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Abstract The behaviour of populations consisting of animals that interact with each
other for their survival and reproduction is usually investigated assuming homogene-
ity amongst the animals. However, real populations are non-homogeneous. We focus
on an established model of kleptoparasitism and investigate whether and how much
population heterogeneities can affect the behaviour of kleptoparasitic populations.
We consider a situation where animals can either discover food items by themselves
or attempt to steal the food already discovered by other animals through aggressive
interactions. Representing the likely interactions between animals by a network, we
develop pairwise and individual-based models to describe heterogeneities in both
the population structure and other individual characteristics, including searching and
fighting abilities. For each of the models developed we derive analytic solutions at
the steady state. The high accuracy of the solutions is shown in various examples of
populations with different degrees of heterogeneity. We observe that highly heteroge-
neous structures can significantly affect the food intake rate and therefore the fitness
of animals. In particular, the more highly connected animals engage in more conflicts,
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and have a reduced food consumption rate compared to poorly connected animals.
Further, for equivalent average level of connectedness, the average consumption rate
of a population with heterogeneous structure can be higher.

Keywords Kleptoparasitism · Food stealing · Structured populations · Networks ·
Individual-based models · Pairwise models

Mathematics Subject Classification 05C57 · 91A43 · 92B05 · 91A40 · 91B72 ·
92D50

1 Introduction

In many biological situations animals attempt to steal food already discovered by
others for their survival. This is a very common form of feeding, usually referred to as
kleptoparasitism. Different forms of kleptoparasitic behaviour are observed in many
species in the animal kingdom, for example species of spiders (e.g., Coyle et al. 1991),
birds (e.g., Brockmann and Barnard 1979), snails (e.g., Iyengar 2002), lizards (e.g.,
Cooper and Pérez-Mellado 2003), fish (e.g., Hamilton and Dill 2003), primates (e.g.,
Janson1985), carnivores (e.g., Carbone et al. 2005) and insects (e.g., Erlandsson 1988).
This behaviour of animals has beenwell documented in a review paper (Iyengar 2008).

There are a number of theoretical models focused on the kleptoparasitic behaviour
of animals using different mathematical methods, in particular evolutionary game
theory (e.g., Barnard and Sibly 1981; Broom and Ruxton 1998). The model of Broom
and Ruxton (1998) is a model of kleptoparasitism which employs game theory to
consider the ecological conditions under which attacking to steal the food from other
animals when the opportunity arises is the best strategy that foraging animals should
adopt in order to maximise their food intake rate and consequently their fitness. Food
in this model comes as single indivisible items, which must be consumed completely
by an animal. Thus, food can never be shared and challenging animals attempt to steal
the whole item from the owner, or not.

A series of publications has appeared developing the original model of Broom and
Ruxton (1998) in a number ofways (e.g., BroomandRuxton 2003; BroomandRychtář
2007;Luther et al. 2007;Yates andBroom2007;Broomet al. 2008;BroomandRychtář
2009, 2011; Hadjichrysanthou and Broom 2012). Crowe et al. (2009) provides a brief
review on the main theoretical work on kleproparasitism prior to the investigation of
a stochastic model of kleptoparasitism in finite populations. A comparison between
some main models of kleptoparasitism is discussed in Vahl (2006) and an alternative
model is presented. There is also a series of relatedmechanistic, but not game-theoretic,
models which investigate interference competition, where foraging animals engage in
aggressive interactions in order, for example, to defend their territory, resulting in
negative effects on their foraging efficiency (e.g., Beddington 1975; Ruxton et al.
1992; van der Meer and Ens 1997; Vahl 2006; Smallegange and van der Meer 2009;
van der Meer and Smallegange 2009).

The game-theoretical model of Broom and Ruxton (1998) and the subsequent work
assumed that the population of foraging animals is infinitely large, homogeneous
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and well-mixed, where every animal has the same foraging and fighting abilities and
is equally likely to meet and interact with any other animal. However, in natural
situations, animals differ in these abilities and usually forage in small groups forming
complex relationships and social structure (e.g., Krause et al. 2007; Croft et al. 2008).
A number of stochastic models have been developed to consider the dynamics of
kleptoparasitic populations of finite size (see Yates and Broom 2007; Crowe et al.
2009). However, the effect of the population structure and other heterogeneities on the
behaviour of such populations remains a research question.

In this paper, we explore the role of the underlying connectivity and other hetero-
geneities between animals in the dynamics of kleptoparasitic populations. Interactions
between animals are represented by a static network; each animal is assumed to occupy
a node, the links between nodes represent interactive relationships. We first revisit the
original model of Broom and Ruxton (1998), which provides a baseline approxima-
tion to the key features of the system that we will consider, in particular the handling
ratio, the proportion of animals handling food items at any one time. We then extend
the model to networks. We develop and analyse an individual-based model which
incorporates an arbitrarily complex population structure and heterogeneities in the
model parameters and obtain a more precise estimate of these features, albeit with
the downside that a large number of parameters and distinct estimates are required.
To reduce the number of parameters and equations we also describe the system by a
pairwise approximation model. We consider the effect of the population structure and
compare the numerical solution of the two models and analytical solutions derived
with the results of stochastic simulations on theoretical and empirical networks.

2 Models of kleptoparasitism in homogeneous well-mixed populations

2.1 The model of Broom and Ruxton (1998)

In the basic model of Broom and Ruxton (1998) each of the animals in a population of
foragers either searches for food, has already acquired and is handling a food item prior
to its consumption, or fights with another animal over a food item. Let us denote by P
the population density, by S the density of searchers and by H the density of handlers.
When a foraging animal encounters an animal in the handling state it attacks it to steal
the prey. There is a constant density of food items f available and searchers cover an
area ν f per unit of time whilst searching for food, so animals find food at rate ν f f . If
a handler animal is not attacked, it consumes its food item in a time drawn randomly
from an exponential distribution with mean th . Attacked animals always defend their
food and a fight takes place. Searchers encounter handlers and engage in a fight at rate
νh H . A fight lasts for a time drawn randomly from an exponential distribution with
mean ta/2. In the model of Broom and Ruxton (1998) it was assumed that animals
involved in an aggressive interaction are equally likely to win the fight and obtain
the food. Here, we allow different competitive abilities between the attacker and the
attacked animals, i.e. the probability of the attacking animal winning and obtaining
the food, α, varies between 0 and 1, as happens in natural situations. This was an
extension to the original model introduced by Broom et al. (2004). We denote by A
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Table 1 Notation of the basic game-theoretical model of kleptoparasitism

Population’s densities Meaning

P Density of the population

S, H, A, R Density of searchers, handlers, attackers and defenders

Model parameters Meaning

ν f f Rate at which foragers find undiscovered food

νh H Rate at which foragers encounter handlers

th Expected time for a handler to consume a food item if it is not attacked

ta/2 Expected duration of a fight

α The probability that the attacker wins the fight

and R the density of attacking searchers and defenders engaged in a fight, respectively.
The loser of the fight returns to the searching state while the winner starts handling
the food item. The model notation is summarised in Table 1.

The system of equations constructed to describe the dynamics of the four subpop-
ulations (see Ruxton and Moody 1997; Broom and Ruxton 1998; Broom et al. 2004)
is the following:

dS

dt
= 1

th
H + 2

ta
(1 − α)A + 2

ta
αR − ν f fS − νhSH, (1)

dH

dt
= ν f fS + 2

ta
αA + 2

ta
(1 − α)R − 1

th
H − νhSH, (2)

dA

dt
= νhSH − 2

ta
A, (3)

dR

dt
= νhSH − 2

ta
R. (4)

2.2 The searchers-handlers relationship at the steady state and the handling
ratio

At the steady state of the system (1)–(4) the searching population is proportional to
the handling population:

S = H

thv f f
. (5)

One of the most important quantities is the food intake rate γ , which is a natural
measure of the payoff for an animal. This is given by

γ = H

th P
, (6)
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where the handling ratio H
P , the proportion of handlers at the steady state, is given by

H

P
=

−(thν f f + 1) +
√

(thν f f + 1)2 + 4thtaν f f νh P

2taνh P
. (7)

Equation (7) is the baseline of the handling ratio that will be compared with the
handling ratios in subsequent models.

3 Models of kleptoparasitism on networks

3.1 An individual-based model

We extend the model (1)–(4) at the individual-level to allow heterogeneity in the
parameters and the underlying connectivity between animals. We assume that the
population can be represented by a network of N nodes. Each node is occupied by
a single animal. A link between two nodes represents a connection between the two
animals occupying the nodes. The network can be described by the adjacency matrix
AM = [ai j ], where ai j = 1 if node i is connected to node j and ai j = 0 otherwise,
i, j ∈ {1, 2, . . . , N }. All the networks thatwe consider in this study are static networks.
It is also natural to assume that the networks are undirected, i.e. an animal that can
attack another animal can also be attacked by the same animal.

One of the important quantities that characterises an individual in the network is
its degree, which measures the number of its nearest neighbours. In an undirected
network, the degree of node i , di , is given by:

di =
∑
j

ai j =
∑
j

a ji . (8)

An animal at node i is either in the searching statewith probability 〈Si 〉, the handling
state with probability 〈Hi 〉, or it is fighting with a connected animal in some node j .
Animal i searches for food at speed v f i and discovers a food item at rate v f i fi , where
fi is the food availability for the animal in node i . A searcher Si also searches for
handlers at rate vh,i . If a searcher encounters a handler, they engage in a fight over the
food. Let 〈Ai R j 〉 denote the probability that animals in nodes i and j are engaged in
a fight following the attack of Si on Hj . Clearly,

∑
j 〈Ai R j 〉 is equal to the overall

probability of an animal in node i being an attacker, 〈Ai 〉, and ∑
i 〈Ai R j 〉 is equal to

the overall probability of an animal in node j being a defender, 〈R j 〉. The expected
fight duration between a searcher i and a handler j is ta,i j/2. The fight time ta,i j/2
might differ from ta, j i/2; for example the length of the contest might depend upon
the persistence of the attacking animal, which can be different in the two cases. At the
end of the fight between animals in nodes i and j , the attacking searcher wins with
probability αi j and takes the food. A handler consumes the food at rate t−1

h,i , thus taking
an expected time of th,i to consume the item, and then returns back to the searching
state.
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The dynamics of the system can be described by the following model:

d〈Si 〉
dt

= −v f fi 〈Si 〉 + t−1
h,i 〈Hi 〉 − vh,i 〈Si 〉

∑
j

ai j 〈Hj 〉

+ 2
∑
j

(1 − αi j )t
−1
a,i j 〈Ai R j 〉 + 2

∑
j

α j i t
−1
a, j i 〈A j Ri 〉, (9)

d〈Hi 〉
dt

= v f fi 〈Si 〉 − t−1
h,i 〈Hi 〉 − 〈Hi 〉

∑
j

a jivh, j 〈S j 〉

+ 2
∑
j

αi j t
−1
a,i j 〈Ai R j 〉 + 2

∑
j

(1 − α j i )t
−1
a, j i 〈A j Ri 〉, (10)

d〈Ai R j 〉
dt

= ai jvh,i 〈Si 〉〈Hj 〉 − 2t−1
a,i j 〈Ai R j 〉. (11)

It should be noted that vh,i and ai j always appear as a product, i.e. as vh,i ai j ,
∀i, j ∈ {1, . . . , N }, with the product representing the rate at which a searcher animal
i encounters a handler j during the time it invests in searching for handlers. Hence,
we could simply assume that the adjacency matrix is a weighted matrix A′

M whose
element a′

i, j is equal to vh,i ai j , ∀i, j ∈ {1, . . . , N }. However, to be consistent with
the notation of previous models developed we separate the two terms. In addition, as
v f i and fi always appear as a product, we have replaced v f i fi by v f fi .

The system (9)–(11) consists of N (2+d) equations, where d is the average degree
of a node. This system assumes statistical independence between animals that are not
fighting each other. This assumption can be relaxed by extending the system further to
include the dynamics of pairs of animals at the searching, handling and fighting state
(see for example Sharkey 2008 for relevant epidemic models on networks). However,
such complex extensions are more computationally expensive and as the model (9)–
(11) is very accurate (see Sect. 4), we focus on this to study the effect of the population
structure in kleptoparasitic populations as described by Broom and Ruxton (1998).

3.1.1 Steady states of the individual-based model and the handling ratio

In Luther and Broom (2004) the authors proved rapid convergence to a unique solution
for the considerably simpler original models of Ruxton andMoody (1997) and Broom
and Ruxton (1998). Despite the complexity of the system (9)–(11) we believe that
this has a unique steady-state solution too. Although the complexity of the system has
meant that we are unable to prove this, the output of stochastic simulations supports
this statement.

At the steady state:

0 = −v f fi 〈Si 〉 + t−1
h,i 〈Hi 〉 − vh,i 〈Si 〉

∑
j

ai j 〈Hj 〉

+ 2
∑
j

(1 − αi j )t
−1
a,i j 〈Ai R j 〉 + 2

∑
j

α j i t
−1
a, j i 〈A j Ri 〉, (12)
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0 = v f fi 〈Si 〉 − t−1
h,i 〈Hi 〉 − 〈Hi 〉

∑
j

a jivh, j 〈S j 〉

+ 2
∑
j

αi j t
−1
a,i j 〈Ai R j 〉 + 2

∑
j

(1 − α j i )t
−1
a, j i 〈A j Ri 〉, (13)

0 = ai jvh,i 〈Si 〉〈Hj 〉 − 2t−1
a,i j 〈Ai R j 〉. (14)

From (14) it follows that at the steady state

〈Ai R j 〉 = ta,i j

2
ai jvh,i 〈Si 〉〈Hj 〉. (15)

Substituting Eq. (15) into (13) we obtain:

〈Hi 〉 = th,iv f fi 〈Si 〉
vh,i

∑
j αi j ai j 〈Hj 〉 + v f fi

th,iv f fi
∑

j α j i a jivh, j 〈S j 〉 + v f fi
. (16)

Wewill be considering an approximation solution of the system (12)–(14) by assum-
ing that

〈Si 〉 = 〈Hi 〉
th,iv f fi

, ∀i ∈ {1, . . . , N }. (17)

Equation (17) satisfies Eq. (16) in homogeneous well-mixed populations (see also
Eq. (5)). This relationship between searchers and handlers has been shown to be valid
in such populations also in previous work (Broom and Ruxton 1998; Broom et al.
2004), as well as in subsequent network-based models considered in this paper (see
Sect. 3.2).

Since an animal is always in one of the three states, searching, handling or fighting,
we have that

〈Si 〉 + 〈Hi 〉 +
∑
j

〈Ai R j 〉 +
∑
j

〈A j Ri 〉 = 1. (18)

Substituting (15) and (17) into (18) we get

〈Hi 〉
⎡
⎣ 1

th,iv f fi
+ 1 + 1

2

∑
j

(
ta,i j ai jvh,i

th,iv f fi
+ ta, j i a jivh, j

th, jv f f j

)
〈Hj 〉

⎤
⎦ = 1, (19)

where we assumed that v f fi > 0 for all i ∈ {1, . . . , N }.
(19) is a system of N simultaneous equations with N unknowns, the individual

handling ratios, which are the probabilities of each animal handling a food item at any
time point at the steady state.

A potential limitation of the solution of Eq. (19), which is based on the assumption
(17), is that this is independent of the probability of an attacking searcher i winning
the fight with handler j , αi j , ∀i, j ∈ {1, . . . , N }. However, as discussed in Sect. 4,
the value of the probability αi j , ∀i, j ∈ {1, . . . , N }, does not affect the system in
homogeneous populations placed on complete or regular networks and its effect on
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the average handling ratio in populations placed on heterogeneous networks, if any, is
negligible.

The mean handling ratio of the system (9)–(11) is given by

H = 1

N

N∑
i=1

〈Hi 〉. (20)

3.1.2 A special case: a homogeneous population on a regular undirected network

In the case of a homogeneous population placed on a regular undirected network,
Eq. (19) is solved by

〈Hi 〉 = 〈H〉, ∀i ∈ {1, . . . , N }. (21)

Substituting (21) into (19) yields

ta
vh

thv f f
d〈H〉2 +

(
1

thv f f
+ 1

)
〈H〉 − 1 = 0, (22)

where d is the degree of each of the nodes. The biologically relevant solution of the
above equation is

〈H〉 =
−(thν f f + 1) +

√
(thν f f + 1)2 + 4thtaν f f νhd

2taνhd
. (23)

We observe that for d = P , (23) is identical to Eq. (7). In otherwords, setting νh = d in
the case of a homogeneous well-mixed population (system (1)–(4)) with P = 1, yields
equivalent results to those obtained in the case of a structured population represented
by a regular network with degree d. Hence, decreasing the number of neighbouring
animals in a homogeneous population placed on a regular network has the same effect
as decreasing the rate at which foragers encounter handlers in a homogeneous well-
mixed population, i.e. as decreasing νh .

3.2 A pairwise model

Although the individual-based model developed in the previous section can describe
more realistic systems, it is characterised by a large number of variables and param-
eters. In this section, to reduce complexity, we consider an alternative model for the
description of the dynamics of a structured kleptoparasitic population. This is a pair-
wise model developed using the pair approximation method (Matsuda et al. 1992; van
Baalen and Rand 1998; Keeling 1999; Eames and Keeling 2002; House and Keeling
2011). The method assumes regularity of the network and identical parameters for
every individual.

Assume that animals of a finite homogeneous population occupy the nodes of a
regular network of degree d, i.e. every animal has exactly d neighbours. Let [X ] be
the number of animals in state X , [XY ] the number of X −Y pairs between an animal
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in state X and an animal in state Y , and [XY Z ] the number of triples of type X−Y −Z .
X , Y and Z represent any of the foraging states; the searching state S, the handling
state H , the attacking state A and the resisting state R. Two connected animals in
the fighting state might fight each other or they might fight with some other animal.
We distinguish these different types of pairs of animals by denoting by [ARJ ] the
number of pairs of animals which are fighting each other, and by [AR], [AA] and
[RR] the number of pairs of animals which are involved in a fight, either by attacking
or resisting, but which are not fighting each other (so that both, one or neither could be
an A). X − X pairs are counted twice (once in each direction, and thus [XX ] is always
even), whereas X − Y pairs are counted once in each direction, and [XY ] = [Y X ].

Following the rules of the game as described in Sect. 2.1, the dynamics of the
singles and pairs can be described by the following system of differential equations:

d[S]
dt

= 1

th
[H ] + 2

ta
(1 − α)[A] + 2

ta
α[R] − ν f f [S] − νh[SH], (24)

d[H ]
dt

= ν f f [S] + 2

ta
α[A] + 2

ta
(1 − α)[R] − 1

th
[H ] − νh[SH], (25)

d[A]
dt

= νh[SH] − 2

ta
[A], (26)

d[R]
dt

= νh[SH] − 2

ta
[R], (27)

d[SS]
dt

= 2

th
[SH] + 4

ta
(1 − α)[SA] + 4

ta
α[SR] − 2ν f f [SS] − 2νh[SSH], (28)

d[HH]
dt

= 2ν f f [SH] + 4

ta
α[HA] + 4

ta
(1 − α)[HR] − 2

th
[HH] − 2νh[HHS], (29)

d[AA]
dt

= 2νh[ASH] − 4

ta
[AA], (30)

d[AR]
dt

= νh[HSR] + νh[AHS] − 4

ta
[AR], (31)

d[RR]
dt

= 2νh[RHS] − 4

ta
[RR], (32)

d[ARJ ]
dt

= 2νh[SH] − 2

ta
[ARJ ], (33)

d[SH]
dt

= ν f f [SS] + 1

th
[HH]

+ 2

ta

(
α[SA] + (1 − α)[SR] + (1 − α)[AH] + α[RH] + 1

2
[ARJ ]

)

−
(

ν f f + 1

th

)
[SH] − νh ([SH] + [SHS] + [HSH]) , (34)

d[SA]
dt

= 1

th
[HA] + 2

ta
(1 − α)[AA] + 2

ta
α[RA] + νh[SSH]

−
(

ν f f + 2

ta

)
[SA] − νh[ASH], (35)
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d[SR]
dt

= 1

th
[HR] + 2

ta
(1 − α)[AR] + 2

ta
α[RR] + νh[SHS]

−
(

ν f f + 2

ta

)
[SR] − νh[HSR], (36)

d[HA]
dt

= ν f f [SA] + 2

ta
α[AA] + 2

ta
(1 − α)[RA] + νh[HSH]

−
(
1

th
+ 2

ta

)
[HA] − νh[SHA], (37)

d[HR]
dt

= ν f f [SR] + 2

ta
α[AR] + 2

ta
(1 − α)[RR] + νh[HHS]

−
(
1

th
+ 2

ta

)
[HR] − νh[SHR]. (38)

We ‘close’ the system of equations at the level of pairs by approximating the triples
by an expression in terms of singles and pairs. The number of the triples [XYZ] can
be approximated by the following moment closure approximation (see for example,
Keeling 1999; Rand 1999):

[XYZ] =
(
d − 1

d

) [XY ][YZ]
[Y ] , (39)

where d is the degree of each node in the network.
Hence, the system (24)–(38), together with the closure approximation (39), is a

system of 15 differential equations, which is significantly lower than the number of
equations in the individual-based model (9)–(11), which has two equations for every
individual and for every link.

Clearly, since for every animal A there is one animal R,

[A] = [R] = [ARJ ]. (40)

In addition, at the steady state, at which all the equations in the system (9)–(11) are
equal to zero, from Eq. (26) we get

[A] = ta
2

νh[SH]. (41)

Substituting Eqs. (40) and (41) into (25) we get that at the steady state

[H ] = thν f f [S]. (42)

Since
[S] + [H ] + [A] + [R] = N , (43)

using (40), (41) and (42) we get

[S] = N − taνh[SH]
1 + thν f f

. (44)
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The steady state solution of the system (24)–(39) is derived in “Appendix A”.

4 Numerical examples: effect of network structure on the handling ratio

We compare the solution of the models developed in the previous section with the
results of stochastic simulations on a number of theoretical and empirical networks; a
random network, a random regular network, a scale-free network and the Guppy net-
work. The stochastic simulation is described in “Appendix B”. The random network
we consider is an Erdős–Rényi type network (Erdős and Rényi 1959) generated as
described in Lindquist et al. (2011). The random regular network was generated in the
same way as the random network with the restriction that every vertex has the same
number of connections. The scale-free network is a network that has a power-law (or
scale-free) degree distribution. This was generated following the algorithm of prefer-
ential attachment (Barabási and Albert 1999; Albert and Barabási 2002). The random,
random regular and scale-free networks developed are undirected and unweighted.
Unless otherwise stated, the number of nodes of each of these networks that are con-
sidered in the current study is 100 and the average degree is 4. The Guppy network
is a real network dataset that represents the contacts of a well-known freshwater fish
species, the guppy (Poecilia reticulata), also known as the millionfish (Croft et al.
2011). This network is complex and highly structured, and exhibits small-world net-
work properties (Watts and Strogatz 1998). It is a weighted network consisting of 99
nodes and 726 undirected links, where each node represents a guppy and each link
a social interaction between two guppies. The average connectivity of each node is
14.7 and the clustering coefficient (Watts and Strogatz 1998) of the network is 0.77.
To be consistent with the other example networks considered in this work, the Guppy
network was converted to an unweighted network. In Croft et al. (2011) there is a
detailed consideration of some local and global parameters of the Guppy network,
such as the average geodesic (the smallest number of edges by which one node can be
reached from the other), and other social characteristics. To illustrate the effect of the
population structure in each of the examples, the solution of the models on the com-
plete network (with N = 100), where every animal is connected to everyone else, is
also presented and compared with the other solutions. Clearly, in large homogeneous
well-mixed populations all models become equivalent and exact.

4.1 Case 1: identical parameter values among individuals

We assume the same parameter values for every individual and compare the numerical
solutions of the individual-based and pairwise models with the results of stochastic
simulations. We also evaluate and compare all the approximate steady state solutions
for both models, i.e. the solution of (19), of Eq. (23) and of the equation for [H ]
in (60). Since (23) is a solution of the system (19) in the special case of homoge-
neous populations on regular undirected networks, the solutions of (19) and (23) are
equivalent on well-mixed and random regular networks.

In Fig. 1, we illustrate the variation in the density of handlers over time on the
different networks when vh,i = vh/di . This example can describe the case where
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Fig. 1 Change over time in the density of handlers on a a complete network, b a random regular network,
c a random network, d a scale-free network, e the Guppy network. The characteristics of these networks
are discussed in Sect. 4. The circles represent the average of 10,000 stochastic simulations. Initially, at
time = 0, all animals are at the searching state. The solid line is the solution of the individual-based
model (9)–(11) and the dashed line the solution of the pairwise model (24)–(39). The dotted line and the
asterisks, ‘*’, are respectively the approximate solutions (19) and (23) of the individual-based model at the
steady state. The plus signs, ‘+’, is the solution of the pairwise model explicitly given in “Appendix A”.
P = 1, ta,i j /2 = 0.5, αi j = 0.5, th,i = 1, v f fi = 1, vh,i = 1/di , i, j ∈ {1, . . . , N }

the search for handlers effectively requires a time consuming action such as a ‘visit’
to a neighbour’s site, where vh is some basic rate at which animals can perform the
search. It is observed that the density of handling animals (and similarly animals in
other states) is not changed significantly by the change in the population structure,
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Fig. 2 a The average probability of an animal being a handler at the steady state as a function of the degree
of the node that it occupies on a random network with average degree equal to 6 and N = 100. b The
density of handlers at the steady state on random networks of different degree and N = 100. The results
have been derived by solving the individual-based model (9)–(11) at the steady state. ta,i j /2 = 0.5, αi j =
0.5, th,i = 1, v f fi = 1, vh,i = 0.3, i, j ∈ {1, . . . , N }

especially when animals are placed on a regular (or at least not a highly-structured)
network. This is mainly because the number of connections is the same (or almost the
same) for every animal, and therefore every animal has the same chance of engaging
in an aggressive interaction.

A more pronounced structural effect is observed when the structure is highly het-
erogeneous, for example a structure which has the features of a scale-free network (see
Fig. 1d). The existence of animals whose degree greatly exceeds the average reduces
significantly the overall number of fights taking place over food, resulting in impor-
tant changes of the population food intake rate. In particular, the increased number of
connections of an animal increases its chance to be involved in a fight over food with
another animal. This has a negative effect on its food consumption rate (see for example
Fig. 2a).On the other hand, lowly connected animals can search, find and consume food
with a very small risk of being engaged in an aggressive interaction. Since in networks
with a power-law degree distribution the number of highly connected nodes is small,
the average handling ratio, and thus the food intake rate of the population, increases
compared to that of the respective well-mixed population of the same size, or the infi-
nite homogeneous well-mixed population of the model of Broom and Ruxton (1998).

In regular and random networks, both the individual-based model and the pairwise
model agree very well with the results of simulations. In fact the pairwise model seems
to perform slightly better than the individual-based model on regular networks; this
is reasonable as it is designed for this type of networks, whereas the individual-based
model makes some assumptions of statistical independence. In highly heterogeneous
structures, the solution of the individual-based model and its approximate solution at
the steady state, (19), performmuch better than the respective solutions of the pairwise
model (see Fig. 1d).

123



C. Hadjichrysanthou et al.

(a)

t

0

0.1

0.2

0.3

0.4

0.5

(b)

α

0.4

0.42

0.44

0.46

0.48

0.5

(c)

th

0

0.2

0.4

0.6

0.8

1

pr
op

or
tio

n 
of

 H
an

dl
er

s 
at

 th
e 

st
ea

dy
 (d)

2 4 6 8 10 0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 10 0 2 4 6 8 10
v
f
f

0

0.2

0.4

0.6

0.8

1

st
at

e
pr

op
or

tio
n 

of
 H

an
dl

er
s 

at
 th

e 
st

ea
dy

 
st

at
e

pr
op

or
tio

n 
of

 H
an

dl
er

s 
at

 th
e 

st
ea

dy
 

st
at

e
pr

op
or

tio
n 

of
 H

an
dl

er
s 

at
 th

e 
st

ea
dy

 
st

at
e

Fig. 3 The effect of the change of the parameters a ta,i j , b αi j , c th,i , d v f fi , on the proportion of handlers
at the steady state on a scale-free (dashed line) and a complete (solid line) network of N = 100. In each
case, a single parameter is varied, and all other parameters remain fixed. The results have been derived by
solving the individual-based model (9)–(11) at the steady state. In every case, ta,i j = ta , αi j = α, th,i =
th , v f fi = ν f f, vh,i = 1/di , i, j ∈ {1, . . . , N }.When ta , α, th and ν f f are fixed, ta = 1, α = 0.5, th = 1
and ν f f = 1

It should be noted that the rate at which foragers find undiscovered food, ν f f , and
the expected time for a handler to consume a food item, th , seem to have the most
important influence on the average intake rate of kleptoparasitic populations irrespec-
tive of their structure. However, the duration of a fight between two animals, ta/2, is the
parameter whose increase yields higher differences between the average intake rate in
structured populations and that in homogeneous well-mixed populations (see Fig. 3).
The choice of the value of the probability of an attacking searcher i winning the fight
with a defender j ,αi j , is generally insignificant (see for example Fig. 3b). In particular,
in homogeneous well-mixed populations, after any contest there is one winner and one
loser both connected to the same number of animals and thus the population distribu-
tion at the steady state is the same irrespective ofαi j , i, j ∈ {1, 2, . . . , N }. The solution
of the pairwise model at the steady state found in “Appendix A”, which we have not
conclusively proved but we believe to be the unique solution, is also independent of
the value of α. Moreover, even in populations with extreme structural heterogeneity
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different values of α make little or no difference; although the value of α can have
an effect on the handling ratio of each animal individually, the change of the average
handling ratio, if any, is negligible. This is verified both by the results of stochastic
simulations and the numerical solution of the individual-based model (9)–(11).

An example of the case where vh,i = vh , ∀i ∈ {1, . . . , N }, is illustrated in Fig. 4.
This example can describe a case in which foraging animals can search for animals
handling a food item from their position by scanning the entire space, for example
by rotating at rate 360 degrees per v−1

h seconds, and thus in the same amount of time
they can see an arbitrary number of animals. However, their location or geographical
position might affect the likelihood that they observe others. The animals can interact
only if they can see each other, and a higher degree of a node in this case means a
higher number of visible animals.

The structure effect is clearer here. The higher the degree of the network, the lower
the density of handlers (see also Fig. 2b). As before, it is observed that in highly
heterogeneous structures, the numerical and approximate analytical solutions of the
individual-based model perform much better than those of the pairwise model, when
compared with the results of stochastic simulations. However, on regular networks,
or not very structurally heterogeneous populations, the pairwise model performs very
well (and in some cases better than the individual-based model), demonstrating that it
is a good compromise between accuracy and complexity.

4.2 Case 2: inter-individual variability in parameter values

In order to illustrate the effectiveness of the individual-based model in highly hetero-
geneous environments, we also consider two different examples where the individual
model parameters are not the same for every individual. In both examples, the individ-
ual parameters v f fi , t

−1
h,i , t

−1
a,i j , i, j ∈ {1, . . . , N }, are drawn independently from an

exponential distribution with mean equal to 1. αi j is drawn from the uniform distribu-
tion on the unit interval [0, 1]. In the first example, illustrated in Fig. 5, vh,i = 1/di .
In the second example, illustrated in Fig. 6, vh,i is also drawn from an exponential
distribution with mean equal to 1. The parameter values for each individual are the
same on the different structured populations, and we compare only the results on the
complete network, the random regular network, the random network and the scale-free
network that have the same population size.

In these examples, it makes sense to consider only the effectiveness of the
individual-based model (9)–(11) developed in Sect. 3.1 when compared to the output
of stochastic simulations. In both Figs. 5 and 6, it is observed that even in highly
heterogeneous populations the individual-based model and its approximate solution
(19) at the steady state predicts accurately the results of simulations in all networks
considered.

5 Discussion

We have extended the original model of kleptoparasitism proposed by Broom and
Ruxton (1998) onto networks to study the effect of the population structure and
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Fig. 4 Change over time in the density of handlers on a a complete network, b a random regular network,
c a random network, d a scale-free network, e the Guppy network. The characteristics of these networks
are discussed in Sect. 4. The circles represent the average of 10,000 stochastic simulations. Initially, at
time = 0, all animals are at the searching state. The solid line is the solution of the individual-based
model (9)–(11) and the dashed line the solution of the pairwise model (24)–(39). The dotted line and the
asterisks, ‘*’, are respectively the approximate solutions (19) and (23) of the individual-based model at the
steady state. The plus signs, ‘+’, is the solution of the pairwise model explicitly given in “Appendix A”.
P = 1, ta,i j /2 = 0.5, αi j = 0.5, th,i = 1, v f fi = 1, vh,i = 0.3, i, j ∈ {1, . . . , N }

other heterogeneities on the behaviour of kleptoparasitic populations. To describe
the dynamics of a population placed on a network, we first developed an individual-
based model which enabled us to incorporate individual-level mechanisms in the
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Fig. 5 Change over time in the density of handlers on a a complete network, b a random regular network,
c a random network, d a scale-free network. The characteristics of these networks are discussed in Sect. 4.
The solid line is the solution of the individual-based model (9)–(11) and the circles represent the average
of 10,000 stochastic simulations. Initially, at time = 0, all animals are at the searching state. The dotted
line is the approximate solution (19) of the individual-based model at the steady state. t−1

a,i j , t
−1
h,i , v f fi ,

i, j ∈ {1, . . . , N }, are drawn independently from an exponential distribution with mean equal to 1. αi j is
drawn from the uniform distribution on the unit interval [0, 1]. vh,i = 1/di

original model, for example to introduce heterogeneity in the consumption rates
of animals, their ability to find food and other animals handling food, their fight-
ing abilities, as well as in the fighting times over food between pairs of animals.
Despite the accurate prediction of this model in describing the output of stochastic
simulations, it consists of a large number of equations, which is O(dN). Assuming
identical behavioural parameters and regular population structures, we also devel-
oped a pairwise model that has a significantly lower number of equations. For each
model, we derived either approximate or exact solutions of the handling ratio, which
is the rate at which an animal consumes food at the steady state. In highly het-
erogeneous structures the individual-based model performed much better than the
pairwise model. However, in populations placed on regular or random networks, the
solution of the pairwise model agreed very well with the results of stochastic simula-
tions.

We have shown that the population structure may not greatly affect the dynamics
of the population, mainly due to the fact that animals can discover and consume items
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Fig. 6 Change over time in the density of handlers on a a complete network, b a random regular network,
c a random network, d a scale-free network. The characteristics of these networks are discussed in Sect. 4.
The solid line is the solution of the individual-based model (9)–(11) and the circles represent the average
of 10,000 stochastic simulations. Initially, at time=0, all animals are at the searching state. The dotted line
is the approximate solution (19) of the individual-based model at the steady state. t−1

a,i j , t
−1
h,i , v f fi , vh,i ,

i, j ∈ {1, . . . , N }, are drawn independently from an exponential distribution with mean equal to 1. αi j is
drawn from the uniform distribution on the unit interval [0, 1]

of food independently of the population structure. The only effect of the structure is
due to the change of the rate at which each animal is involved in aggressive interac-
tions. Hence, in populations placed on a regular network, the decrease of the network
degree has the same effect as that of the decrease of the rate at which foraging ani-
mals encounter handlers in a homogeneous well-mixed population. A more important
influence of the population structure was observed on degree-heterogeneous struc-
tures, where the chance of encountering an animal and being engaged in a fight, either
as a searcher or a handler, is not the same for every animal in the population, due to
the different degree of connectivity. In particular, a significant effect was observed
in scale-free networks, where the variance in the degree distribution is high. Clearly,
in such networks, highly connected animals are more likely to fight over food with a
neighbouring animal, affecting negatively their food consumption rate, whereas poorly
connected animals handling a food item have a higher chance of consuming the food
before being challenged by other animals. As the highly connected animals, and there-
fore the number of aggressive interactions among animals, on such structures are few,
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the average intake rate of the population increases compared to the respective rate in
a well-mixed population.

This study is the first step in developing tools for the modelling of food-stealing
interactions in more realistic settings, building upon models developed in idealised
‘well-mixed’ populations, to create models that can accommodate heterogeneous
spatial and social relationships. In this first development of classicmodels of kleptopar-
asitism on networks animals do not have the option to optimise their foraging strategy
andmaximise their food intake rate in different ecological conditions. The influence of
the population structure on the evolution of kleptoparasitic populations when animals
can choose from a range of foraging strategies (see for example Broom et al. 2004)
constitutes an interesting subject for subsequent studies. The general methodology
could also apply more widely to related scenarios of animal interaction, such as that
of predator interference (e.g. van der Meer and Ens 1997; Vahl 2006; van der Meer
and Smallegange 2009).
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Appendix A: Steady state of the pairwise model

We assume that the system of differential Eqs. (24)–(38) is in a steady state, i.e. that
all of the derivatives are set equal to zero. Firstly, we shall make some assumptions of
independence within our system. We use these assumptions to find a solution, which
we then verify is a solution of the original set of equations without the assumptions.

Given the relationship (42), we assume that

[HH] = thν f f [SH], (45)

and that

[SS] = 1

thν f f
[SH]. (46)

Clearly, the number of all pairs is equal to the number of links in the network, i.e.

[SS] + [HH] + [AA] + [RR] + 2 ([AR] + [ARJ ] + [SH]
+[SA] + [SR] + [HA] + [HR]) = dN . (47)
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Hence, all the singles and the pairs [ARJ ], [HH] and [SS] can be expressed in terms
of [SH], and given the expression (47) the system of equations with (24)–(38) set to
equal 0 is reduced by eight equations.

Since [A] = [R], at the steady state of the pairwise model, the equivalent indepen-
dence assumptions to the above give [SA] = [SR] and [HA] = [HR].

Let us denote by [F], the number of animals involved in a fight, either as attackers
A or defenders R. Hence, [A] = [R] = [F]/2, [SA] = [SR] = [SF]/2, [HA] =
[HR] = [HF]/2, [ARJ ] = [FFJ ]/2 and [AA] + [RR] + 2[AR] = [FF], where [AA] =
[RR] = [AR] = [FF]/4. From equation (28) and the moment closure approximation
(39) we get that

2

th
[SH] + 2

ta
[SF] − 2ν f f [SS] − 2νh

(
d − 1

d

) [SS][SH]
[S] = 0. (48)

Substituting Eqs. (44) and (46) in (48) we get

[SF] =
(
d − 1

d

)
νhta

(
1 + thν f f

) [SH]2
thν f f (N − taνh[SH]) . (49)

Similarly, from Eq. (29) and using (39) we get

2ν f f [SH] + 2

ta
[HF] − 2

th
[HH] − 2νh

(
d − 1

d

) [HH][HS]
[H ] = 0. (50)

Substituting Eqs. (42), (44) and (45) in (50) we get

[HF] =
(
d − 1

d

)
νhta

(
1 + thν f f

) [SH]2
N − taνh[SH] = 0. (51)

From Eqs. (30)–(32) and the fact that [FF] = [AA] + [RR] + 2[AR] we get that at
the steady state

2νh ([FSH] + [FHS]) − 4

ta
[FF] = 0. (52)

Using the closure approximation (39) we get

[FF] = ta
2

νh

(
d − 1

d

)
[SH]

( [SF]
[S] + [HF]

[H ]
)

. (53)

Substituting (42), (44), (49) and (51) in (53) we get

[FF] =
(
d − 1

d

)2 ν2h t
2
a

(
1 + thν f f

)2 [SH]3
thν f f (N − taνh[SH])2 = 0. (54)
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Equation (34) can be written as

d[SH]
dt

= ν f f [SS] + 1

th
[HH] + 1

ta
([SF] + [HF] + [FFJ ])

− ν f f [SH] − 1

th
[SH] − νh ([SH] + [SHS] + [HSH]) . (55)

Using the closure approximation (39) and substituting Eqs. (42), (44), (45), (46), (49),
(51), [FFJ ] = 2[ARJ ] = 2[A], where [A] is given by (41), and solving for [SH] we
get that at the steady state

[SH] = thν f f q, (56)

where

q =
dN

(
Y ±

√
Y 2 − 4thtaν f f νh Z

)

2thtaν f f νh Z
, (57)

and

Y = thν f f
(
2dtaνh + thν f f + 2

) + 1, (58)

Z = thν f f
(
d2taνh + thν f f + 2

)
+ 1. (59)

Substituting (56) into Eqs. (40), (41), (42), (44), (45), (46), (49), (51) and (54) we get
that the number of singles is given by

[S] = m, [H ] = thν f f m, [A] = [R] = [F]
2

= thtaν f f νhq

2
, (60)

and the number of pairs by

[SS] = q, (61)

[HH] = (thν f f )
2q, (62)

[AA] = [RR] = [AR] = [FF]
4

=
(
d − 1

d

)2 t2h t
2
a (ν f f )2ν2hq

3

4m2 , (63)

[ARJ ] = [FFJ ]
2

= thtaν f f νhq

2
, (64)

[SA] = [SR] = [SF]
2

=
(
d − 1

d

)
thtaν f f νhq2

2m
, (65)

[HA] = [HR] = [HF]
2

=
(
d − 1

d

)
t2h ta(ν f f )2νhq2

2m
, (66)

where

m = N − thtaν f f νhq

1 + thν f f
. (67)
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Substituting (57) into (67) we get

m =
N (2Z − dY) ±

√
Y 2 − 4thtaν f f νh Z

2Z
(
1 + thν f f

) , (68)

where 2Z − dY = (2− d)
(
thν f f (thν f f + 2) + 1

)
. Hence, for d > 2, dY > 2Z and

therefore, only the addition of the square root in (68) (the subtraction in expression
(57)) can give a biologically plausible steady state.

We thus have a solution to the system based upon the assumptions from Eqs. (45)
and (46), together with [SA] = [SR] and [HA] = [HR]. Substituting into the origi-
nal Eqs. (24)–(39) we find that this is a solution to this system. But is the solution
unique?We have not been able to prove uniqueness. However, for reasons explained in
Sect. 3.1.1, we believe that this is the unique solution of the pairwisemodel. Numerical
investigation verifies that the system of differential Eqs. (24)–(38), together with the
closure approximation (39), indeed converges to the above solution in all the cases
that we have considered, something that is also supported by the output of stochastic
simulations.

Appendix B: The simulation model

Initially, all animals are at the searching state. In a small time interval δt = 0.001,
an animal in the searching state discovers a food item, independently of the network
structure, with probability 1−exp(−ν f f δt) (i.e. the number of food-discoveries in the
time interval δt is assumed to follow a Poisson distribution with associated parameter
ν f f δt). Similarly, in the interval δt , a handler animal consumes a food item with

probability 1 − exp
(
−t−1

h δt
)
. The probability of a searcher becoming engaged in a

fight depends on the number of neighbouring animals handling a food item, kH . This
is taken to be equal to 1−exp(−kHνhδt). Similarly, the probability of a handler being
discovered by a searcher and engaged in a fight is equal to 1 − exp(−kSνhδt), where
kS is the number of the neighbouring animals of the handler that are searching for
food. Equivalently, a searcher is engaged in a fight with every neighbouring handler
with probability 1 − exp(−νhδt). A fight ends with probability 1 − exp(−(2/ta)δt),
and each of the animals obtains the food with probability α.
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