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ABSTRACT

Measures of node ranking, such as personalized PageRank, are uti-

lized in many web and social-network based prediction and rec-

ommendation applications. Despite their e�ectiveness when the

underlying graph is certain, however, these measures become dif-

�cult to apply in the presence of uncertainties, as they are not

designed for graphs that include uncertain information, such as

edges that mutually exclude each other. While there are several

ways to naively extend existing techniques (such as trying to en-

code uncertainties as edge weights or computing all possible sce-

narios), as we discuss in this paper, these either lead to large de-

grees of errors or are very expensive to compute, as the number

of possible worlds can grow exponentially with the amount of un-

certainty. To tackle with this challenge, in this paper, we propose

an e�cient Uncertain Personalized PageRank (UPPR) algorithm to

approximately compute personalized PageRank values on an un-

certain graph with edge uncertainties. UPPR avoids enumeration

of all possible worlds, yet it is able to achieve comparable accu-

racy by carefully encoding edge uncertainties in a data structure

that leads to fast approximations. Experimental results show that

UPPR is very e�cient in terms of execution time and its accuracy

is comparable or be�er than more costly alternatives.
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1 INTRODUCTION

Measures of node ranking are used in many web and social me-

dia based prediction and recommendation applications [9, 19, 31,
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James Adams
From Wikipedia, the free encyclopedia

James Adams may refer to:

James Adams (Jesuit) (1737–1802), English philologist

James Adams (MP) (1752–1816), British Member of Parliament and Lord of the Admiralty

James Adams (lawyer) (1783–1843), American lawyer and intimate friend of the Joseph Smith,

Jr., founder of the Latter Day Saint movement

James Adams (Massachusetts politician)

James "Grizzly" Adams (1812–1860), American hunter, basis of a television program

James Hopkins Adams (1812–1861), American governor of South Carolina

James William Adams (1839–1903), Irish recipient of the Victoria Cross

James Barton Adams (1843–1918), cowboy poet

James F. Adams (1844–1922), American Civil War Medal of Honor recipient

James Truslow Adams (1878–1949), American historian

James Luther Adams (1901–1994), American theologian

James Adams (bishop of Barking) (1915–1999), fifth Bishop of Barking, 1975–1983

James L. Adams (1921–2014), American politician

James B. Adams (born 1926), former attorney, Texas legislator, and acting director of the Federal

Bureau of Investigation

James B. Adams (composer) ish composer, organist, and cellist

James B. Adams (professor) ofessor at Arizona State University

James Adams (diplomat) (born 1932), British diplomat

James M. Adams Jr. (born 1948), Episcopal bishop in America

Jim Adams (musician) (born 1967), American heavy metal guitarist

James W. Adams arpenter, builder and designer in Kentucky

W. James Adams eputy Chief Technologist at NASA

James Rowe Adams, founder of the Center for Progressive Christianity

Jay Boy Adams (born 1949), singer, songwriter, and guitarist born James Wallace Adams

James Adams (entrepreneur) merican author and entrepreneur

In sports

James Adams (cricketer, born 1811) (1811–1851), English cricketer

James Adams (cricketer, born 1904) (1904–1988), Australian cricketer

James Adams (cricketer, born 1980) (born 1980), English cricketer

James Adams (footballer, born 1864) (1864–1943), Scottish footballer

James Adams (footballer, born 1896) (1896–1973), English footballer who played for Chesterfield

James Adams (footballer, born 1908) (1908–1983), English footballer who played for West

Bromwich Albion

Jim Adams (baseball) (1868–?), American baseball player

Jim Adams (lacrosse) (born c. 1929), American college lacrosse coach

Jim Adams (soccer) (born 1969), English soccer player
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(a) Ambiguity in data (b) Uncertain edge

Figure 1: Ambiguity in Wikipedia and its potential impact

on the proximity/cluster analysis

34, 35]. �ere are several ways to rank nodes in a graph rank-

ing, including the well known personalized PageRank (PPR) mea-

sure [3, 12], which weights the nodes in a given graph based on

their positions relative to a given seed set of nodes (Section 2).

Despite their e�ectiveness when the underlying graph is certain,

these measures become di�cult to apply in the presence of graph

uncertainties, as they are not designed for graphs that include un-

certain information. Unfortunately, in many real world web and

social-network based applications, it may not be possible to ob-

tain a perfect and complete structure of the underlying knowledge

graph for various reasons: �is may be due to lack of information,

noise in data collection, or privacy concerns [24].

Most existing works on graph uncertainty consider existence un-

certainty, where a given edge exists probabilistically and the exis-

tence probabilities of the individual edges are assumed to be inde-

pendent from each other [5, 13, 23, 26, 33, 37, 40, 41]. In practice,

however, this assumption does not always hold: we may be aware

of the existence of an edge, but we may not know between which

pairs of nodes the edge exists. For example, we may be able to

deduce that one of the several friends of an individual in a social

network may be his/her father, but we may not know which friend.

As another example, wemay know that a name referred to in aweb

document is one of the many named entities in a knowledge base,

but we may not know which one is the correct entity (Figure 1(a)).

In this paper, we propose an uncertain edge model with mutual

exclusion that can handle such general forms of uncertainty1 and

1For relational data, this type of uncertainty is also known as “partial maybe null”,
where one is not sure if the a�ribute has a value or not, but if the value exists, then it
must be within a speci�ed set[1, 10, 29]
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consider the node ranking problem in the presence of such edges.

Obtaining node rankings in such a graph is di�cult because ad-

dition or removal of one single edge can have a drastic e�ect on

proximity [14, 15]: e.g., addition of just one edge may be su�cient

to link two otherwise distant node clusters, thereby signi�cantly

altering the proximities of a large number of pairs of nodes in the

graph (Figure 1(b)). A naive way to deal with this would be to

measure expected node proximities by taking into account the like-

lihoods of di�erent interpretations and the node proximity mea-

surements corresponding to each interpretation: one can

(1) �rst enumerate all possible interpretations (or possible

worlds) of the uncertain graph, where each interpretation

is a possible certain graph;

(2) compute node proximity under each possible world; and

(3) �nally, combine all these node proximity measurements

into a single expected proximity value.

It is, however, easy to see that an exhaustive enumeration based

approach will quickly become intractable since (as we see in Sec-

tion 3) the number of possible worlds can grow exponentially with

the amount of uncertainty in the graph. To tackle with this chal-

lenge, in this paper, we propose an e�cient Uncertain Personalized

PageRank (UPPR) algorithm to approximately compute personal-

ized PageRank values on an uncertain graph with edge uncertain-

ties. UPPR avoids enumeration of all possible worlds, yet it is able

to achieve comparable accuracy by carefully encoding edge uncer-

tainties in a data structure that leads to fast approximations. Exper-

iment results show thatUPPR is very e�cient in terms of execution

time (multiple orders faster than other algorithms with similar ac-

curacy) and its accuracy is close to perfect.

In the next section, we discuss the related literature. In Section 3,

we introduce the uncertain graph model. In Section 4, we discuss

alternative “naive” techniques and discuss their individual short-

comings. �en, in Section 5, we present the proposed e�cient and

e�ective uncertain personalized PageRank (UPPR) technique. We

evaluate the various techniques discussed in the paper in Section 6

using several data sets and conclude in Section 8.

2 RELATED WORKS

2.1 Graphs with Uncertainty

Uncertain graphs are common in many applications. For example,

in biological protein interaction networks, uncertainty may be in-

troduced when the existence of certain interactions are o�en only

statistically probable [23, 26]. In communication networks, pos-

sibility of link failure needs to be accounted for in �nding stable

and reliable paths for packet delivery with minimum cost: this in-

volves taking into account several forms of uncertainty, including

existence uncertainty, ambiguity, and confusion on edges [13].

In web-based applications, such as social networks, uncertain-

ties may exist due to inherent lack of prior knowledge regarding

the existence of friendship or in�uence �ow among the users in the

underlying network [24] and it may be critical to take into account

such forms of uncertainty in predicting which nodes are likely to

be connected to which other nodes [31]. Other graph analysis op-

erations that are a�ected from graph uncertainty include shortest

paths, reachability analysis, and subgraph searching. A common

challenge is that, in the presence of uncertainty, (already expen-

sive) graph operations becomes more expensive. [11] presented an

interval labeled edge model and discussed e�cient computation of

minimum paths and trees on such uncertain graphs without hav-

ing to enumerate all possible worlds. [33] and [37] also focused on

shortest paths, but on graphs where edges have probabilistic in-

terpretations for existence in uncertain graphs. Given edges that

are accompanied with the probability of existence, [21, 23, 26, 40]

propose ways to compute reliability and reachability e�ciently

through Monte-Carlo sampling. [38, 41] proposed pruning tech-

niques to reduce the complexity of subgraph searching and sub-

graph pa�ern mining in uncertain graphs by avoiding enumera-

tion of all possible worlds of the uncertain graph.

2.2 Node Ranking in Uncertain Graphs

PageRank is a widely-used measure to compute node importance

/ signi�cance in a graph [8]. It takes into account the connectiv-

ity of nodes in the graph by de�ning the score of the node vi ∈ V

as the amount of time spent on vi in a su�ciently long random

walk on the graph. �e personalized PageRank (PPR) [3, 12] tech-

nique extends this in a way that takes into account the context

de�ned by a given set of important nodes: given a set of seed

nodes S ⊆ V , the PPR scores can be represented as a vector Ð→r ,

where Ð→r = αTÐ→r + (1 − α)Ð→s , where Ð→s [i] = 1
∥S∥

if vi ∈ S and
Ð→s [i] = 0, otherwise. Intuitively, given a set of nodes S ⊆ V , in-

stead of jumping to a random node in V with probability (1 − α),
the randomwalk jumps to one of the nodes in the seed set, S . Since

we constrain the teleportation jumps from any node in the graph to

only the given set of important seed nodes, then the random-walk

spends more time on nodes that are close to the seeds and, thus,

those nodes are declared more signi�cant based on the context de-

�ned by the seed nodes. Due to the cost of obtaining exact PPR

scores, non-exact solutions (based on low rank decomposition [36]

or Monte Carlo methods [2, 28]) have been proposed.

Several works considered the problem of ranking on graphs

with di�erent forms of uncertainties. [18] considered PageRank

when web graphs contain erroneous link information and pro-

posed an approximate solution using interval matrices – the pro-

posed approach captures the PageRank scores of the nodes a�ected

by fragile links in terms of lower and upper bounds of PageRank

values. A di�erent node-centric uncertain graph model and node

ranking approach are presented in [30]: in particular, [30] collapses

the uncertain parts of a graph into a cloud graph, where the end

of every undetected link is connected to this cloud graph and com-

putes PageRank scores on this transformed graph. [16] considered

uncertain graphs, where edges are annotated with existence proba-

bilities and extended the SimRank measure [20] under probabilistic

interpretations of edge existence and transition matrices.

In this paper, we propose a more general uncertainty model

(of which the existence uncertainty considered by the works listed

above is special case) and discuss e�cient ways to compute PPR

under this more powerful model.

3 PROBLEM FORMULATION

Let G = (V ,E) be a directed graph with a set, V , of nodes and a

set, E, of edges. Conventionally, each edge e ∈ E is de�ned using
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(1)

(2) (3)

Figure 2: A graph with certain and uncertain edges

two nodes in the graph: a source node source(e) ∈ V and a target

node tarдet(e) ∈ V . In this paper, on the other hand, we divide the
graph edges into certain and uncertain edges.

De�nition 3.1 (Certain edges). A certain edge e+ ∈ E has well

de�ned source and target nodes, vsource and vdest . We denote

this with source(e+) = {vsource} and tarдet(e+) = {vdest }. We

denote the subset of E consisting of E’s certain edges as E+. ◇

In Figure 2, e+(1) = {⟨vi ,va⟩} is a certain edge fromvi tova . Note

that, since ∥source(e+)∥ = ∥tarдet(e+)∥ = 1, this edge type does

not include any uncertain information. In this paper, we refer to

this certainty as having a unique possible world. Each uncertain

edge, on the other hand, can represent multiple possible worlds:

De�nition 3.2 (Uncertain Edges). An uncertain edge e− ∈ E has

a well de�ned source node but does not have a well de�ned target

node.2 More speci�cally, we have

● source(e−) ⊆ V ,
● tarдet(e−) ⊆V ∪ {ϵ} and tarдet(e−) ≠ {ϵ}, and
● ∥source(e−)∥ = 1 and ∥tarдet(e−)∥ > 1.

Above ϵ denotes a non-existing node. We denote the subset of E

consisting of all of E’s uncertain edges as E−. ◇

Figure 2 includes two uncertain edges, e−(2) and e−(3) with di�er-

ent degrees. �e uncertain edge e−(3) captures a form of uncer-

tainty with mutual exclusion among the edges fromvi tovd , ve , or

vf . �is uncertainty, however, is independent from the existence

uncertainty of e−(2) . �erefore, the proposedmodel allows as a spe-

cial case the independent existence uncertaintymodel considered by

many of the existing works [5, 13, 23, 26, 33, 37, 40, 41].

3.1 Possible Worlds of an Uncertain Edge

Each uncertain edge implicitly de�nes multiple possible worlds in

which di�erent interpretations are valid:

De�nition 3.3 (Possible Worlds of an Edge under Mutual Exclusion

Semantics). Let e ∈ E be an edge. Let source(e) denote a source

node of the edge and let tarдet(e) ⊆ V ∪ {ϵ} denote the potential
targets of the edge. Given this edge, we de�ne all possible worlds

covered by this edge under mutual exclusion semantics as

pwunique(e) = {⟨vi ,vj ⟩∣ (vi = source(e))∧ (vj ∈ tarдet(e))}

2Due to space constraints, in this paper we only deal with the case of uncertainty in
the target nodes, while we consider the edges’ source nodes as given.

�e possible worlds covered by an uncertain edge consist of

all combinations of target nodes; if a target node is potentially

non-existent, then it is also a possible world. ∥pwunique(e)∥ =
∥tarдet(e)∥ is the number of possible worlds on the edge, e ◇

In the example visualized in Figure 2, there are three possible

worlds de�ned by e−(2) (= {⟨vi ,vb ⟩, ⟨vi ,vc ⟩, ⟨vi ,ϵ⟩} – the last one

implying that this edge does not exist) and four possible worlds

de�ned by e−(3) (= {⟨vi ,vd ⟩, ⟨vi ,ve ⟩, ⟨vi ,vf ⟩, ⟨vi ,ϵ⟩} – again the

last one implying that this edge does not exist).

Note that under a more general interpretation, more than one

of the potential combinations, implied by the uncertainty encoded

in the edge, may be possible in the real world.

De�nition 3.4 (Possible Worlds of an Edge under Multiple Edge Se-

mantics). Let e ∈ E be a certain or uncertain edge and pwunique(e)
be the corresponding possible worlds covered by this edge under

mutual exclusion semantics. Given this edge, we de�ne all possi-

ble worlds covered by this edge under multiple edge semantics as all

possible non-empty subsets of its target set3. Note that, since a

possible world containing ϵ is equivalent to the world where ϵ has

been removed, we have

∥pwmultiple(e)∥ =
⎧⎪⎪⎨⎪⎪⎩
2(∥pwunique(e)∥−1)

, ϵ ∈ target(e)

2∥(pwunique(e)∥) − 1, otherwise ◇

Under these semantics, in the example in Figure 2, there would be

2(3−1) = 4 possible worlds de�ned by the uncertain edge e−(2) and

2(4−1) = 8 possible worlds de�ned by e−(3) . For the certain edge

e(1), this gives 2
(1−1) = 1 possible world.

3.2 Possible Worlds of a Graph

Given the above de�nitions, we can now de�ne the possibleworlds

of a graph with uncertainty:

De�nition 3.5 (Possible Worlds of a Graph). Let G = (V ,E) be
a directed graph which has a set of nodes V and a set of edges E.

For all e ∈ E, let pw(e) denote the possible worlds (under mutual

exclusion or multiple edge semantics) of the edge e . We de�ne all

possible worlds covered by this graph as the Cartesian product of

the possible worlds of edges: pw(G) = ⨉e∈E pw(e). ◇

If we reconsider Figure 2, under mutual exclusion semantics,

this graphwould have 1×3×4 = 12 possibleworlds. In contrast, un-
der themultiple edge semantics, the graphwould have 1×4×8 = 32
possible worlds. Since uncertain edges have ≥ 2 possible worlds,

it is easy to see that the size of the pw(G) grows exponentially in

the number of uncertain edges; i.e., ∥pw(G)∥ is O(2∥E−∥).

3.3 PPR under Uncertainty

We now de�ne personalized PageRank under uncertainty.

De�nition 3.6 ( Personalized PageRank under Uncertainty). Let

G(V ,E) be an uncertain graph. Given a seed set, S , of nodes we

can de�ne the personalized PageRank vector,Ð→r , for G as follows:
Ð→r = AVG

Gi ∈pw(G)
PPR(Gi ,S),

3�is can be extended to the case where there is a constraint in the number of real
edges an edge can potentially represent.



SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan Jung Hyun Kim, Mao-Lin Li, K. Selçuk Candan, and Maria Luisa Sapino
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Figure 3: Alternative (naive) approaches for computing PPR values on an uncertain graph

whereGi denotes a possible world implied by the uncertain graph

G and PPR(Gi ,S) returns a personalized PageRank vector,Ð→r i , cor-

responding toGi and seed set S . ◇

Intuitively, under the assumption that all possible worlds are

equally likely, the above de�nition of personalized PageRank cor-

responds to the expected4 values of the node scores.

4 “NAIVE” APPROACHES

In this section, we present several (naive) approaches for comput-

ing PPR values on an uncertain graph (Figure 3):

4.1 Exhaustive Approaches

�e most straightforward way to obtain the PPR values on an

uncertain graph is to exhaustively enumerate all possible worlds,

compute the PPRs for each possible world, and combine (i.e., aver-

age) the results. Obviously this exhaustive approach (exhPPR), vi-

sualized in Figure 3(a), is likely to be very expensive as it involves

potentially exponential number of PPR computations.

One way to alleviate this cost is to rely on a fast approximate

PPR technique (such as B LIN [36], which partitions the given

graph into subgraphs and pre-processes intra-partition edges,W1,

and inter-partition edges, W2, on these subgraphs in a post-

processing phase) to obtain PPR scores for each possibleworld (Fig-

ure 3(b)). Note that, while this exhaustive approximate approach,

which we refer to as exhApxPPR, is likely to be faster than the basic

approach, since it involves exponential number of (approximate)

PPR computations, it is still likely to be prohibitively expensive.

4�is can be extended to cases where each possible world has a di�erent likelihood.

4.2 Collapsing-based Approaches

Since the major cost of the exhaustive approach is the number of

exhaustive PPR computations, one way to reduce the cost would

be to enumerate all possible transition matrices corresponding to

all possible worlds of the uncertain graph and then collapse these

transition matrices into a single transition matrix by taking their

average. A�er this, we can obtain the �nal PPR scores either by

solving an exact PPR (collPPR, Figure 3(c)) or approximate PPR

(collApxPPR, Figure 3(d)) problem.

Another alternative is to �rst partition each individual transi-

tion matrix of each possible world,Gi , and then collapse the intra-

partition,W1i , and inter-partition,W2i , transition matrices for all

possibleworlds into aninter-partition and an intra-partitionmatrix

to be processed using B LIN[36] and combined in a post-processing

phase. In Figure 3(e), we refer to this pre-partitioning based alter-

native approach as collApx2PPR.

Accuracy ProblemwithCollapsing: �e collapsing based ap-

proach can lead to relatively large errors when uncertainty is con-

centrated around nodes with large PPR scores: Let G be an uncer-

tain graph with two possible worlds with transition matrices, T1
and T2, respectively. Given these, we can compute the expected

PPR scores as de�ned in the previous section as

Ð→r = (Ð→r 1 +
Ð→r 2)/2 = (α (T1Ð→r 1 +T2

Ð→r 2))/2 + (1 − α)Ð→s ,
where Ð→s is the teleportation vector for the seeds. In contrast,

when using the collapsing based approach we instead compute

Ð→r
′
= α ((T1 +T2)/2)Ð→r ′ + (1 − α)Ð→s .

Given these, the error term,Ð→e =Ð→r −Ð→r ′ can be obtained as

Ð→e = (α (T1Ð→r 1 +T2
Ð→r 2))/2 − α ((T1 +T2)/2)Ð→r ′.

mlsapino
Highlight
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Figure 4: Flattening of the uncertain graph in Figure 2 into

an (approximate) certain graph

Assuming that this error term is relatively small; i.e., Ð→r ∼Ð→r ′, we
can replaceÐ→r ′ withÐ→r = (Ð→r 1 +

Ð→r 2)/2, to obtain
Ð→e ∼ (α (T1Ð→r 1 +T2

Ð→r 2))/2 − α ((T1 +T2)/2) ((Ð→r 1 +
Ð→r 2)/2)

∼ ((T1 −T2)/4)Ð→r 1 + ((T2 −T1)/4)Ð→r 2.

In other words, the error term is especially large when the uncer-

tainties (i.e., di�erences between the transition matrices of the pos-

sible worlds) are concentrated around nodes with large PPR scores.

Execution Time Problem with Collapsing: Since they re-

duce the number of PPR computations to just one, the collapsing

based approaches are likely to be much faster than the exhaustive

approach. Nevertheless, since it involves the enumeration of all

possible worlds before obtaining the collapsed transition matrix,

the cost is still exponential in the number of uncertain edges.

4.3 Flattening-based Approaches

An alternative approach to avoid the enumeration cost of collaps-

ing is to approximate the collapsed transition matrix by construct-

ing it directly from the uncertain graph G by �a�ening each un-

certain edge into certain edges (see [25] for details). For instance,

in the example visualized in Figure 2, sicne there are three outgo-

ing edges, the outgoing edge probabilities for vi would be set as
1
3

on the edge going to va ,
1
3 ×

1
3 =

1
9 on the edge going to vb and

vc , and
1
3 ×

1
4 =

1
12 on the edge going to vd , ve , and vf . Note that,

when ϵ is selected for any of the outgoign edges, the only available

traversal direction os towards va . �erefore, this would lead to an

additional transition probability of, 19 +
1
12 =

7
36 , towards va . �is

is visualized in Figure 4.

Once the �a�ened transition matrix is obtained, we can solve

the �nal PPR scores either using an exact PPR (�atPPR, Figure 3(f))

or an approximate PPR (�atApxPPR, Figure 3(g)) technique. Note

that, while they are likely to be faster than both exhaustive and

collapsing-based approaches, �a�ening-based solutions further

compound the accuracy problems.

5 UPPR: PROPOSED APPROACH

We propose an e�cient and e�ective Uncertain Personalized PageR-

ank (UPPR) algorithm to approximately compute personalized

PageRank values on an uncertain graph with edge uncertainties.

In particular, UPPR avoids enumeration of all possible worlds, yet

is able to achieve high accuracy by carefully encoding edge uncer-

tainties in a data structure that leads to good approximations.

5.1 Special Case: Two Possible Worlds

Let G(V ,E) be an edge uncertain graph, Let us split G(V ,E) into
two subgraphs: a subgraph,Gc(V ,Ec ), consisting of certain edges,

and a subgraph, Gu(V ,Eu), consisting of uncertain edges. Let us

�rst consider the special case where Gu(V ,Eu) de�nes only two

possible worlds. In Section 5.2, we will generalize this to the case

where there may be more than two possible worlds.

Let T1 and T2 be transition matrices corresponding to two pos-

sible worlds ofG. �e personalized PageRank valuesÐ→r1 andÐ→r2 for

T1 and T2 for seed set, S , are de�ned in Section 2.2 as

Ð→r1 = αT1
Ð→r1 + (1 − α)Ð→s , and Ð→r2 = αT2

Ð→r2 + (1 − α)Ð→s ,
where α is a residual probability parameter and Ð→s is a re-seeding

vector such that if a node vi ∈ S , then
Ð→s [i] = 1

∥S∥
and Ð→s [i] = 0,

otherwise. It is easy to see that these two equations can be re-

wri�en as follows to solve forÐ→r1 andÐ→r2 :

Ð→r1 = (1 − α)(I − αT1)−1Ð→s and Ð→r2 = (1 − α)(I − αT2)−1Ð→s .
Given these, as de�ned in Section 3.3, we can compute the expected

PPR values for the edge uncertain graph as

Ð→r =
1

2
(Ð→r1 +Ð→r2 ) = 1 − α

2
((I − αT1)−1 + (I − αT2)−1)Ð→s .

Let us split bothT1 and T2 into three parts:

T1 =TBL +TX + P1 and T2 = TBL +TX + P2,

where TBL +TX corresponds to the certain parts of the graph and

P1 and P2 correspond to the uncertain edges in the two possible

worlds. Let TBL be the block-diagonal matrix, obtained by parti-

tioning the graph into blocks (for example using METIS [22]), and

TX represent (certain) transitions across these partitions.

Note that, in general, we have ∣TBL ∣ ≫ ∣TX ∣. As we will see

shortly, in this section, we further assume5 that ∣TX ∣ ≫ ∣P1∣ and
∣TX ∣≫ ∣P2∣. As proposed in [36], assuming that the blocks are suf-

�ciently small, we can e�ciently compute Q−1BL = (I − αTBL)−1
by �rst computing the inverse matrices of each block and then

combining these inverse matrices to obtainQ−1BL , which itself is in

block-diagonal form. Moreover, since TX , P1, and P2 are all sparse,

we can also e�ciently decompose the TX + P1 and TX + P2 into

TX + P1 ≃U1S1V1 and TX + P2 ≃ U2S2V2, (1)

using a sparse approximate decomposition algorithm, such as [6].

Given these, we can rewrite Ð→r =Ð→r = 1
2(Ð→r1 +Ð→r2 ) as

≃
1 − α

2

⎛
⎝(I −α(TBL +U1S1V1))

−1
+(I −α(TBL +U2S2V2))

−1⎞
⎠
Ð→s .

�en, by applying the well-known Sherman-Morrison lemma [32]

on the term (I −α(TBL +UiSiVi))−1, we can reformulate the above

equation to obtain6

Ð→r ≃
1 − α

2
(Q−1BL + αQ−1BLU1(S−11 − αV1Q−1BLU1)−1V1Q−1BL+

Q
−1
BL + αQ

−1
BLU2(S−12 − αV2Q−1BLU2)−1V2Q−1BL)Ð→s .

5 While this is a common assumption in related work [5], in Section 5.5, we discuss
how to relax this assumption in cases where the number of uncertain edges involved
in each possible world is large.
6For space considerations, we do not provide the complete sequence of algebraic op-
erations in each step.

mlsapino
Highlight

mlsapino
Highlight

mlsapino
Highlight

mlsapino
Highlight



SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan Jung Hyun Kim, Mao-Lin Li, K. Selçuk Candan, and Maria Luisa Sapino

When we further apply the Sherman-Morrison lemma on the term

(S−11 − αV1Q−1BLU1)−1 in the above equation, we obtain

(1 − α)Q−1BLÐ→s

+
α(1 − α)

2
Q
−1
BL(U1(S1 + αS1V1(QBL − αU1S1V1)−1U1S1)V1

+U2(S2 + αS2V2(QBL − αU2S2V2)−1U2S2)V2)Q−1BLÐ→s .
�is equation can be simpli�ed by introducing the terms M1 =
U1S1V1 andM2 = U2S2V2 (whereM1 ≃ TX +P1 andM2 ≃ TX +P2):

Ð→r ≃ (1 − α)⎛⎝I +
α

2
Q−1BL((M1 +M2) + α(M1(QBL − αM1)−1M1

+M2(QBL − αM2)−1M2))
⎞
⎠Q
−1
BL
Ð→s .

(2)

Moreover, relying on the assumption that ∣TBL ∣ ≫ ∣TX ∣+ ∣P1∣ and ∣TBL ∣ ≫
∣TX ∣+ ∣P2∣, we can ignore the terms αM1 and αM2 in (QBL −αM1)−1 and
(QBL − αM2)−1 in the above equation and rewrite the rest as

Ð→r ≃ (1 − α)⎛⎝I +
α

2
Q−1BL((2TX + P1 + P2) + α(2TXQ−1BLTX

+ (P1 + P2)Q−1BLTX +TXQ−1BL(P1 + P2)

+ P1Q−1BLP1 + P2Q−1BLP2))
⎞
⎠Q
−1
BL
Ð→s .

(3)

Furthermore, again relying on the assumption that ∣TBL ∣ ≫ ∣TX ∣ ≫
∣P1∣, ∣P2∣, the term P1Q

−1
BLP1 + P2Q−1BLP2 will be negligible next to (P1 +

P2)Q−1BLTX + TXQ−1BL(P1 + P2) and thus can be ignored and Ð→r can be

approximately computed as

Ð→r ≃ (1 − α)⎛⎝I +
α

2
Q−1BL((2TX + (P1 + P2)) + α(2TXQ−1BLTX +

(P1 + P2)Q−1BLTX +TXQ−1BL(P1 + P2)))
⎞
⎠Q
−1
BL
Ð→s .

(4)

Summary and Key Advantages: First of all, assuming that the blocks

are su�ciently small andQ−1BL can be e�ciently computed, once Q−1BL is at

hand, solving forÐ→r using the above equation involves very sparse matrix

multiplications (involvingTX and P1 + P2) and thus can be processed very

e�ciently (see Section 6). A second advantage of the above formulation is

that it can be easily extended to any number of possible worlds.

5.2 General Case: > 2 Possible Worlds
When we have n possible worlds (i.e., Ð→r = 1

n
(Ð→r1 + . . . + Ð→rn)), the UPPR

equation (Equation 4) can be generalized as

≃(1 − α)⎛⎝I +
α

n
Q−1BL((nTX + (P1 + . . . + Pn)) + α(nTXQ−1BLTX

+ (P1 + . . . + Pn)Q−1BLTX +TXQ−1BL(P1 + . . . + Pn)))
⎞
⎠Q
−1
BL
Ð→s .

(5)

As we see in Section 6, this formulation leads to e�cient execution plans,

especially because the term 1
n
(P1+ . . .+Pn) in Equation 5 can be obtained

(without having to enumerate all possible worlds) directly by computing

the ratio of the number of possible worlds in which a given edge exists.

Undermutual exclusion semantics: As we have seen in Section 3.1, the

possible worlds covered by an uncertain edge consist of all combinations of

its target nodes. Under mutual exclusion semantics, only one of the edges

implied by the uncertain edge can be valid in the real world. Let vi be a

node which has c certain outgoing edges and u uncertain outgoing edges.

If, in a given possible world, some of the u outgoing uncertain edges maps

to ϵ , then in that possible world, the transition probabilites for the remain-

ing certain and uncertain edges will be higher. We can use this observation

to compute Pavд =
1
n
(P1 + . . . + Pn) as follows:

Let vj be a target node of an uncertain edge, e− , with ∥tarдet(e−)∥ =
k . �e value of the cell [j, i] in Pavд can be computed as

1

k
× ( 1

c + u × p(none of the other outgoing uncertain edges select ϵ)+
1

c + (u − 1) × p(1 of the other outgoing uncertain edges select ϵ)+
⋅ ⋅ ⋅ +

1

c + 1
× p(all of the other outgoing uncertain edges select ϵ))

=
1

k
×(

u−1

∑
h=0

( 1

c + u − h
) (ratio of worlds s.t. h of other unc.edges are ϵ)).

Here, p(), denote the probability of a given event.

If vj , instead, is a target node of a certain edge, e− , then

∥tarдet(e+)∥ = 1 and Pavд , can be similarly computed as

u

∑
h=0

( 1

c + u − h
) (ratio of worlds s.t. h of unc.edges are ϵ)).

Note that, this needs to be further compensated since TBL does not count

the transitional probability with ϵ .[from Selcuk: this is not clear‼!] �us,

the value of the cell [j, i] in Pavд = 1
n
(P1 + . . .+ Pn) can be computed as

TBL(j, i) −
u

∑
h=0

( 1

c + u − h
) (ratio of worlds s.t. h of unc.edges are ϵ)).

[from Selcuk: the above equation is not clear at all‼!]

In both cases, to compute, Pavд , we need to compute the probability

that h out of a given number of uncertain edges will be ϵ . Let us be given

m = (m0 +m1) uncertain edges, such thatm0 many do not contain ϵ in

the target set andm1 many thus. Let the maximum target size for this later

set of nodes bemax tarдet . �en, we can group them1 uncertain edges

tomax tarдet many groups where, each group, дl , consists of uncertain

edges with target size l . Note that

∥д1∥ + ∥д2∥ + . . . + ∥дmax tarдet ∥ =m1 .

Note also that, since, by de�nition, any uncertain edge which contains ϵ as

a target, must also have at least one other node in its target set, ∥д1∥ = 0.
Given this, we can compute the probability that h out of m uncertain

edges will be epsilon (i.e., p(h ofm uncertain edges select ϵ)) as
p(h2 + h3 + . . . +hmax tarдet = h s .t .

∀2≤l≤max tarдet hl in ∥дl ∥ edges select ϵ)
Note that, the probability p(hl in ∥дl ∥ edges select ϵ) is binomially dis-

tributed with B(∥дl ∥, 1/l) – i.e., there are ∥дl ∥ uncertain edges, each serv-

ing as a trial with 1/l success rate of selecting ϵ among the available targets.

Consequently, the above probability is distributed as a summation of bino-

mial distributions B(∥д2∥, 1/2)+ . . .+B(max tarдet, 1/max tarдet).
Algorithms to e�ciently compute summation of binomial distributions are

presented in [7].

Undermultiple edge semantics: In this case, several of the edges implied

by an uncertain edge can be simultaneously valid in the real world. when j

is a target node of an uncertain edge with ∥tarдet(e−)∥ = k , Pavд[j, i],
can be computed as

1

k
( 1

c + 1
P(u−1∑

i=1

sel = 0) + 1

c + 2
P(u−1∑

1

sel = 1)

+ ⋅ ⋅ ⋅ +
1

c +Q
P(

u−1

∑
1

sel = Q)),
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# of # of # of

Data nodes edges partitions

ego-Facebook 4,039 88,234 3

Wiki-Vote 7,115 103,689 3

web-NotreDame 325,729 1,497,134 50

web-BerkStan 685,230 7,600,595 500

Table 1: Data sets

# of degree edge # of
uncertain of edge semantics possible
edges uncertainty worlds

di�erent 2 16-64
# of 4 4 mut.excl. 256-4,096

uncertain 6 (multiple) 4,096-262,144
edges 8(7) 65,536-2,097,152

di�erent 2 16-16
degree of 4 mut.excl. 256-4,096
edge 4 6(5) (multiple) 1,296-65,536

uncertainty 8(6) 4,096-1,048,576
10 10,000

Table 2: Uncertainty scenarios

where Q is ∑u−1j=1 (∑∥tarдet(ej)∥q=0 sel = q) and ’sel = i ’ is i number

of selected non-ϵ nodes among all possible worlds in an uncertain edges

and P(∑u1 sel = 1) is the probability that the summation of numbers

of selected non-ϵ nodes among all possible worlds in uncertain edges is

i . P(sel = i) for an uncertain edge follows the binomial distribution,

so it can be computed easily by the summation of distribution of bino-

mial random variables as we describe in mutual exclusive case. Note that

∑u−1j=1 pwmult iple(ej )means that theWhen j is a target node of a certain

edge, Pavд[j, i], can be computed as

1

c
P(

u

∑
i=1

sel = 0) + 1

c + 1
P(

u

∑
1

sel = 1) + ⋅ ⋅ ⋅ +
1

c +∑uj=1Q
P( u∑

1

sel =
u

∑
j=1

Q)),

whereQ is∑uj=1(∑∥tarдet(ej)∥q=0 sel = q).

5.3 Accuracy of UPPR
�e UPPR equation (Equation 5) captures the underlying uncertainty in

a way that leads to minimal approximation errors under the assumption

∣TBL ∣ ≫ ∣TX ∣ ≫ ∣P∗∣. In particular, the UPPR process has three speci�c

sources for potential errors, each of which is minimized under these, gen-

erally valid, assumptions:

● �e �rst potential source of error is the decomposition ofTX +P∗
into U∗S∗V∗ using an approximate algorithm, such as [6], that

relies on the sparsity of the edges that cross partitions and of the

uncertain edges (see Equation 1).

● �e second source of error is the assumption that the terms αM1

and αM2 are negligible relative to the rest of the terms in Equa-

tion 2; this again relies on the assumption that TX and P∗ that

contribute to M∗ are both sparse matrices.

● �e third source of error is the assumption that the term

P1Q
−1
BLP1 + P2Q

−1
BLP2 in Equation 3 is negligible relative to

(P1 + P2)Q−1BLTX +TXQ−1BL(P1 + P2).
Note that all three potential sources of error are minimized when ∣TBL ∣≫
∣TX ∣ ≫ ∣P∗∣. While the fact that whether ∣TBL ∣ ≫ ∣TX ∣ holds or not de-
pends on the type of graph and the partitioning algorithm used, whether

∣TX ∣≫ ∣P∗∣ or not depends on the amount of uncertain edges in the graph.

In Section 5.5, we discuss how to relax the assumption, ∣TX ∣≫ ∣P∗∣, in
cases where there are signi�cant number of uncertain edges in the graph

rendering ∣P∗∣ relatively dense, using a hybrid strategy.

5.4 E�cient Computation of UPPR Scores
Here we show that the UPPR equation (Equation 5) leads to very e�cient

execution plans. To see this, let us �rst partition the UPPR equation into 6

subcomponents:

Ð→r = 1
n
(Ð→r1 + . . . +Ð→rn) ≃ (1 − α)Q−1BLÐ→s´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1)

+α(1 − α)Q−1BLTXQ−1BLÐ→s´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(2)

+
α(1 − α)

n
Q−1BL(P1 + . . . + Pn)Q−1BLÐ→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(3)

+ α 2(1 − α)Q−1BLTXQ−1BLTXQ−1BLÐ→s´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4)

+
α 2(1 − α)

n
Q−1BL(P1 + . . . + Pn)Q−1BLTXQ−1BLÐ→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(5)

+
α 2(1 − α)

n
Q−1BLTXQ

−1
BL(P1 + . . . + Pn)Q−1BLÐ→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6)

.

It is important to note that each of the six subcomponents above contains

an extremely sparse re-seeding vectorÐ→s . Moreover,Q−1BL is a block diago-

nal matrix and TX and P∗ are all sparse. Consequently, each of the terms

can be computed, right to le�, through e�cient vector-matrix multiplica-

tions.

For example, the subcomponent (2) can be computed from right to le�

with the following sequence of e�cient operations:

Q−1BL±
∣V ∣×∣V ∣

Ð→s¯
∣V ∣×1

→ TX°
∣V ∣×∣V ∣

Q−1BL
Ð→s

´¹¹¹¹¹¹¹ ¹̧¹¹¹¹¹¹¹¶
∣V ∣×1

→ Q−1BL±
∣V ∣×∣V ∣

TXQ
−1
BL
Ð→s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣V ∣×1

→ α(1 − α)Q−1BLTXQ−1BLÐ→s´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣V ∣×1

.

Moreover, since the terms (P1 + . . . + Pn), Q−1BLÐ→s , TXQ
−1
BL
Ð→s , and

Q−1BLTXQ
−1
BL
Ð→s occur in multiple subcomponents, they can be cached and

reused – once these terms are cached, the rest of the computations for the

six subcomponents can be executed in parallel. Note further that several

of the terms above can be cached and reused for the same uncertain graph

with di�erent seed vectors or even graphs with the same certain, but di�er-

ent uncertain components (to carry out hypothetical, if-then type of anal-

yses).

5.5 Hybrid Computation in the Presence of
Large Numbers of Uncertain Edges

As we have discussed in the previous section, the accuracy of the proposed

UPPR technique relies on the assumption that ∣TBL ∣ ≫ ∣TX ∣ ≫ ∣P∗∣. In
particular, whether ∣TX ∣≫ ∣P∗∣ or not depends on the amount of uncertain

edges in the graph: UPPR is likely to be highly e�ective and e�cient if the

number of uncertain edges in the graph is relatively small. In contrast, as

we have seen in Section 4.2, the collapsing (and similarly �a�ening) based

techniques may lead to large errors if the uncertain edges are concentrated

around nodes with large PPR scores.

Here we note that we can leverage these two observations to deal with

graphs with large numbers of uncertain edges. �e idea is to eliminate
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Figure 5: Results on the Facebook data set, for di�erent amount of uncertainty with di�erent edge semantics: UPPR provides

almost perfect accuracy and its execution time is not a�ected by the amount of uncertainty

uncertain edges in the graph, relying on the highly e�cient �a�ening tech-

nique, away from the seed nodes of the graph (which are likely to have

large PPR scores) and only maintain uncertain edges in the neighborhoods

of the seed nodes. Consequently, errors due to �a�ening are minimized

as this technique is utilized only in regions with less likelihood of produc-

ing high PPR scores; errors due to UPPR are also minimized, especially in

large graphs, as the numbers (∣P∗∣) of uncertain edges in possible worlds

that UPPR has to deal with have been reduced relative to the rest of the

graph.

6 EXPERIMENTS
In this section, we present the results of the experiments assessing the e�-

ciency and e�ectiveness of the algorithms presented in this paper. We ran

experiments on a 16-core CPU Nehalem Node with 64 GB RAM. All codes

were implemented in Matlab and run using Matlab R2013b.

6.1 Datasets and Setup
Table 1 provides an overview of the four data sets [27], with di�erent num-

bers of nodes and edges, and graph-partitions, considered in the experi-

ments. �e graph partitions are obtained using METIS [22].

Table 2 details the volumes of uncertainty we have experimented with

for the results reported in this section. Here, the “degree of uncertainty”

refers to the number of target nodes on each uncertain edge it represents

and the “edge semantics” describes “mutual exclusion” and “multiple edge”

semantics. �ese together de�ne the number of possible worlds corre-

sponding to a given uncertain edge. To obtain uncertain graphs with the

speci�cations in the table, we select random edges in the original graph and

render them uncertain by augmenting destinations with random nodes.

We assume that the uncertain edges are located on the seeds (as dis-

cussed in Sections 4.2 and 5.5, uncertain edges further away from the seeds

can be �a�ened into the certain parts of the transition matrix).

6.2 Alternative Approaches
In this section, in addition to UPPR (presented in Section 5), we consid-

ered all alternative approaches discussed in Section 4. As a further base-

line, we also consider a Monte Carlo-based solution (which start from the

seed nodes, and sample random walks of a given length) and BEAR [34], a

recent PPR computation algorithm, which originally does not take uncer-

tainty into account. For uncertainty, we use the �a�ened transition matrix

for the transitionmatrix and compute PPR values. In the experiments, with-

out loss of generality, we set the residual probability parameter, α to 0.85.

To compare di�erent algorithms, we consider both e�ciency (i.e., PPR com-

putation time) and accuracy (in terms of the correlations of PPR rankings

for the nodes that are ranked top-50 by the exhaustive technique, exhPPR).

7 RESULTS AND DISCUSSIONS
Westart the discussion of the results by considering e�ciency and accuracy

of the various algorithms on the Facebook data set, for di�erent degrees of

uncertainty in the graph.

Impact of the Degree of Uncertainty. Figures 5(a) and (b) show the ex-

ecution times of di�erent algorithms, as the overall number of uncertain

edges and degree of uncertainty in the graph are increased. As we see in the

�gure 5, exhaustive and collapsing-based approaches (which need to enu-

merate the possibleworlds) quickly become infeasible as the number of pos-

sible worlds increases. While �a�ening-based approaches are reasonably

fast and scale be�er than the exhaustive and collapsing-based approaches,

they are 1 or 2 order slower than UPPR. BEAR takes less time than UPPR
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for PPR computation but the di�erence between them is negligible. Fig-

ures 5(c) and (d) con�rm that execution time savings on UPPR do not come

with any drop in accuracy – UPPR provides similar (or in some cases be�er)

accuracy to the two collapsing- and �a�ening- based approaches, collPPR

and �atPPR, that rely on direct computation of PPR from the transition ma-

trix, even though it uses an approximate solution for PPR. As expected, the

accuracy of BEAR is very poor compared to UPPR and the accuracy is not

stable and a�ected by the amount of uncertainty. Other techniques such as

collApxPPR, collApx2PPR, and �atApxPPR that similarly solve PPR approx-

imately, relying on a sparse approximation method, all have signi�cantly

degraded accuracies. �is indicates that, by carefully accounting for the

sources of errors, UPPR is able to achieve high accuracies (∼1.0) e�ciently

(∼0.01 seconds) and avoids accuracy pitfalls that other schemes are not able

to handle e�ectively.

UPPR vs. Monte Carlo Method. Additionally, we consider a Monte

Carlo (MC) based alternative to UPPR. [28] notes that (in regular graphs)

for estimating PPR values close to a desired threshold δ (where δ is the

expected PPR score; i.e., 1/∣V ∣, where ∣V ∣ is the number of nodes), a Monte

Carlo based algorithm would need O(1/(δ × ρ2)) = O(∣V ∣/ρ2), sam-

ples of length, дeometr ic( 1
1−α
), where ρ is the relative error and 1 − α

is the teleportation rate. �is means that, when we seek high accuracy,

Monte Carlo based solutions may be prohibitive [28]. Indeed, for the Face-

book data set, with ∼ 4000 nodes, to have 95% accuracy, we would need

4000/0.052 = 1, 600, 000 random walk samples (of length ≥ ⌈ 1
0.15
⌉ = 7,

since we set α to 0.85).

In Table 3, we report the accuracy comparison for a more modest target

error rate of 0.15, which leads to ∼ 150K , random walks – note that, even

in this modest case, taking 150K random walk samples is more expensive

(65 seconds in Matlab) to compute than UPPR (∼0.01 seconds). In the table,

we see that for top-100 to top-500 results, Monte Carlo, is able to match

the target accuracy in the presence if mutual exclusion semantics; but fails

to do so when all nodes are considered. In the presence of multiple edge

semantics, MC is able to match the target error rate only when top-500

results are considered and the results are very poor for top-100 nodes, even

with larger number of samples, with longer lengths. Note that UPPR is able

to achieve signi�cantly higher accuracy (for top-100, top-500, as well as

for all nodes), very cheaply (∼ 0.01 seconds for this data set as shown in

Figure 5).

Di�erent Data Sets and the Impact of the Graph Size. In the experi-

ments reported in Figure 6, we compare the e�ciency and e�ectiveness of

the various algorithms we presented in the paper for graphs of di�erent

sizes. �e �gure reports results for two sample uncertainty complexities:

Figures 6(a) and (c) report execution time and rank correlation for a sce-

nario with mutual exclusion semantics, whereas Figures 6(b) and (d) con-

sider a scenario with multiple edge semantics. As we see in this �gure, the

proposed UPPRmethod is scalable, not only in terms of the possible worlds

of the graph, but also the graph size. While the closest algorithms to UPPR

in terms of e�ciency and scalability, �atApxPPR and BEAR, su�er signi�-

cantly from accuracy degradations, UPPR provides very high (mostly close

to perfect) accuracy in all cases considered in this section.

Here, we do not present the accuracy results for the largest Berk-Stan

data set as the cost of performing the exhaustive enumeration needed to

obtain the accuracy ground-truth is prohibitive on this data set. However,

the results show that UPPR provides very good accuracy, while its execu-

tion time is minimally e�ected by graph size. In fact, on the largest data set,

UPPR is even faster than the BEAR baseline, while providing signi�cantly

be�er accuracy.

8 CONCLUSIONS
In this paper, we presented an uncertain edge model withmutual exclusion

and shown that, while there are several ways to naively extend existing

Edge # of Length of Top Top All
type random random 100 500 nodes

walks walks acc. acc. acc.

UPPR 0.952 0.981 0.997
8 0.782 0.881 0.525

Mutual 150K 10 0.816 0.919 0.583
exclusion Monte 20 0.841 0.920 0.519
semantics Carlo 30 0.834 0.908 0.533
(#ue=4, 8 0.814 0.911 0.584

#udeg=10) 300K 10 0.845 0.927 0.545
Monte 20 0.858 0.924 0.588
Carlo 30 0.813 0.913 0.571

UPPR 0.998 0.989 0.997
8 0.193 0.878 0.571

Multiple edge 150K 10 0.145 0.900 0.656
semantics Monte 20 0.258 0.969 0.658
(#ue=7, Carlo 30 0.269 0.937 0.696
#udeg=4) 8 0.193 0.945 0.649

300K 10 0.163 0.912 0.667
Monte 20 0.148 0.905 0.660
Carlo 30 0.155 0.901 0.670

Table 3: UPPR vs. MC method on the Facebook graph

personalized PageRank computation techniques to graphs with uncertain

edges, these either lead to large degrees of errors or are very expensive to

compute in practice. We therefore proposed a novel Uncertain Personalized

PageRank (UPPR) algorithm to approximately compute personalized PageR-

ank values on such graphs. Experiments con�rmed that the proposed tech-

nique has very high accuracy and is multiple-orders faster than available

algorithms that can provide comparable accuracy.
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!"!!#

!"!#

!"#

#

#!

#!!

#!!!

#!!!!

#!!!!!

#!!!!!!

$%&'())* +,*,-.)/' 0)/1'2%3' 4'1*-5/%6

7
,3

'
89
:'
&"
;

<='&"87,3'8>)18?,>>'1'6/8@1%AB:C8DE'FGH8E2'IF#!H83E/"'=&J":'3%6/,&:

!"!!!#

!"!!#

!"!#

!"#

#

#!

#!!

#!!!

#!!!!

#!!!!!

#!!!!!!

$%&'())* +,*,-.)/' 0)/1'2%3' 4'1*-5/%6

7
,3

'
89
:'
&"
;

<='&"87,3'8>)18?,>>'1'6/8@1%AB:C8DE'FGH8E2'IFJH83EK/,AK'8:'3%6/,&:

(a) e�ciency, mutual exclusion semantics (b) e�ciency, multiple semantics

-0.2

!

!"#

!"$

!"%

!"&

'

()*+,--. /0.012-3+ 4-35+6)7+

8
)
9
.
:;
-
55
+
<)
30
-
9

;-55+<":=-5:=-5:>0==+5+93:?5)@ABC:DE+F$G:E6+HF'!G:7E3"+I*<":B+7)930*B

!"#$

"

"#$

"#%

"#&

"#'

(

)*+,-../ 01/1!2.3, 4.35,6*7,

8
*
9
/
:;
.
55
,
<*
31
.
9

;.55,<#:=.5:=.5:>1==,5,93:?5*@ABC:DE,FGH:E6,IF%H:7E<31@<,:B,7*931+B

(c) accuracy, mutual exclusion semantics (d) accuracy, multiple semantics

(.7889$ (.7:;.889$ +0<<889$ +0<<:;.889$ +0<<:;.=889$ >54889$ >54:;.889$ ?-:9$ 2889$

Figure 6: Results in graphs of di�erent sizes: as the �gures show, UPPR provides good accuracy and its execution time is

minimally e�ected by the graph size

[22] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partition-
ing irregular graphs. SIAM Journal on Scienti�c Computing, 20:359–392, 1998.

[23] A. Khan, F. Bonchi, A. Gionis, and F. Gullo. Fast Reliability Search in Uncertain
Graphs. EDBT’14, 2014.

[24] A. Khan and L. Chen. On Uncertain Graphs Modeling and �eries. VLDB’15,
pp. 2042–2043, 2015.

[25] J.H. Kim. E�cient Node Proximity and Node Signi�cance Computations in
Graphs. PhD�esis. Arizona State University, 2017.

[26] R.-H. Li, J.X. Yu, R. Mao, and T. Jin. E�cient and Accurate�ery Evaluation on
Uncertain Graphs via Recursive Strati�ed Sampling. ICDE’14, 2014.

[27] J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Col-
lection. h�p://snap.stanford.edu/data. 2014.

[28] P. Lofgren. E�cient Algorithms for Personalized PageRank. PhD �esis, Stan-
ford University. 2015.

[29] M.V. Martinez, C. Molinaro, J. Grant, and V.S.Subrahmanian. Customized Poli-
cies for Handling Partial Information in Relational Databases, IEEE Transactions
on Knowledge and Data Engineering, pp.1–18,2012.

[30] X. Niu, L. Li, and K. Xu. Digrank: Using global degree to facilitate ranking in an
incomplete graph. CIKM’11, pp 2297–2300. 2011.

[31] D.L.-Nowell and J. Kleinberg. �e Link Prediction Problem for Social Networks.
CIKM’03, 2003.

[32] W. W. Piegorsch and G. Casella. Erratum: inverting a sum of matrices. SIAM
review, 32(3):470, 1990.

[33] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. K-nearest neighbors in uncer-
tain graphs. VLDB’10, 3(1-2):997–1008, 2010.

[34] K. Shin, J. Jung, L. Sael, and U Kang. BEAR: Block Elimination Approach for
Random Walk with Restart on Large Graphs. SIGMOD’15, 2015.

[35] J. Su, A. Sharma, and S. Goel, �e E�ect of Recommendations on Network Struc-
ture. WWW’16, 2016.

[36] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with restart and its ap-
plications. ICDM, pp. 613–622, 2006.

[37] Y. Yuan, L. Chen, G. Wang. E�ciently Answering Probability �reshold-Based
Shortest Path �eries over Uncertain Graphs, DASFAA’10, 2010.

[38] Y. Yuan, G. Wang, H. Wang, and L. Chen. E�cient Subgraph Search over Large
Uncertain Graphs. PVLDB, 4(11), 2011.

[39] L. Zhou, L. Chen, M.T Ozsu. Distance-join: pa�ernmatch query in a large graph,
VLDB’09, 2009.

[40] K. Zhu, W. Zhang, G. Zhu, Y. Zhang, and X. Lin. BMC: An E�cient Method to
Evaluate Probabilistic Reachability�eries, DASFAA’11, 2011.

[41] Z. Zou, J. Li, H. Gao, and S. Zhang. Mining Frequent Subgraph Pa�erns from
Uncertain Graph Data. IEEE Trans. Knowl. Data Eng., 22(9):1603, 2010.


	Abstract
	1 Introduction
	2 Related Works
	2.1 Graphs with Uncertainty
	2.2 Node Ranking in Uncertain Graphs

	3 Problem Formulation
	3.1 Possible Worlds of an Uncertain Edge
	3.2 Possible Worlds of a Graph
	3.3 PPR under Uncertainty

	4 ``Naive'' Approaches
	4.1 Exhaustive Approaches
	4.2 Collapsing-based Approaches
	4.3 Flattening-based Approaches

	5 UPPR: Proposed Approach
	5.1 Special Case: Two Possible Worlds
	5.2 General Case: > 2 Possible Worlds
	5.3 Accuracy of UPPR
	5.4 Efficient Computation of UPPR Scores
	5.5 Hybrid Computation in the Presence of Large Numbers of Uncertain Edges

	6 Experiments
	6.1 Datasets and Setup
	6.2 Alternative Approaches

	7 Results and Discussions
	8 Conclusions
	References

