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c Approximation of stochastic evolutionary game dynamics in complex networks.
c The model constructed provides an improved accuracy compared to previous models.
c The decrease of the average degree of the network might promote the Hawk strategy.
c Increasing the heterogeneity of the network facilitates the spread of Hawks.
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a b s t r a c t

Evolutionary dynamics have been traditionally studied on homogeneously mixed and infinitely large

populations. However, real populations are finite and characterised by complex interactions among

individuals. Recent studies have shown that the outcome of the evolutionary process might be

significantly affected by the population structure. Although an analytic investigation of the process is

possible when the contact structure of the population has a simple form, this is usually infeasible on

complex structures and the use of various assumptions and approximations is necessary. In this paper,

we adopt an approximation method which has been recently used for the modelling of infectious

disease transmission to model evolutionary game dynamics on complex networks. Comparisons of the

predictions of the model constructed with the results of computer simulations reveal the effectiveness

of the method and the improved accuracy that it provides when, for example, compared to well-known

pair approximation methods. This modelling framework offers a flexible way to carry out a systematic

analysis of evolutionary game dynamics on graphs and to establish the link between network topology

and potential system behaviours. As an example, we investigate how the Hawk and Dove strategies in a

Hawk–Dove game spread in a population represented by a random regular graph, a random graph and

a scale-free network, and we examine the features of the graph which affect the evolution of the

population in this particular game.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Traditionally, evolutionary dynamics have been studied on
infinitely large homogeneous populations. However, many real
populations, ranging from ecology and epidemiology to computer
science and socio-economics, exhibit complex connectivity struc-
tures. These structures can be represented and modelled as a
collection of interacting units. At its simplest, a network is a
collection of nodes representing well defined units that interact

via a set of links that can be directional, weighted and even time
dependent. Networks have provided and provide a new modell-
ing paradigm that allows modellers to relax many of the strong
implicit assumptions, such as the homogeneously mixing of
individuals, and to account for a range of heterogeneities at the
level of individuals. A growing amount of research on evolution-
ary dynamics on networks has shown that the structure of the
network might significantly affect the evolutionary process (e.g.,
Lieberman et al., 2005; Szabó and Fáth, 2007; Nowak et al., 2010;
Shakarian et al., 2012).

While the modelling framework offered by networks is a
straight-forward and intuitive one, it is often limited to individual-
based stochastic simulations that can be difficult to validate, time
consuming to run and the results generated can lack generality.
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To tackle this problem, researchers from different areas have
developed different techniques that allow us to derive low-dimen-
sional ODE (ordinary differential equation) models that, under
certain assumptions about the structure of the network and the
dynamics running on it, can approximate well the average outcome
from stochastic network simulations. Establishing the clear relation
between the exact-stochastic and approximate model is challenging
since this requires a mathematical handle on both solutions as well
as the formulation of an appropriate limit in which the exact-
stochastic model approaches the deterministic limit. One such well
known class of approximate models is that of the pairwise models

(e.g., Matsuda et al., 1992; van Baalen and Rand, 1998; Keeling,
1999; Eames and Keeling, 2002; House and Keeling, 2011) where
the dynamics at the node level, in a population with network-like
contact structure, is described in terms of the dynamics of pairs of
individuals, and the hierarchical dependence on higher order
structures is cut off via an appropriately constructed closure. In
recent years, other models of similar nature have been derived, for
example, the Probability Generating Function approach (Volz and
Meyers, 2007; Volz, 2008) and more notably the Effective Degree

model (Lindquist et al., 2011). These models have arisen in the
context of epidemiology but their formulation and properties makes
them amenable to be used for the modelling of evolutionary game
dynamics on networks.

In this paper, we consider the evolutionary dynamics of
individuals interacting on different networks playing two strate-
gies, A and B. The game played is described by the payoff matrix

ð1Þ

whose elements represent the payoffs obtained by the row player
when interacting with the column player. The fitness of each
individual is assumed to be equal to f ¼ f bþwP, a linear function
of the average payoff P obtained by the games played with
neighbouring individuals. fb is a constant background fitness of
individuals and wA ½0,1Þ represents the intensity of selection
which determines the contribution of P to fitness. When w-0þ ,
the payoff P of each individual has a small contribution to the
overall fitness and we have so-called weak selection. When w¼0
all individuals have the same fitness and thus we have the case of
neutral drift. Finally, when w-1 the contribution of P to the
fitness becomes arbitrarily large, and the effect of background
fitness fb becomes negligible. Note that, depending on the nature
of the game and the evolutionary process, the individual’s payoff,
P, can be considered in different ways. Alternatively, for example,
the total payoff of an individual could be considered as just
the sum of the payoffs obtained from each game played with
each of its neighbours (accumulated payoff). This, depending on
the evolutionary dynamics and the population structure, might
yield remarkably different results (see for example, Santos and
Pacheco, 2006; Tomassini et al., 2007; Szolnoki et al., 2008).
In this work, assuming that at each iteration step individuals
interact with neighbouring individuals at the same rate, the total
payoff of each individual in each step is considered to be the
average of the obtained accumulated payoff. Alternative fitness
functions have also been considered. For example, the exponential
function of the payoff, f ¼ expðwPÞ (Traulsen et al., 2008). These
fitness functions are usually used for modelling the evolution of
finite structured populations represented by graphs. Different
fitness functions have also been introduced for the modelling of
evolutionary dynamics beyond the framework of pairwise inter-
actions between individuals (Broom and Rychtář, 2012).

It is assumed that a number of mutants playing strategy A
(A individuals) are introduced into a resident population

consisting of individuals playing strategy B (B individuals) by
replacing an equivalent number of individuals at random. The
population evolves following specific update rules. An analytic
approach of the evolutionary process under various update rules
is possible when individuals of the population occupy the vertices
of simple graphs with a lot of symmetry and lack of complexity.
Such graphs are the complete graph (Taylor et al., 2004), the circle
(Ohtsuki and Nowak, 2006a; Broom et al., 2010), the star (Broom
and Rychtář, 2008; Broom et al., 2010; Hadjichrysanthou et al.,
2011) and the line (Broom and Rychtář, 2008). See also Lieberman
et al. (2005). However, the analytic investigation of the process in
populations with a complex structure is usually impossible,
especially when the fitness of individuals depends on the compo-
sition of the population, due to the large number of the possible
configurations of the population through evolution. In such cases
the use of approximation methods is essential. In this paper, using
the techniques of the Effective Degree model (Lindquist et al.,
2011) we consider evolutionary game dynamics on complex
networks under the update rules of the biased voter model as
described in Antal et al. (2006). According to this model, at each
iteration step an individual dies with probability inversely pro-
portional to its fitness, and thus fitter individuals are more likely
to survive, and is replaced by the offspring of a randomly chosen
neighbour. During the evolutionary process it is assumed that
there is no mutation, just selection, and thus the offspring of each
individual is a perfect copy of its parent. Voter model type
dynamics is one of the classical interacting particle systems which
has been applied to many evolutionary processes, from opinion
and culture dynamics to processes in population genetics and
kinetics of catalytic reactions (e.g., Liggett, 1985; Frachebourg and
Krapivsky, 1996; San Miguel et al., 2005; Castellano et al., 2009),
and has received considerable attention. It is noted that since the
above process is a stochastic process and the transition probabil-
ities from one state to another are inversely proportional to
fitness, the fitness of each individual has to be strictly positive.
This is assumed throughout the paper.

We show that for randomly or proportionately mixed net-
works, with or without degree heterogeneity, the model con-
structed, called the Neighbourhood Configuration model, provides
an excellent approximation to output from simulation models,
even for relatively small network sizes. Following the same
evolutionary dynamics we also construct a pairwise model and
highlight its merits and shortcomings when compared to the
Neighbourhood Configuration model. As an example, we consider
the evolutionary process in a Hawk–Dove game when played in
three types of graph which have been widely used; a random
regular graph, a random graph and a scale-free network.

2. Approximate models of evolutionary game dynamics on
networks

2.1. Pairwise model

In this section, we first approach the evolutionary process by
using the pair approximation method (Matsuda et al., 1992; van
Baalen and Rand, 1998; Keeling, 1999; Eames and Keeling, 2002;
House and Keeling, 2011). This is a method where the frequency of
higher order moments, such as triples composed of three nodes
connected in a line, is approximated by the frequency of lower
order moments, such as pairs and single nodes. This method works
well with graphs with no or little heterogeneity in the number of
connections, but can be extended to more heterogeneous graphs
with a significant increase in the number of equations. Such
methods assume that the underlying graphs have undirected links
and that these are either unweighted or uniformly weighted. This

C. Hadjichrysanthou et al. / Journal of Theoretical Biology 312 (2012) 13–2114



Author's personal copy

approximation method has been used in previous work for the
investigation of the evolutionary process in structured populations
under different update rules (e.g., Morris, 1997; Hauert and
Doebeli, 2004; Ohtsuki et al., 2006; Ohtsuki and Nowak, 2006b;
Morita, 2008; Fu et al., 2010). Here, we follow a similar procedure
to approach the process when the update rules of the voter model
are followed.

Assume a population of N individuals playing either strategy A
or strategy B placed on a regular graph of degree k. Let pA (pB)
denote the proportion of A (B) individuals in the population and
pAB the frequency of AB pairs. Let also qB9A denote the conditional
probability that a neighbour of a chosen A individual is a B
individual, i.e. qB9A ¼ pAB=ðpAAþpABÞ ¼ pAB=pA (thus 1�qB9A ¼ qA9A ¼

pAA=pA denotes the conditional probability that a neighbour of a
chosen A individual is another A individual). The equivalent
expressions also hold for qA9B and qB9B. The links of the networks
we consider are assumed to be undirected and therefore pAB ¼ pBA.

Since all the vertices of the graph are assumed to be topolo-
gically equivalent, every pair of A (B) individuals is equally likely
to be connected with probability qA9A ðqB9BÞ. Thus, the probability
that from the k connections of an A individual, i of them are with
other As (and thus k�i are with Bs), lA(i), is approximated by
assuming that it follows a binomial distribution. This is given by

lAðiÞ ¼
k

i

� �
qi

A9Að1�qA9AÞ
k�i
¼

k!

i!ðk�iÞ!
qi

A9Aqk�i
B9A : ð2Þ

Similarly, the probability that a B individual is connected with i As
and k�i Bs is assumed to be given by

lBðiÞ ¼
k

i

� �
ð1�qB9BÞ

iqk�i
B9B ¼

k!

i!ðk�iÞ!
qi

A9Bqk�i
B9B : ð3Þ

An A individual which is connected with i other A individuals has
fitness equal to

f AðiÞ ¼ f bþw
iaþðk�iÞb

k

� �
: ð4Þ

A B individual which is connected with i As has fitness equal to

f BðiÞ ¼ f bþw
icþðk�iÞd

k

� �
: ð5Þ

Let us denote by F the sum of the inverse of the fitnesses of all
individuals,

F ¼ pA

Xk

i ¼ 0

lAðiÞ

f AðiÞ
þpB

Xk

i ¼ 0

lBðiÞ

f BðiÞ
: ð6Þ

The probability that an A individual dies (with probability
inversely proportional to its fitness) and is replaced by a (ran-
domly selected) neighbouring B individual, PA-B, is given by

PA-B ¼
pA

F

Xk

i ¼ 0

lAðiÞ

f AðiÞ
�
k�i

k
: ð7Þ

One of the B individuals dies with probability inversely propor-
tional to its fitness and is replaced by a random neighbouring A
individual with probability

PB-A ¼
pB

F

Xk

i ¼ 0

lBðiÞ

f BðiÞ
�

i

k
: ð8Þ

The rate of increase of the frequency of A individuals, pA, (given
one transition in each iteration step) is given by the following
equation:

_pA ¼
1

N
PB-A�

1

N
PA-B

¼
1

NF

Xk

i ¼ 0

ðk�1Þ!

i!ðk�iÞ!
pBqi

A9Bqk�i
B9B

i

f BðiÞ
�pAqi

A9Aqk�i
B9A

k�i

f AðiÞ

� �
: ð9Þ

When an A individual connected to i other As is replaced by a B
individual, the number of AA pairs decreases by i and therefore
the frequency of AA pairs, pAA, decreases by i=ðkN=2Þ (kN=2 is the
total number of links). This happens with probability

PAA-AB ¼
pA

F

lAðiÞ

f AðiÞ
�

k�i

k
: ð10Þ

Similarly, the number of AA pairs increases by i and therefore pAA

increases by i=ðkN=2Þ when a B connected to i As is replaced by an
A. This happens with probability

PAB-AA ¼
pB

F

lBðiÞ

f BðiÞ
�

i

k
: ð11Þ

According to the above, the rate of increase of the frequency of AA
pairs (given one transition in each iteration step) is given by the
following equation:

_pAA ¼
Xk

i ¼ 0

2i

kN
PAB-AA�

Xk

i ¼ 0

2i

kN
PAA-AB

¼
2

kNF

Xk

i ¼ 1

ðk�1Þ!

ði�1Þ!ðk�iÞ!
pBqi

A9Bqk�i
B9B

i

f BðiÞ
�pAqi

A9Aqk�i
B9A

k�i

f AðiÞ

� �
: ð12Þ

Since, pAþpB ¼ 1, pAB ¼ pBA ¼ pA�pAA and pBB ¼ 1�pAA�2pAB, the
system can be described by just two dynamical equations, say
(9) and (12). Note that the frequency of larger clusters can be
approximated by the frequencies of the pairs. For example, the
frequency of the three cluster XYZ, pXYZ, can be approximated by
pXY pYZ=pY .

2.2. Neighbourhood Configuration model

The effective degree model (Lindquist et al., 2011) stems from a
model first proposed by Ball and Neal (2008) in the context of an SIR

type infectious disease transmission model, where nodes in a net-
work are accounted for not only by their disease status but also by
their number of susceptible S and infected I neighbours, referred to as
the effective degree of the nodes. Keeping track of recovered
neighbours R is not important as they play no part in the dynamics.
Lindquist et al. (2011) formalised this model by categorising each
node according to its disease state as well as the number of its
neighbours in the various disease states. Based on heuristic argu-
ments and on the assumption of proportionate mixing, Lindquist et al.
(2011) derived a system of ODEs in terms of susceptible and infected
nodes with all possible neighbourhood configurations. In this paper,
we adopt this method to approach the stochastic evolutionary
dynamics of a two-strategy game played on complex networks.

Assume, as above, that a resident population of B individuals
placed on an undirected and connected static network is invaded
by a number of mutant A individuals. The evolutionary dynamics
of the evolutionary process is described by the update rules of the
voter model. Each individual in the network is classified according
to its strategy and the number of its connected individuals
playing each of the strategies. Let us denote by Mm,r (Rm,r) the
number of individuals in the class where individuals play the
mutant (resident) strategy and each of them is connected to m

other mutant individuals and r residents. Consider m and r as the
number of links that start from an individual of an Mm,r or Rm,r

class and end at a mutant or a resident, respectively. Assume that
the maximum degree of a node on the network is Dmax and
therefore mZ0, rZ0 and 1rmþrrDmax. Hence, the number of
different classes is equal to

PDmax

k ¼ 1 2ðkþ1Þ ¼DmaxðDmaxþ3Þ.
The sum of the inverse of the fitnesses of all individuals, F , is

given by

F ¼
XDmax

k ¼ 1

X
iþ j ¼ k

Mi,j
iþ j

iaþ jb
þRi,j

iþ j

igþ jd

� �
, ð13Þ
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where we have set a¼ f bþwa, b¼ f bþwb, g¼ f bþwc and
d¼ f bþwd. Let us also define some terms which will be useful
in subsequent calculations. Let Lxy be the number of links which
connect an individual of type x to an individual of type y (with x

and y being the start and destination node, respectively), where x

and y denotes either a mutant (M) or a resident (R) individual.

LMR ¼
XDmax

k ¼ 1

X
iþ j ¼ k

jMi,j, LRM ¼
XDmax

k ¼ 1

X
iþ j ¼ k

iRi,j,

LMM ¼
XDmax

k ¼ 1

X
iþ j ¼ k

iMi,j, LRR ¼
XDmax

k ¼ 1

X
iþ j ¼ k

jRi,j: ð14Þ

In addition, we use the following notations:

H1 ¼
XDmax

k ¼ 1

X
iþ j ¼ k

ij

iaþ jb
ðMi,j�d

ij
mrÞ,

H2 ¼
XDmax

k ¼ 1

X
iþ j ¼ k

ij

igþ jd
ðRi,j�d

ij
mrÞ,

H3 ¼
XDmax

k ¼ 1

X
iþ j ¼ k

i2

igþ jd
Ri,j,

H4 ¼
XDmax

k ¼ 1

X
iþ j ¼ k

j2

iaþ jb
Mi,j, ð15Þ

where dij
mr is a function defined as

dij
mr ¼

1 i¼m, j¼ r

0 otherwise

�
: ð16Þ

An individual might move from one class to another, either by
the change of its strategy or due to the change of a neighbour’s
strategy. The probability that an A mutant individual of the Mm,r

class is replaced by a B resident individual and move to the Rm,r

class is equal to the probability that this individual is selected for
death (with probability inversely proportional to its fitness) and is
replaced by the offspring of one of its neighbouring residents
(which is chosen at random). This probability is equal to

mþr

F ðmaþrbÞ
�

r

mþr
¼

r

F ðmaþrbÞ
: ð17Þ

Similarly, an individual of the Rm,r class moves to the Mm,r class
with probability

mþr

F ðmgþrdÞ
�

m

mþr
¼

m

F ðmgþrdÞ
: ð18Þ

A mutant connected to m other mutants and r residents leaves the
Mm,r class and enters the Mmþ1,r�1 class when a neighbouring
resident is replaced by a mutant. The probability of such a
movement is approximated in the following way. The probability
that a resident individual from an Ri,j class is selected to die and is
replaced by an offspring of a mutant neighbour is equal to

Ri,j
iþ j

F ðigþ jdÞ
�

i

iþ j
¼ Ri,j

i

F ðigþ jdÞ
: ð19Þ

We now use an approximation to estimate the probability that a
resident individual which is replaced by a mutant is connected to a
mutant from the Mm,r class. This is assumed to be equal to the
probability that a randomly chosen link which connects a resident
individual with a mutant (starts from a resident and ends at a
mutant), is a link which connects the replaced resident with that
mutant individual from the Mm,r class (i links connect the replaced
resident with a mutant and r links connect an individual of the
Mm,r with a resident, and so there are ir different ways of having
such a connection). This probability is given by

irPDmax

k ¼ 1

P
iþ j ¼ kiRi,j

: ð20Þ

Hence, the probability that a mutant from the Mm,r class moves to
the Mmþ1,r�1 class can be approximated by

XDmax

k ¼ 1

X
iþ j ¼ k

Ri,j
iþ j

F ðigþ jdÞ
�

i

iþ j
�

irPDmax

k ¼ 1

P
iþ j ¼ kiRi,j

¼
H3r

F LRM

: ð21Þ

In the same way, the probability that a mutant individual from the
Mm,r class moves to the Mm�1,rþ1 class is equal to the probability
that a neighbouring mutant of that individual is replaced by a
resident. The probability of such a transition is approximated by
the probability that a mutant individual of the population dies, is
then replaced by a neighbouring resident individual, and the
replaced individual is connected to the mutant from the Mm,r

class, i.e. by the probability

XDmax

k ¼ 1

X
iþ j ¼ k

ðMi,j�d
ij
mrÞ

iþ j

F ðiaþ jbÞ
�

j

iþ j
�

imPDmax

k ¼ 1

P
iþ j ¼ kiMi,j�m

¼
H1m

F ðLMM�mÞ
: ð22Þ

The term Mi,j�d
ij
mr represents the number of mutants in an Mi,j

class that can be replaced by a resident such that the transition of a
mutant from the Mm,r class to the Mm�1,rþ1 class is possible. When
i¼m and j¼r, 1 is subtracted from Mm,r because the movement of
an individual from the Mm,r to the Mm�1,rþ1 cannot be a result of
its own replacement. In other words, if a mutant from the Mm,r

class dies and is replaced by a resident, there are other Mm,r�1
mutants from that class that might be connected to it and
thus move to the Mm�1,rþ1 class. The term

PDmax

k ¼ 1

P
iþ j ¼ kiMi,j�m

corresponds to the number of links that connect any mutant
(starting from it), except the specific one from the Mm,r class, to
other mutants. The death and replacement events have already
happened and we are looking for the probability that a random link
that goes from a mutant to another mutant is a link that connects
the replaced mutant to a mutant from the Mm,r class. This link
obviously cannot be any of the m links of that individual.

By symmetric arguments, the probability that an individual
leaves the Rm,r class and enters the Rmþ1,r�1 class is given by

XDmax

k ¼ 1

X
iþ j ¼ k

ðRi,j�d
ij
mrÞ

iþ j

F ðigþ jdÞ
�

i

iþ j
�

jrPDmax

k ¼ 1

P
iþ j ¼ kjRi,j�r

¼
H2r

F ðLRR�rÞ
, ð23Þ

while the probability of leaving the Rm,r class and moving to the
Rm�1,rþ1 class is given by

XDmax

k ¼ 1

X
iþ j ¼ k

Mi,j
iþ j

F ðiaþ jbÞ
�

j

iþ j
�

jmPDmax

k ¼ 1

P
iþ j ¼ kjMi,j

¼
H4m

FLMR

: ð24Þ

The transition probabilities of moving from and to the Mm,r

and Rm,r classes are represented schematically in the diagram in
Fig. 1.

The dynamics of the DmaxðDmaxþ3Þ different classes of the
population is described by the following differential equation
based compartmental model

_Mm,r ¼�
1

F

H3r

LRM
þ

H1m

LMM�m
þ

r

maþrb

� �
Mm,rþ

H1ðmþ1Þ

F ðLMM�ðmþ1ÞÞ
Mmþ1,r�1

þ
H3ðrþ1Þ

FLRM

Mm�1,rþ1þ
m

F ðmgþrdÞ
Rm,r , ð25Þ

_Rm,r ¼�
1

F

H2r

LRR�r
þ

H4m

LMR
þ

m

mgþrd

� �
Rm,rþ

H4ðmþ1Þ

FLMR

Rmþ1,r�1

þ
H2ðrþ1Þ

F ðLRR�ðrþ1ÞÞ
Rm�1,rþ1þ

r

F ðmaþrbÞ
Mm,r , ð26Þ

for fðm,rÞ : mZ0,rZ0,1rmþrrDmaxg.
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The density of A individuals in the population is given by

pA ¼
PDmax

k ¼ 1

P
mþ r ¼ kMmr=N, and the density of B individuals by

pB ¼
PDmax

k ¼ 1

P
mþ r ¼ kRmr=N.

Note that for very large population sizes, the subtractions of m

and mþ1 from LMM, and r and rþ1 from LRR as well as those of dij
mr

in the terms H1 and H2, in the model (25)–(26), can be omitted
since their effect is negligible (see for example Lindquist et al.,
2011 and Gleeson, 2011 where in models of a similar nature such
subtractions are avoided). However, this would reduce the accu-
racy of the solution of the model when the population size is small.
Moreover, it should be mentioned that the above subtractions
might result in negative values of Mm,r and/or Rm,r for some values
of m and r. This is due to the fact that the numerical solution of the
system might lead to non-integer values of these quantities which
lie between 0 and 1. As a result, the terms LMM�m, LMM�ðmþ1Þ,
LRR�r and LRR�ðrþ1Þmight become negative. This problem can be
solved by setting these terms to be bounded below by 1, which is
the minimum natural value that these terms can take.

2.3. Numerical examples and comparisons with stochastic

simulations

In this section, we examine the effectiveness of the two
approximation models described in Sections (2.1) and (2.2); the
pairwise model and the Neighbourhood Configuration model. As
specific examples we consider the evolution of the population
when individuals play Hawk–Dove type games (Maynard Smith
and Price, 1973; Maynard Smith, 1982). The Hawk–Dove game is a
famous game which has been widely used for the modelling of the
aggressive behaviour of animals over food, mates, territories, and
other biological resources. According to this game, animals inter-
act with each other over a resource by playing either aggressively
using the Hawk strategy (H) or non-aggressively using the Dove
strategy (D). When two Hawk players meet, a conflict takes place.
The winner takes the resource V while the loser pays a cost C. Thus
the average payoff obtained by Hawks is ðV�CÞ=2. If a Hawk and a
Dove meet, the Dove retreats leaving the resource to the Hawk
without paying any cost. Thus the Dove obtains nothing while the
Hawk receives a payoff V. Finally, if two animals playing Dove
meet, they either equally share the resource (if divisible) or with
equal probability one of the two takes the whole resource with no
cost. Thus, in this case Doves obtain an average payoff equal to
V=2. This game is described by the following payoff matrix:

ð27Þ

In this game, if the value of the resource outweighs the cost of the
fight, i.e. if V 4C ) a4c, since b4d, an individual always does
better by playing the Hawk strategy no matter what the opponent
does. Thus, in an infinite homogeneous population the Hawk
strategy is the unique Evolutionarily Stable Strategy (ESS). Hawk
is also the unique pure ESS when V¼C, because b4d. If
V oC ) aoc, there is a unique ESS where Hawks coexist with
Doves at a proportion equal to ðb�dÞ=ðbþc�a�dÞ ¼ V=C.

We consider Hawk–Dove type games played on three com-
monly used families of graphs; the random regular graphs, the
random graphs and the scale-free networks. The random graph
we consider is an Erd +os–Rényi type random graph (Erd +os and
Rényi, 1959) generated as described in Lindquist et al. (2011).
Assume a population of N nodes with no connections between
them. Firstly, every (non-connected) node is connected to a
random node with degree less than the maximum allowable
degree Dmax. In order to ensure that the graph will be connected
(there will be a path between every two nodes of the graph),
initially a pair of nodes is connected, and then each of the
remaining (non-connected) nodes is connected to a randomly
chosen node which is already connected, sequentially. After the
connection of all the nodes, two nodes with degree less than Dmax

are chosen at random and become connected. The last step is
iterated until the desired average degree of the graph, /kS, is
reached. The random regular graphs are generated in the same
way as the random graph by assuming that Dmax ¼ k, i.e. with the
restriction that every node has the same number of connections.
The scale-free networks are networks that have power-law (or
scale-free) degree distributions. These are generated following the
algorithm of preferential attachment (Barabási and Albert, 1999;
Albert and Barabási, 2002). The initial graph consists of a small
number of m0 nodes connected with l0 links. A new node of
degree equal to m (rm0) is added to the graph and each of its
links is connected to one of the existing nodes. The probability
that one of the m links is connected to node i with degree ki is
equal to ki=

PN
j ¼ 1 kj (preferential attachment). This process is

repeated until the network is composed of N nodes. Given that
this happens after t¼N�m0 iteration steps, the number of new
links that will be added in the graph will be equal to mt.
Therefore, the network obtained has average degree equal to
/kS¼ 2ðmtþ l0Þ=N, which for sufficiently large N is well approxi-
mated by 2 m. Note that in all the graphs we consider, it is
assumed that the links between nodes are undirected and
unweighted, every two nodes are connected with at most one
link and there are no self-loops, i.e. there is no link which
connects a node to itself.

In all the examples, it is assumed that at the initial state of the
process the population consists of 50% of individuals playing the
Dove strategy and 50% of individuals playing the Hawk strategy
randomly distributed among the vertices of the network, so that

Fig. 1. Diagram showing all the probabilities of transition from and to the classes Mm,r and Rm,r .
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there is no initial advantage to either of the strategies. The
population size, N, is relatively small, N¼400. The results of the
pairwise model and the Neighbourhood Configuration model are
compared with the average of 100 different network realisations.
The equilibrium densities of the strategies have been obtained by
averaging the frequency over the last 5000 iteration steps in 40 000
iteration steps (for each graph convergence to an equilibrium state
was effectively achieved at a significantly earlier time).

The numerical examples shown in Fig. 2 indicate that, on the
three types of network we consider, the prediction of the change in
the frequencies of strategies over time given by the solution of the
Neighbourhood Configuration model (25) and (26) agrees very well
with the results of computer simulations. The numerical results
also indicate that the more detailed model provides an approxima-
tion with improved accuracy compared to the solution of the
pairwise model. Although it is observed that contact structure has
little effect on such evolutionary dynamics, the effectiveness of the
Neighbourhood Configuration model is clearer on heterogeneous
graphs and in general on graphs of low degree, when compared
with the pairwise model. As the average degree of the graph
increases, i.e. the homogeneity of the graph increases, the predic-
tions of both models are in good agreement with simulation results
(see for example, Fig. 4).

One reason that the solution of the Neighbourhood Configura-
tion model is in a better agreement with the solution of the
simulation model than that of the pairwise model is that the
Neighbourhood Configuration model captures the neighbourhood
distribution of an individual better. In the pairwise model it is
assumed that the distribution of Y individuals around an X
individual, assuming a two-state dynamics, follows a binomial
distribution with parameters /kS and probability ½XY �=/kS½X�,
where ½X� is the number of individuals playing strategy X and ½XY �

the number of pairs between an X and a Y individual (½X� and ½XY �

are calculated from the simulation model; but they can
also be computed from the pairwise model of Section 2.1).

The neighbourhood distribution of an X individual can be calcu-
lated from the Neighbourhood Configuration model by dividing
the number of X individuals connected to iA ½0,Dmax� Y individuals
by the number of X individuals. We can perform a similar
calculation for the simulation model as well. Comparing the
neighbourhood distribution of individuals in the three models,
the pairwise model, the Neighbourhood Configuration model and
the simulation model (see for example Fig. 3), we observe that the
solution of the Neighbourhood Configuration model agrees well
with the results of simulations. On the other hand, the approx-
imation under the assumption that the neighbourhood of an
individual is binomially distributed is not as good.

Although the novelty of this paper is the introduction of this
powerful approximation method for the approximation of the
evolutionary game dynamics in structured populations, we dis-
cuss some main conclusions about the effect of the population
structure on the outcome of the evolutionary dynamics in a
Hawk–Dove game. Specifically, we discuss how the Hawk and
Dove strategies spread in a population represented by a random
regular graph, a random graph and a scale-free network. Numer-
ical examples suggest that increasing the heterogeneity of the
network favours the emergence of the Hawk strategy. Following
the update rules of the voter model, fitter mutants that occupy
nodes of high connectivity have an increased chance to survive
and reproduce (Sood et al., 2008; Hadjichrysanthou et al., 2011).
Therefore, as it is observed in Fig. 2, scale-free networks provide
an encouraging environment for the Hawk strategy. However, the
most important feature of a graph that affects the evolutionary
process is its average degree. The results of our examples indicate
that in all types of graph we consider, a decrease of the average
number of neighbours that each individual has tends to deviate
the equilibrium frequency of Hawks from the equilibrium fre-
quency in the case of the well-mixed population, and this deviation
is more pronounced for lower degree graphs. Depending on the
values of the payoffs, the decrease of the average degree of the
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Fig. 2. Change over time in the proportion of individuals playing the Hawk strategy in a Hawk–Dove game played on a random regular graph with k¼4, a random graph

with /kS¼ 4 and Dmax ¼ 10, and a scale-free network with /kS¼ 4. The solid lines represent the solution of the Neighbourhood Configuration model, the dashed-dotted

lines represent the solution of the pairwise model, and the circles represent the average of 100 stochastic simulations. A 95% bootstrap confidence interval for the mean of

the simulation results is also presented. The upper curves of each sub-figure represent the case of a game described by the payoff matrix (27) where V¼6, C¼10, fb¼4 and

w¼1. The lower curves represent the case of a game where V¼4, C¼10, fb¼4 and w¼1.
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neighbours might enhance or inhibit the use of the Hawk strategy
(and thus the Dove strategy). In particular, if the payoffs are such that
the equilibrium frequency of Hawks in a well-mixed population is
less than half of the population, the decrease of the average number
of neighbours decreases their frequency at equilibrium conditions (at
least when the average degree is already sufficiently small). If the
payoffs are such that the equilibrium frequency in a well-mixed
population is higher than half, the equilibrium frequency will tend to
increase as the average number of neighbours decreases (see in Fig. 4
the effect of the variation of the average degree of a random graph in
two example games). Note that the improved approximation of the
Neighbourhood Configuration model when compared to that of the
pairwise model is not very clear in our examples presented in Fig. 4,
mainly due to the particular example games and the graphs on
which the games are played. However, the scope of this figure is to
illustrate the effect of the average connectivity of the graph at the
equilibrium state of the system.

It should be noted that, due to the nature of the evolutionary
dynamics as well as to the nature of the game we consider, the
evolution of the population is very slow, especially for networks
of low connectivity, and to speed up the evolutionary process and
reduce the computation time we reduce the population size and

the number of simulations realised. However, small population
sizes and small number of realisations of stochastic simulations
result in larger oscillations of the simulation results due to the
increase of the sensitivity of the process to stochastic effects.
Increasing the population size and the number of realisations, this
effect is reduced and the difference between the predictions of
the computer simulations and the predictions of the Neighbour-
hood Configuration model decreases.

3. Discussion

In this work, we have investigated the stochastic evolutionary
game dynamics in structured populations following the update
rules of the voter model dynamics, a dynamics which is applied in
many models that arise in various fields, such as physics and
biology. Whilst analytic investigation of this dynamics is possible
when populations have a simple structure, the study of the
dynamics in complex structures requires the use of approxima-
tion techniques. Here, we propose a Neighbourhood Configuration
model for the study of the stochastic evolutionary dynamics of a
two-strategy game on complex networks.
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Fig. 3. (a) The distribution of Hawks around a Hawk at equilibrium, (b) the distribution of Doves around a Hawk at equilibrium, in a Hawk–Dove game played on a random

graph with /kS¼ 4 and Dmax ¼ 10. V ¼ 6,C ¼ 10,fb¼ 4 and w¼1.
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As an example, we have considered a Hawk–Dove game played
in three widely used types of graph; random regular graphs,
random graphs and scale-free networks. The solutions of the model
constructed in comparison with the outcome of stochastic simula-
tions imply that the method followed is a powerful and effective
method for the approximation of such evolutionary processes. In
addition, comparisons with the results of the extensively used
pairwise approximation suggest that this method improves the
accuracy of the approximation solutions.

Although the aim of this paper is the introduction of the
Neighbourhood Configuration model for the approximation of
evolutionary game dynamics on graphs, we have considered some
important characteristics of the network that might affect the
evolution of a population when a Hawk–Dove game is played
among individuals. The spatial effects in this evolutionary game
have received considerable attention in many previous works,
including Killingback and Doebeli (1996), Hauert and Doebeli
(2004), Tomassini et al. (2006), Broom et al. (2010), Voelkl (2010)
and Hadjichrysanthou et al. (2011). One of the main research
questions is whether there are structures and strategy update
rules which favour the persistence of the cooperative Dove-like
behaviour over the Hawk-like behaviour compared to the evolu-
tion in classical evolutionary game theory under the assumption
that the population is well-mixed and infinitely large. Killingback
and Doebeli (1996) have shown that, for a wide range of para-
meter values, the square lattice structure may favour the Dove
strategy, with respect to the equilibrium frequency of Doves in
the population compared to the equilibrium frequency in the
classical Hawk–Dove game. On the other hand, in Hauert and
Doebeli (2004), extending the investigation of the evolution in
this type of game to a broader class of lattices and under different
strategy update rules, the authors concluded that spatial structure
usually does not promote the spread of the Dove strategy. Santos
and Pacheco (2005) showed that among other structures, in
Hawk–Dove type games (specifically, in the Snowdrift game),
under some specific strategy update rules, the spread of the Dove-
like strategies are facilitated particularly on scale-free networks
due to the existence of highly connected Doves (see also Santos
et al., 2006). Tomassini et al. (2006), based on the results of
computer simulations, have considered the game played among
individuals on lattices, random graphs and small-world networks
and shown that, compared with the case of the well-mixed
population, these types of network might enhance or inhibit the
use of the Dove strategy (the proportion of Doves at the equili-
brium state might be either higher or lower than their proportion
given by the theoretical solution of the classical evolutionary
game theory), depending on the update rule and the ratio V=C. In
Broom et al. (2010), Voelkl (2010) and Hadjichrysanthou et al.
(2011) it has been shown through an analytical and numerical
investigation that the Dove behaviour is favoured on some
structures with respect to the probability and time to fixation.
In this paper, through numerical examples we have shown that
the population structure might significantly influence the evolu-
tion of the population. The most important feature of the graph
that affects evolution in our examples seems to be average con-
nectivity. Decreasing the average number of connections of each
individual increases the difference between the proportion of Hawks
from their proportion in the equivalent infinite homogeneous
population, in the direction of the nearest absorption state. Hence,
depending on the values of the payoffs, the decrease of the average
connectivity of the network enhances or inhibits the use of the
Hawk strategy. In addition, heterogeneous graphs have been shown
to facilitate the spread of Hawks. Particularly, the existence of highly
connected nodes promotes the Hawk strategy and scale-free net-
works appear to be the most hospitable environment among the
networks we have considered.

The approximation method presented in this paper is undoubt-
edly a useful tool which provides an effective way to consider
evolutionary dynamics on a wide range of graphs. We believe that
its use in future research could give insight into the influence of the
population structure on the outcome of such dynamics (see Gleeson,
2011). Future work could involve the application of the Neighbour-
hood Configuration model in the investigation of other type of
dynamics on networks, for example birth–death dynamics where
the birth event happens first followed by the death and replacement
events. One extension of the model could be the inclusion of a
mutation process, a process that usually occurs in natural systems.
For example, it could be assumed that with a certain probability the
offspring of an X individual is not a copy of its parent but is a Y

individual. This would add some complication in the model, because
in this case an X individual might be replaced by a Y individual, which
is the offspring of a neighbouring X individual. Such an extension
would allow us to consider the effect of mutation on evolution on
graphs, an important factor that has rarely been studied. This method
is also amenable to be extended to dynamic networks and thus offer
further potential advantages to modellers (see a modelling frame-
work in this direction in the context of disease propagation in, for
example, Marceau et al., 2010 and Taylor et al., 2012).
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