strategy (0,0,0) (Dove, D): the animal never challenges han-
dlers and always retreats leaving the food to a challenger.

- Strategy (0,1,0) (Nonattacking Sharer, NAS): the animal
never challenges handlers and always shares its food when
it is challenged.

- Strategy (0,0,1) (Retaliator, R): the animal never challenges
handlers but always resists when it is challenged.

- Strategy (1,0,0) (Marauder, M): the animal challenges han-
dlers at every opportunity but always retreats leaving the
food to a challenger.

- Strategy (1,1,0) (Attacking Sharer, AS): the animal chal-
lenges handlers at every opportunity and always shares the
food when it is challenged.

- Strategy (1,0,1) (Hawk, H): the animal challenges handlers
at every opportunity and always resists any challenges.

The optimal strategy for an animal in the searching state

Consider a population playing strategy (p1, p2, p3) that is po-
tentially invaded by a mutant animal playing a different strat-
egy (q1, q2, q3). For reasons explained in the previous section,
in order to study whether the mutant can invade because it
uses a better strategy at the searching state, we assume that
the strategy which is used by all the animals when they are
in the handling state is the same, that is, p2 = q2 and p3 = q3. We
consider the strategy used by a searcher animal of the popu-
lation when coming across a handler, p1, to be advantageous
over a mutant strategy, q1 (and thus the population cannot be
invaded by the mutant), if the average time required for the
searcher playing the population strategy to gain and consume
a food item, TSA, is less than that required for the mutant
searcher, T �

SA. Using the Equations 10, 11, and (7–9), we find
all the necessary conditions under which a mutant playing
strategy q1 2 f0; 1 : q1 6¼ p1g cannot invade a population play-
ing strategy p1 2 f0; 1 : p1 6¼ q1g for the cases where p2 = q2 =
0 and p3 = q3 = 1, p2 = q2 = 1 and p3 = q3 = 0, or p2 = q2 =
0 and p3 = q3 = 0. These are summarized in Table 3 (conditions
(C.3), (C.6), (C.9), (C.10), (C.13), and (C.16)).

The optimal strategy for an animal in the handling state

In the handling position, an animal can use 3 strategies when it
is challenged. It shares the food with the challenger, it defends
its food, or it retreats leaving the food to the attacking animal,
and depending on the ecological conditions, it obtains the high-
est benefit when it always takes one of these 3 actions. As before,
assume that a population already at equilibrium conditions is
invaded by a mutant, which now uses a different strategy as a han-
dler but the same strategy as a searcher.

Optimal strategies in an aggressive population
Assume that all the members of the population behave aggres-
sively when encountering a handler animal, that is, p1 = q1 = 1. T
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We consider the strategy of an attacked handler of the pop-
ulation to be advantageous over the strategy used by an at-
tacked handler mutant (and thus the mutant cannot invade)
if the average time required for the first to consume a food
item, THA, is less than that required for the second, T �

HA (in
this case, this is equivalent to the comparison of TSA with T �

SA
because the times needed for animals which always challenge,
that is, when p1 = q1 = 1, to acquire a food item and be dis-
covered by a foraging animal are identical, independently of
the strategies they use as handlers). Using again Equations 10,
11, and (7–9), we find the necessary conditions under which a
mutant in this scenario cannot invade a population playing
a different strategy at the handling state. These conditions are
presented in Table 3 (conditions (C.11), (C.12), (C.14),
(C.15), (C.17), and (C.18)).

Optimal strategies in a nonaggressive population
In the case where all the members of the population do
not challenge, that is, p1 = q1 = 0, an animal of the population
playing (0, p2, p3) does better than a mutant playing (0, q2, q3),
and thus, the population cannot be invaded by this mutant,
if THA,T �

HA, where by Equation 12 (THA in this case is similarly
given by Equation 12 substituting p2 and p3 for q2 and q3, re-
spectively) we obtain the condition

ðq2 2 p2Þ
�
tc 2

1

2

�
1

mff
1 th

��
1 ðq3 2 p3Þ

�
ta
2
2 ð12 aÞ 1

mff

�
. 0:

ð13Þ

The conditions under which a mutant playing strategy (0, q2,
q3) is unable to invade a population playing strategy (0, p2, p3)
are summarized in Table 3 (conditions (C.1), (C.2), (C.4),
(C.5), (C.7), and (C.8)).

EVOLUTIONARILY STABLE STRATEGIES

Table 3 shows all the appropriate conditions under which
a population playing strategy (p1, p2, p3) cannot be invaded
by a mutant playing a different strategy at 1 of the 2 decision
points, (q1, q2, q3), for all the possible cases where all animals
play a pure strategy.

According to the results shown in Table 3, strategies (0,0,0)
and (0,1,0) can never resist all of the possible invading strat-
egies, and there are thus 4 possible ESSs:

- Strategy (0,0,1) is an ESS if the conditions (C.7), (C.8),
and (C.9) are satisfied.

- Strategy (1,0,0) is an ESS if the conditions (C.11) and
(C.12) are satisfied.

- Strategy (1,1,0) is an ESS if the conditions (C.13), (C.14),
and (C.15) are satisfied.

- Strategy (1,0,1) is an ESS if the conditions (C.16), (C.17),
and (C.18) are satisfied.

Figure 3 shows the regions in parameter space in which
each of the 4 strategies, Retaliator, Marauder, Attacking
Sharer, and Hawk, is an ESS, for specific parameter values as
the duration of the contest, ta/2, and the handling time of
a sharer, tc, vary. Figure 4 shows how these regions vary as the
density of the population, P, and the rate at which foragers
find undiscovered food, mf f, vary.

Obviously, these regions in the ta/2, tc plane in Figure 3 and
P, mf f plane in Figure 4 will vary, depending on the other
parameter values. However, some general conclusions can
be extracted. Figures 3 and 4 suggest that between the regions
where 2 strategies are unique ESSs, there can be a region
where the 2 strategies are simultaneous ESSs and among the
regions of 3 pairs of ESSs configured by 3 strategies, there
might be a region where the 3 strategies might coexist as ESSs.
This excludes the possibility of the Retaliator and the Hawk
strategies being simultaneous ESSs because this can never
happen due to the contradiction of the conditions (C.9)
and (C.16) (see Table 3). This gives 11 distinct regions as
summarized in Figures 3 and 4. It appears that every set of
parameters yields one or more pure ESSs. Numerical exam-
ples on a wide range of parameter values indicate that there
is no parameter set where this is not the case, that is, that
there are not any mixtures of strategies or cases where there
are no ESSs. Although we do not believe that there will be
any parameter set where there will be such a polymorphic
mixture or no ESS (in similar models such cases do not
occur, and for an argument that actual mixed strategy ESSs
are not possible, see APPENDIX C), we cannot definitively
rule out this possibility.

Figure 3
Graphs showing examples of the region where each of the 4 possible ESSs (Retaliator [R], Marauder [M], Attacking Sharer [AS], and Hawk [H])
is an ESS as the duration of the content, ta/2, and the handling time of a sharer, tc, vary. In each region, a single letter ‘‘X’’ indicates that the
strategy X is the unique ESS, ‘‘X, Y’’ indicates that the strategies X and Y are simultaneous ESSs, and ‘‘X, Y, Z’’ that the 3 strategies X, Y and Z are
simultaneous ESSs. (a) th = 3, mf f = 0.5, mh = 1.5, a = 0.7, P = 1; (b) th = 3, mf f = 1, mh = 2, a = 0.2, P = 1.
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PREDICTIONS OF THE MODEL

In the case where neither the members of the population nor
any mutant share the food, that is, in the case where p2 = q2 = 0,
all the above results agree with the results obtained in pre-
vious work (Broom et al. 2004). Hence, here, we concentrate
on the cases where the members of the population or a mutant
animal or both, always share their food when they are at-
tacked, that is, cases where either p2 or q2 or both are equal
to 1. This provides both new potential ESSs and also new
mutant strategies to invade other strategies, so that strategies
that were ESSs in Broom et al. (2004) will no longer be in
some cases.

In a nonattacking population, a sharer does better than
a Dove when they are attacked if the average time needed
for a sharer to consume a whole food item (tc 1 ((1/mf f) 1
th)/2) is less than the average time needed to find an undis-
covered food item (1/mf f) and consume it (th) (equivalently
in this case, if the time the sharer needs to consume the half
of the food item (tc) is on average less than half of the time
needed to find and consume a whole food item (((1/mf f) 1
th)/2)). On the other hand, an Attacking Sharer mutant does
better than a member of a population of Nonattacking Shar-
ers if tc � ((1/mf f) 1 th)/2 as well. Hence, as we see in Table 3,
condition (C.4) contradicts condition (C.6) and thus a Non-
attacking Sharer is never an ESS. The food sharing strategy
can be an ESS only if the sharer challenges a handler at every
opportunity when it is in the searching state. A population of
Attacking Sharers can potentially be invaded by Nonattacking
Sharers, Marauders, and Hawks. The conditions under which
a Nonattacking Sharer and a Marauder can invade a popula-
tion of Attacking Sharers are the same. This occurs because in
such a population, a Marauder can invade if it is better for any
handler to give up a food item rather than share (so being
a searcher is better than sharing a food item) and a Nonattack-
ing Sharer can invade if it is better not to challenge for a food
item that will be shared (so again searching is better than
sharing). Increasing the rate at which foragers find food, mf f,
increases the parameter range where Nonattacking Sharers
and Marauders invade the population of Attacking Sharers.
Depending on the values of the other parameters, the in-

crease of mf f might favor the invasion of Hawks as well (usually
when food is difficult to discover). Hence, increasing mf f de-
creases the range of the parameter values in which the Attack-
ing Sharer strategy is an ESS (e.g., see Figure 4). A similar
situation appears by decreasing the area in which foragers
search for handling sharers per unit time, mh. As it is observed
in the conditions (C.13)–(C.15) and Figure 4, the decrease of
the density of the population, P, might also create unpropi-
tious circumstances for food sharing. For a given set of
parameter values for which the Attacking Sharer strategy is
an ESS, increasing the time cost of the sharing process, which
results in the increase of tc, the area where the Attacking
Sharer strategy is an ESS reduces, as one would expect.
Depending on the other ecological conditions, this strategy
might coexist as an ESS with either one of the other possible
ESSs (Retaliator, Marauder, or Hawk) or 2 of them (Retaliator
and Marauder or Marauder and Hawk). At very high levels of
tc such that the time spent in sharing would be better spent in
searching for another food item or in defending the food
item, Attacking Sharer cannot be an ESS. In this case, the
predictions of the model approach those of the model of
Broom et al. (2004), where sharing was not possible (e.g.,
see Figure 3). In conditions where the duration of aggressive
interactions is high, the defending strategy is less profitable,
and thus, the avoidance of any aggressive interaction is
favored. Hence, under these circumstances, it is observed that
animals should decide either to surrender their food (use the
Marauder strategy) or to share it (use the Attacking Sharer
strategy) when they are challenged, even if they have a high
probability of defending their food successfully. Therefore, at
high fight durations, each of Marauder and Attacking Sharer
strategies might be the unique ESS or both might be ESSs
simultaneously (e.g., see Figure 3).

A special case

As a special case, we consider the case where 2 tc = th, that is,
where sharing does not reduce the speed of food consump-
tion. The results obtained in this case are shown in Table 4. It
is observed that, as well as the Dove and Nonattacking Sharer

Figure 4
Graphs showing examples of the region where each of the 4 possible ESSs (Retaliator [R], Marauder [M], Attacking Sharer [AS], and Hawk [H])
is an ESS as the density of the population, P, and the rate at which foragers find undiscovered food, mf f, vary. In each region, a single letter ‘‘X’’
indicates that the strategy X is the unique ESS, ‘‘X, Y’’ indicates that the strategies X and Y are simultaneous ESSs, and ‘‘X, Y, Z’’ that the 3
strategies X, Y and Z are simultaneous ESSs. (a) ta/2 = 0.5, th = 3, tc = 4, mh = 1.5, a = 0.7; (b) ta/2 = 0.5, th = 3, tc = 2, mh = 2, a = 0.2.
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strategies which as we have seen in the previous section are
never ESSs, in this case, the Marauder strategy is also never an
ESS because it can always be invaded by an Attacking Sharer
animal. The Attacking Sharer strategy can only be invaded by
the Hawk strategy. Moreover, this can happen just in the few
cases where the chance of a successful defense is relatively
high, that is, the probability a is relatively small, and the time
spent in a contest, ta/2, is small. For a � 0.5, the conditions
(C.7) and (C.9) indicate that the Retaliator strategy can never
be an ESS. In this case, the condition (C.18) also indicates
that an Attacking Sharer can always invade a population play-
ing Hawk, and thus, the Hawk strategy can never be an ESS as
well. Hence, at least for a � 0.5, Attacking Sharer is the only
ESS no matter what the other parameter values are. The Hawk
strategy is an ESS mainly when ta/2 and a are small. As ta/2
and/or a increase, depending on the other parameter values,
there might be a range where the pure Hawk ESS coexists with
the pure Attacking Sharer ESS. When the defender is likely to
succeed, that is, a is small, defense of the food item might be
the favored strategy even if the fight time is relatively long,
especially in cases where available food is scarce. Hence, there
is a range where either pure Retaliator is the only ESS or the
pure Retaliator ESS coexists with the pure Attacking Sharer
ESS. Although such ecological conditions favor a handler an-
imal defending its food in a fight, in an Attacking Sharer
population the subsequent potential attacks that a defender
faces make the defending strategy less attractive. For similar
reasons, in a population that is using the Attacking Sharer
ESS, every searcher should attempt to share. Now, in a popu-
lation using the Retaliator ESS, defending the food is a more
attractive strategy than sharing it because a successful defense
is likely, and animals in the population do not attack. On the
other hand, attacking a handler and engaging in a fight in
conditions where aggressive interactions favor the attacked
handler is not a good strategy and thus attacking strategies
cannot invade.

Figure 5 shows a region with all the possible ESSs in this
specific case, as the probability a of the challenger winning
and the duration of the content, ta/2, vary.T
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Figure 5
A graph showing an example of the region where each of the 3
possible ESSs (Retaliator [R], Attacking Sharer [AS], and Hawk [H])
can occur in the special case where 2 tc = th, as the probability a of the
challenger winning and the duration of the content, ta/2, vary. In
each region, a single letter ‘‘X’’ indicates that the strategy X is the
unique ESS, ‘‘X, Y’’ indicates that the strategies X and Y are
simultaneous ESSs, and ‘‘X, Y, Z’’ that the 3 strategies X, Y and Z are
simultaneous ESSs. 2 tc = th = 3, mf f = 0.5, mh = 1.5, P = 1.
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DISCUSSION

Food sharing is a very common tactic adopted by a broad group
of animal species for their survival. Using a game-theoretic ap-
proach, the present model investigates the ecological circum-
stances under which animals should share their food when
they are challenged by other foraging animals. We have ex-
tended the game-theoretical model of Broom et al. (2004)
by allowing animals to share their food. Hence, animals in
the model of the present paper can choose among 2 addi-
tional strategies: either to attempt to share or steal the food
from a handler when foraging and share their food when they
are challenged by a forager, or to ignore any opportunities to
share or steal the food of other animals when foraging but
share when another animal attacks. This model is likely to
be an improvement if caught food items are at least partly
divisible, for instance fruit species (e.g., White 1994), as op-
posed to, for example, a nut or a fish (e.g., Iyengar 2008) that
are hard to divide, in which case, the original modeling system
will be more appropriate. At the opposite extreme, in situa-
tions where food items come in patches, for instance, seed
patches (e.g., Barnard and Sibly 1981), which are easily
divisible, then the producer–scrounger type models (e.g.,
Dubois and Giraldeau 2003, 2005, 2007; Dubois et al. 2003)
could be appropriate models.

Considering the time needed for a food item to be acquired
and consumed, the model predicts that there is a wide range of
ecological conditions in which attempting to share or steal the
food at every opportunity and sharing the food when attacked
is the optimal strategy that should be used by animals. The non-
aggressive strategy where animals do not challenge other ani-
mals but share their food when challenged can never be an ESS
because depending on the ecological parameters, this strategy
is always invaded either by the Dove or by the Attacking Sharer
strategy. This adds one possible ESS to the model of Broom
et al. (2004). Investigation of the model suggests that under
any ecological parameters, there is always at least one ESS that
an animal can use. Every 2 ESSs can occur as ESSs simulta-
neously, apart from the Retaliator and the Hawk strategy
where it is shown that they can never be ESSs simultaneously.
It is also possible that under some conditions there are 3
simultaneous ESSs (Retaliator, Marauder, and Attacking
Sharer or Marauder, Attacking Sharer, and Hawk).

Different ecological factors might influence the strategic
choice of food sharing. Food availability is one of the crucial
factors. In conditions of limited food availability, the use of
the Attacking Sharer strategy is enhanced, whereas at high
food densities, food sharing becomes a less profitable strategy.
A high time cost of food defense, a small probability of a suc-
cessful food defense, a high rate at which searchers encounter
handlers, a high population density, and a low time cost of food
sharing are also conditions which favor animals sharing their
food. In the special case where food sharing has no additional
time cost, foraging animals should almost always attempt to
share food with a handler, and handlers should almost always
share their food. Defending the food might be the optimal
strategy for the owner, especially when food is difficult to be
discovered, and the success of this is likely. Moreover, attacking
at every opportunity and defending when attacked is an ESS in
just a few cases, where the time cost of the defense is small, but
never attacking and always defending might be an ESS even if
the defense will result in a high time cost. Attacking and always
retreating when attacked never occurs in this case because shar-
ing is always a better strategy.

Food sharing is a complicated mechanism. Different animal
species share their food for different reasons and under differ-
ent ecological and biological conditions. In many situations,
food sharing is a voluntary process where animals choose to

share their food without any kind of menace from other for-
aging animals. This process might result in immediate benefits
for animals, for example, the creation of cooperation for the
increase of foraging success or predation avoidance, or the in-
crease of mating opportunities (see Stevens and Gilby 2004). It
is also often the case that sharing occurs between relatives or
between animals with a social interaction, even if those animals
are not relatives, e.g., between roost mates (Wilkinson 1990). In
such cases, food sharing might not be immediately beneficial
but result in long-term benefits such as future reciprocal shar-
ing, that is, altruism (see Stevens and Gilby 2004). In the pres-
ent model, food sharing is considered to be the process where
a food owner shows tolerance to an attacking foraging animal
and shares its food with it, although it would be better for the
owner not to be discovered by any other animal. This animal
behavior might occur, for example, in cases where a beggar
challenges a food owner, a situation which is observed in mon-
key and chimpanzee populations (for examples of this behav-
ior, see Stevens and Gilby 2004). A particular feature of our
model compared with other models in the literature, is that by
sharing food, the 2 animals protect each other from potential
subsequent costly challenges that might extend the time until
the consumption of a food item. Hence, on average, a half of
the food item is consumed without the risk of other delays
apart from the time required for sharing. This, under certain
conditions, might be the least costly process with respect to the
expected time needed for the consumption of food, and thus,
a process which maximizes the food intake rate. Although
there is no empirical data to support precisely the above as-
sumptions, there is evidence that in nature, animals in many
cases prefer to share food with other animals to reduce the risk
of losing the entire prey. For example, a lion, instead of defend-
ing its prey against an approaching member of the pride, might
share it in order to increase the efficiency of defending the
prey from invading hyenas (e.g., see Cooper 1991; Stevens
and Gilby 2004).

In addition, our model assumes that the members of the
population are of the same type. However, real populations
consist of individuals with biological and physiological differ-
ences, and the optimal strategic choices depend on the char-
acteristics of the individuals and those of their opponent. For
example, recent observational and experimental studies on
the dung roller beetle Canthon cyanellus cyanellus have shown
that males of similar size are more likely to share the re-
source rather than to fight over this (Chamorro-Florescano
et al. 2010). Fight duration may be correlated with the differ-
ences between the opponents as well (e.g., Rovero et al.
2000). The size and the quality of the food items or the
estimation of the value of the resource might also affect
significantly the frequency of food sharing (e.g., see White
1994) as well as the contest duration (e.g., see Enquist and
Leimar 1987).

In our model, all costs are expressed in terms of time used,
and we ignore other costs which can be important, such as en-
ergy costs and possible injuries resulting from fights (for
a model which incorporates energy costs, see Vahl 2006).
For simplicity, we also do not impose extra time penalties
on animals in contests. A resulting limitation is that the win-
ner and the loser of a contest face the same cost. Although
this can be the case in nature (e.g., Smith and Taylor 1993),
experimental studies have shown that either the loser (e.g.,
Chellapa and Hungtingford 1989; Neat et al. 1998) or the
winner (e.g., Hack 1997) might suffer higher energetic or
other cost, such as a high recovery time cost. For instance, if
the handler uses more energy (e.g., because it is carrying
a food item during the contest), then it might need a higher
recovery time. This would decrease the food intake rate mak-
ing the defending strategy less attractive and the choice of
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alternative strategies more likely (see also Luther and Broom
2004). In the same way, although it is assumed that the cost
from the sharing process is equal for the 2 animals that share
food, in reality, the 2 animals might suffer a different cost.
Furthermore, it is assumed that once an animal loses a contest
with another animal, it does not initiate a new fight with the
same animal but starts searching for alternative food resour-
ces. This is generally reasonable, as often contests between
animals can have strong (at least short-term) effects on their
relationship (winner and loser effects), which reinforce the
dominance of the winner (e.g., see Dugatkin 1997). Similarly,
in related contests between animals for territory acquisition,
animals that lose an agonistic interaction often leave the areas
in which they were defeated (e.g., see Stamps and Krishnan
1994). However, we should note that in some cases, an animal
may attack repeatedly the owner after iterated losing tries (e.g.,
Stamps 1994). One way that the model could be extended and
relax this assumption is by introducing the choice to the loser
animal to attack the winner again or not, following similar
assumptions to those made in some owner–intruder types of
games (e.g., Morrell and Kokko 2003).

Another interesting extension of the model that could add
some realism is to assume that the attacking animal, after its
first attack, has the possibility to update its strategy based on
the decision of the attacked handler. For example, it could
be assumed that if the attacking searcher is offered a share, it
has the possibility to either give up and resume searching for
another food item or attack again attempting to get the
whole food item from the present handler. A handler sharer,
being attacked again by the attacking searcher either
defends the food and a fight takes place or it retreats and
leaves the food to the attacker in order to avoid a fight. This
extension would add new strategic choices for the animals.
However, it would not add any new observable behavior (at
any time the new strategies will look exactly the same as the
strategies in the model considered in this paper). Although
an analysis of such extended models is required in order to
extract safe conclusions, we predict that the new strategies
under some conditions might be able to invade other strat-
egies that in the current model are ESSs. This would reduce
the regions in parameter space where each of the current
strategies is evolutionarily stable. For example, we can pre-
dict that under some circumstances, an animal should attack
again a handler that offers a share in the first attack but will
give up on a second attack. In the current model, for very
large fight duration, ta/2, the optimal strategy for an at-
tacked handler might be to offer a share to an attacking
searcher and the optimal strategy for the challenger to ac-
cept the share (e.g., see Figure 3). However, if the challenger
has the possibility to attack again, then this would be the best
strategic choice for it because the defender will retreat and
leave the food item to the attacker rather than defend it and
engage in a very long fight. Similarly, when ta/2 is small, it
might be optimal for an attacked handler to offer a share
(see Figure 3). However, in the extended model, it might be
better for the challenger to attack again because it will be worth
fighting for the whole food item.

In natural systems, foraging animals might be faced with
more than one foraging option with different variances in food
intake. For example, they might be faced with a constant food
resource versus a variable food resource, a food resource with
fixed delay versus the same food resource with variable delay, or
an immediate gain of food versus a delayed gain. There is
strong empirical evidence that a forager’s choice may depend
on many ecological factors, such as the energetic status of the
animal, the type of food variance, the energy requirements of
the animal within a certain time interval, and the probability of
delays due to different kinds of unpredictable interruptions

(e.g., bad weather). The forager might be either risk averse
and choose the predictable option or risk prone and choose
a risky option, respectively (e.g., see Kacelnik and Bateson
1996). For example, an animal with low food reserves might
choose a safe lower level of return, provided it is sufficient for
survival. Food sharing might be a way for animals to reduce
such variances in food intake (e.g., Wenzel and Pickering
1991). Although the present model does not consider any risk
associated with alternative food sources, it would be interest-
ing to incorporate in future work such parameters that might
influence the foraging decisions.

Further research taking into consideration all these different
factors will help us to better understand the reasons why and
the conditions under which animals prefer to share their food.
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APPENDIX A

The densities of the different groups of the population, S, H,
C, A, and R, in the equilibrium conditions

In the equilibrium conditions

dS

dt
¼ dH

dt
¼ dC

dt
¼ dA

dt
¼ dR

dt
¼ 0: ð14Þ

From the equation

dC

dt
¼ 2p1p2mhSH2

1

tc
C ¼ 0; ð15Þ

it follows that in the equilibrium, the number of sharers is
given by

C ¼ 2p1p2tcmhSH: ð16Þ

Similarly, from the equations

dA

dt
¼ dR

dt
¼ 0; ð17Þ

it is derived that the number of attackers and defenders in the
equilibrium is given by

A ¼ R ¼ p1p3tamhSH
2

: ð18Þ

Substituting Equations 16 and 18 into the system of equations

dS

dt
¼ dH

dt
¼ 0; ð19Þ

and solving the system for S using Equation 6, it is obtained that
in the equilibrium, the densities of the different groups of the
population, S, H, C, A, and R, are given by Equation 7.

APPENDIX B

Average time for a single animal to consume a food item

Average time for a single searcher animal to consume a food item
when encountering a handler animal
Assume that a mutant searcher playing (q1, q2, q3) has just
come upon a handler playing the population strategy, (p1,
p2, p3). If the mutant searcher ignores the handler, with
probability 1 2 q1, then it will need an average time T �

S until
the consumption of a food item. Otherwise, if the mutant
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attacks, with probability q1, the average time needed for the
consumption of a food item depends on the action that the
handler animal will take. If the handler decides to share the
food, with probability p2, then the further expected time
required to the consumption of a whole food item by the
mutant is T �

C. If the attacked handler decides to defend its
food, with probability p3, then a fight takes place, and the
attacking mutant will need an average time T �

A to consume
a food item. Finally, if the attacked animal decides to leave
its food to the attacking animal without taking any action, with
probability 1 2 p2 2 p3, the attacking searcher animal becomes
a handler, and it then requires an average time T �

H until the
consumption of a food item. T �

SA is given by the following
equation:

T �
SA ¼ q1

�
p2T

�
C 1 p3T

�
A 1 ð12 p2 2 p3ÞT �

H

�
1 ð12 q1ÞT �

S : ð20Þ

Recall that we assume that 2 animals that share a food item do so
equally. Each of the sharers needs a time tc until consumption of
the half of the food and once it consumes it, it returns to the
searching state. From the searching state, the mutant needs
a time on average equal to T �

S in order to consume a whole
food item. The average time needed for a mutant sharer to
consume a whole food item, T �

C, is given by

T �
C ¼ tc 1

T �
S

2
: ð21Þ

The sharing process described above is, in terms of expected
reward, entirely equivalent to a process where if a searcher-
and a handler decide to share the food, at the end of the
sharing period, with probability 0.5 1 of the 2 animals
obtains the food item while the other takes nothing.
The loser then has to resume searching for a new food
resource and thus spend an average time T �

S until the
consumption of a food item. Both animals suffer a time cost
from the sharing process equal to tc. Hence, the time that
a sharer needs for the consumption of a food item is on
average equal to 0:5tc10:5

�
tc1T �

S

�
, which leads to

Equation 21.
Substituting Equation 21 into Equation 20 we obtain

T �
SA ¼ q1

�
p2tc 1 p3T

�
A 1 ð12 p2 2 p3ÞT �

H

�
1

�
12 q1 1

q1p2

2

�
T �

S :

ð22Þ

An attacker animal that has just been involved in a fight will
have a cost of an average time ta/2 spent in the contest. With
probability 1 2 a the attacker loses the fight and starts search-
ing again for food, whereas with a complementary probability
a, it beats the defender and acquires the food item. Thus, T �

A
is given by the following equation:

T �
A ¼ ta

2
1 ð12 aÞT �

S 1 aT �
H: ð23Þ

A searcher animal is looking either for a food resource or
for a handler animal. At this stage, it spends an average time
equal to 1/(mf f 1 mh H) before it finds either an unattended
food item (this happens with probability mf f/(mf f 1 mh H))
and becomes a handler, or a handler animal (with proba-
bility mh H/(mf f 1 mh H)). Thus, T �

S is given by the following
equation:

T �
S ¼ mhH

mff1 mhH
T �

SA 1
mff

mff 1 mhH
T �

H 1
1

mff1 mhH
: ð24Þ

Once the searcher animal acquires a food item, it either con-
sumes it without being found by any searcher animal, with

probability (1/th)/((1/th) 1 mhS), or it is discovered by
a searcher, with probability mh S/((1/th) 1 mh S), resulting in
an additional expected time cost T �

HA until the consumption
of a food item. The average time that the animal is at the
handling state before it either consumes its food item or is
discovered by a searcher animal is equal to 1/((1/th) 1 mh S).
T �

H is thus given by

T �
H ¼ 1

11 thmhS
01

thmhS
11 thmhS

T �
HA 1

th
11 thmhS

: ð25Þ

Substituting Equations (23–25) into Equation 22, after
some calculations, we obtain Equation 10.

Average time for a single handler animal to consume a food item
when encountering a searcher animal in an aggressive population
If a mutant animal in the handling state is attacked by
a searcher animal playing the population strategy, with a non-
zero probability (p1 6¼ 0), then T �

HA is given by the following
equation:

T �
HA ¼ p1

�
q2T

�
C 1 q3T

�
R 1 ð12 q2 2 q3ÞT �

S

�
1 ð12 p1ÞT �

H; ð26Þ

where T �
R is the average time required until the consumption

of a food item for a handler that decides to defend its food
against a challenge. Substituting Equation 21 into Equation
26, we obtain

T �
HA ¼ p1

�
q2tc 1 q3T

�
R 1

�
12

q2

2
2 q3

�
T �

S

�
1 ð12 p1ÞT �

H:

ð27Þ

In a similar way as before, T �
R is given by

T �
R ¼ ta

2
1 aT �

S 1 ð12 aÞT �
H: ð28Þ

Substituting Equations 24, 25, and 28 into Equation 27, we
obtain Equation 11.

Average time for a single handler animal to consume a food item in
a nonaggressive population
In the case where all the members of the population do not
challenge, that is, p1 = q1 = 0, but occasionally a challenge
might occur, the average time needed for an attacked handler
mutant playing (0, q2, q3) to consume a food item, T �

HA, is
given by

T �
HA ¼ q2

�
tc 1

T �
S

2

�
1 q3T

�
R 1 ð12 q2 2 q3ÞT �

S ; ð29Þ

where T �
R is given by Equation 28. Because the population is

not making challenges, (1/mf f ) 1 th and T �
H ¼ th. Substituting

into Equation 29, we obtain Equation 12.

APPENDIX C

The optimal strategy is always pure

In the present model, there are 21 possible groups of strate-
gies that an animal can play, 6 of which consist of pure strat-
egies and 15 of mixed strategies. These are summarized in
Table 5.

Strategies denoted by (*) in Table 5 are strategies with p2 =
0, that is, strategies where animals never share their food. In
this case, the model reduces to the model considered in
Broom et al. (2004). In this paper, the authors have shown
that the mean time required for a searcher animal that has
just encountered a handler to consume a food item is a strictly
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monotonic function (except with the possible exception of
a nongeneric parameter set, see below) of the probability
with which the searcher attacks the handler, p1. Therefore,
depending on the parameter values, the searcher animal
minimizes the time it needs for the consumption of a food
item by playing either p1 = 0 or p1 = 1. Any other strategy
0 , p1 , 1 results in a higher expected time and thus cannot
be evolutionarily stable. Similarly, it has been shown that the
average time needed for a handler to consume a food item
after being attacked by a searcher is either a strictly increas-
ing or a strictly decreasing function of p3, and therefore, the
optimal strategy is always either p3 = 0 or p3 = 1, depending
on the parameter values.

Strategies denoted by (**) are the 2 additional to the Broom
et al. (2004) model pure strategies, where p2 = 1, that is, the
strategies where animals always share their food when other
animals attack. It has been shown in the present paper that
under certain conditions one of these can be an ESS, the
other not.

In the case where none of the animals of the population be-
have aggressively, that is, p1 = q1 = 0 (strategies denoted by
(***) in Table 5 are such strategies where 0 , p2 ,1), the
average time required for an attacked mutant handler that
plays strategy (0, q2, q3) to consume a food item, T �

HA, is a func-
tion of the form (see Equation 12)

T �
HA ¼ c1q2 1 c2q3 1 c3; ð30Þ

where c1, c2, and c3 depend only on the parameters of the
model ta, th, tc, mf f and a. Hence, if the values of the param-
eters are such that c1 and c2 are both greater than zero, then
the optimal strategy for the mutant is q2 = q3 = 0. In any other
case, if c1 , c2, the optimal strategy is q2 = 1 and q3 = 0, whereas
if c1 . c2, the optimal strategy is q2 = 0 and q3 = 1.

It remains to consider whether any of the strategies (S 1)–
(S 7) is an ESS. Due to the complexity of the mathematical
formulae, an analytic investigation is very difficult. Hence,
we consider whether each of the remaining strategies is an
ESS mainly through extensive numerical investigation.

Regarding strategies (S 1), from Equation 22, we get that in
a population that plays strategy (0 , p1 , 1,1,0),

T �
SAð0; 1; 0Þ ¼ T �

S ð0; 1; 0Þ; ð31Þ

while

T �
SAð1; 1; 0Þ ¼ T �

Cð1; 1; 0Þ ¼ tc 1
T �

S ð1; 1; 0Þ
2

: ð32Þ

If there is any equilibrium strategy
�
p�1; 1; 0

�
in (S 1), then

TSA

�
p�1; 1; 0

�
should be equal to T �

SAð0; 1; 0Þ and T �
SAð1; 1; 0Þ.

But when T �
SAð0; 1; 0Þ ¼ T �

SAð1; 1; 0Þ, then T �
S ð0; 1; 0Þ ¼

T �
S ð1; 1; 0Þ. Hence, equating Equations 31 and 32, we get

T �
S ð0; 1; 0Þ ¼ T �

S ð1; 1; 0Þ ¼ TS

�
p�1; 1; 0

�
¼ 2tc: ð33Þ

On the other hand, if the strategy
�
p�1; 1; 0

�
is an equilibrium

strategy, then it cannot be invaded by the mutant strategy�
p�1; 0; 0

�
, that is, the average required time for the mutant

handler that has just been attacked in a population that plays
strategy

�
p�1; 1; 0

�
, T �

HA

�
p�1; 0; 0

�
, is higher than the average

time required when playing the population strategy,
THA

�
p�1; 1; 0

�
. Using Equation 27, we find that

T �
HA

�
p�1; 0; 0

�
.THA

�
p�1; 1; 0

�
ð34Þ

0T �
S

�
p�1; 0; 0

�
.TC

�
p�1; 1; 0

�
0T �

S

�
p�1; 0; 0

�
¼ TS

�
p�1; 1; 0

�
. 2tc:

ð35Þ

This contradicts Equation 33. Consequently, there is not any
equilibrium strategy (0 , p1 , 1,1,0). This is also verified
from the results of numerical examples for a wide range of
parameter values (e.g., see Figure 6a).

In a similar way, it is proved that there is no equilibrium strat-
egy in the class of strategies (S 6). If there was an equilibrium
strategy

�
0,p�1,1; 0,p�2,1; 0,p�3,1

�
, p�21p�3,1, then

T �
HA

�
p�1; 0; 0

�
, T �

HA

�
p�1; 1; 0

�
and T �

HA

�
p�1; 0; 1

�
should all be

identical, otherwise one of the strategies
�
p�1; 0; 0

�
,
�
p�1; 1; 0

�
,�

p�1; 0; 1
�

could invade
�
p�1; p

�
2; p

�
3

�
. In this case, using Equa-

tions 27 and 28, we find that

TS

�
p�1; p

�
2; p

�
3

�
2TH

�
p�1; p

�
2; p

�
3

�
¼ 1

12 a
ta
2
: ð36Þ

On the other hand, if
�
p�1; p

�
2; p

�
3

�
is an equilibrium strategy,

then T �
SA

�
p�1; p

�
2; p

�
3

�
¼ T �

SA

�
1; p�2; p

�
3

�
¼ T �

SA

�
0; p�2; p

�
3

�
which

yields that T �
SA

�
1; p�2; p

�
3

�
¼ T �

S

�
0; p�2; p

�
3

�
¼ T �

S

�
1; p�2; p

�
3

�
¼

T �
S

�
p�1; p

�
2; p

�
3

�
. Substituting into Equation 24, we obtain that

T �
S

�
p�1; p

�
2; p

�
3

�
2T �

H

�
p�1; p

�
2; p

�
3

�
¼ 1

mff
: ð37Þ

Hence, if a strategy of the (S 6) class is an equilibrium strat-
egy, then Equations 36 and 37 must hold. This leads to

12 a ¼ mff
ta
2
; ð38Þ

that is, that the probability of a challenger losing a fight is equal
to the ratio of the expected duration of the fight and the mean
time searching for food. These are all biologically determined
parameters, and we assume that the chance of their precise co-
incidence in this way is negligible (i.e., the case is nongeneric).
Thus, for example, such a case would correspond to a region of

Table 5

Possible ESSs

Strategy at the handling state, p2, p3

p2 = 1,
p3 = 0

p2 = 0,
p3 = 1 p2 = p3 = 0

p2 = 0,
0 , p3 , 1

0 , p2 , 1,
p3 = 0

0 , p2 , 1,
0 , p3 , 1,
p2 1 p3 = 1

0 , p2 , 1,
0 , p3 , 1,
p2 1 p3 , 1

Strategy at the
searching
state, p1

p1 = 0 ** * * * *** *** ***
0 , p1 , 1 S 1 * * * S 2 S 4 S 6
p1 = 1 ** * * * S 3 S 5 S 7

Strategies denoted by * are strategies with p2 = 0, strategies denoted by ** are pure strategies with p2 =1 and strategies denoted by *** are strategies
with p1 = 0 and 0 , p2 , 1.
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zero area in a figure such as Figure 3, equivalent to the bound-
ary lines.

Numerical investigation also indicates that mixed strategies
in the classes (S 4), (S 5), and (S 7) are always invaded, and so
there are no mixed ESSs in these classes.

Concerning strategies (S 2) and (S 3), numerical examples
on a wide range of parameter values also imply that for every
value of p2, 0 , p2 , 1, strategies (0 , p1 , 1, p2, 0) can always
be invaded either by strategy (0, p2, 0) or by strategy (1, p2, 0).
On the other hand, numerical examples indicate that for
given p�1, 0,p�1 � 1, there is a strategy p�2, 0,p�2,1, such that
for specific values of parameters all the invading strategies�
p�1; 0 � q2 � 1; 0

�
do equally well in a population playing�

p�1; p
�
2; 0

�
, that is, THA

�
p�1; p

�
2; 0

�
¼ T �

HA

�
p�1; 0 � q2 � 1; 0

�
,

whereas any other strategy does worse. Any other population
playing a different strategy

�
p�1; 0,p2,1; 0

�
, p2 6¼ p�2, can be

invaded either by the strategy
�
p�1; 0; 0

�
or by the strategy�

p�1; 1; 0
�

(e.g., see Figure 6b). However, in a population that
plays a strategy (p1, 0 � q2 � 1,0), the required time for an
attacked handler playing the population strategy, THA (p1, 0 �
q2 � 1,0), is less than that required by an attacked handler
playing

�
p�1; p

�
2; 0

�
. In other words, if an infinitesimal portion

of the population deviates from the equilibrium strategy, evo-
lution will drive the population away from that equilibrium.
Thus, according to the second condition of Maynard Smith
and Price (1973) for a strategy to be an ESS, the strategies�
p�1; p

�
2; 0

�
cannot be ESS. Hence, none of the strategies (S 2)

and (S 3) can be evolutionarily stable.
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