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3

aDepartment of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada4

bDepartment of Mathematics, Faculty of Science, University of South Bohemia, Branǐsovská 1760, 3705
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Abstract9

Classic bimatrix games, that are based on pair-wise interactions between two opponents
in two different roles, do not consider the effect that interaction duration has on payoffs.
However, interactions between different strategies often take different amounts of time.
In this article, we further develop a new approach to an old idea that opportunity costs
lost while engaged in an interaction affect individual fitness. We consider two scenarios:
(i) individuals pair instantaneously so that there are no searchers, and (ii) searching for a
partner takes positive time and populations consist of a mixture of singles and pairs. We
describe pair dynamics and calculate fitnesses of each strategy for a two-strategy bimatrix
game that includes interaction times. Assuming that distribution of pairs (and singles)
evolves on a faster time scale than evolutionary dynamics described by the replicator
equation, we analyze the Nash equilibria (NE) of the time-constrained game. This general
approach is then applied to the Owner–Intruder bimatrix game where the two strategies
are Hawk and Dove in both roles. While the classic Owner–Intruder game has at most
one interior NE and it is unstable with respect to replicator dynamics, differences in pair
duration change this prediction in that up to four interior NE may exist with their stability
depending on whether pairing is instantaneous or not. The classic game has either one (all
Hawk) or two ((Hawk,Dove) and (Dove,Hawk)) stable boundary NE. When interaction
times are included, other combinations of stable boundary NE are possible. For example,
(Dove,Dove), (Dove,Hawk), or (Hawk,Dove) can be the unique (stable) NE if interaction
time between two Doves is short compared to some other interactions involving Doves.
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1. Introduction12

Classic evolutionary game theoretical models in normal form consider two players with13

a finite number of strategies and a payoff matrix. Players in a large (infinite) population14

meet at random, interact pair-wise, and obtain their corresponding (individual) fitnesses.15

There are three important and somewhat hidden assumptions: (i) interaction times be-16

tween two strategies are not considered, i.e., they are all assumed to be the same, (ii) the17

distribution of strategy pairs corresponds to random pair formation among all individuals18

and (iii) individual fitness accrues only through pair interactions. These assumptions fit19

genetic population models with two (or more) alleles at a single locus. In the genetic20

model, the alleles pair randomly during meiosis and the resulting distribution of geno-21

types is given by the Hardy–Weinberg equation. When alone, alleles cannot gain any22

fitness. For many phenotypic models (e.g., the Hawk–Dove, or Prisoner’s dilemma), these23

assumptions are likely not satisfied. For example, when two aggressive individuals are in24

a fight, their interaction can be much longer when compared to the situation where one25

individual (a Dove) exits from an interaction with a Hawk (in which case the Hawk will26

win the contest). Because contests between different strategies can take different times,27

the resulting equilibrium distribution of pairs does not correspond to the Hardy–Weinberg28

equation.29

Křivan and Cressman (2017) showed that, when individuals pair instantaneously but30

the interaction times are strategy dependent, the Hawk–Dove model may have a mixed31

ESS (i.e., an evolutionarily stable state that consists of a mixture of Hawks and Doves)32

when the cost of a fight is lower than the value of the contested resource. For this33

to happen, the interaction time between two Hawks must be long enough relative to34

interaction times between other strategies. Such an outcome is not possible in the classic35

Hawk–Dove game that does not consider interaction times. Similarly, for the repeated36

Prisoner’s dilemma, provided cooperators stay together for enough rounds of the game37

while pairs with at least one defector disband quickly, cooperation does evolve (Křivan38

and Cressman, 2017). This situation arises naturally if players can choose whether to39

continue the game to the next round with the same opponent, since it is always better to40

play against a cooperator than a defector in the Prisoner’s dilemma game (see also the41

opting-out game (Zhang et al., 2016)).42

Moreover, individuals can gain/lose fitness when alone (e.g., individuals with different43

strategies may have different mortalities). While the above games do not consider singles,44

Křivan et al. (2018) assumed that pairing between individuals is not immediate and being45

single has fitness consequences. They showed that distributional dynamics alone can lead46

to density dependence in models (e.g., the Hawk–Dove model) that are only frequency47

dependent when pairing is instantaneous and all interaction times are the same.48
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All the models considered above are based on symmetric games (in particular, matrix49

games), where the two contestants are assumed to be drawn from the same population50

and can differ only in their choice of strategy. It is well known that various asymmetries51

(Broom and Rychtář, 2013) in contestants lead to qualitatively different outcomes when52

interaction times are not considered. A class of asymmetric games, bimatrix games,53

where the two contestants are drawn from two different types of individuals (e.g., two54

populations or two roles) was studied thoroughly in the literature (e.g., Hofbauer and55

Sigmund, 1998; Cressman, 2003; Broom and Rychtář, 2013). A well-known result of56

classic evolutionary game theory for these games is that no interior evolutionarily stable57

strategy exists (Selten, 1980) (i.e., no ESS where each population is a mixture of pure58

strategies). Furthermore, bimatrix games may have an interior Nash equilibrium (NE) but59

it cannot be asymptotically stable under the (bimatrix) replicator equation, the standard60

game dynamics of evolutionary game theory (Hofbauer and Sigmund, 1998). In particular,61

ESSs and asymptotically stable equilibria correspond to strict NEs of the bimatrix game62

(i.e., pure strategy pairs where both players do strictly worse by unilaterally changing63

their strategy).64

Given the conceptual differences between the evolutionary outcomes of classic matrix65

and bimatrix games, it is important to understand the consequences of strategy-dependent66

interaction times by extending the analysis beyond the matrix games considered by Křivan67

and Cressman (2017). To this end, in this article, we study the effect of interaction time on68

the evolutionary outcome of bimatrix games when both populations have two strategies.69

We consider two pair formation processes based on the assumption that the number of70

individuals of each population are are the same. In Section 2, as existing pairs disband,71

these individuals instantaneously form new pairs randomly among themselves. From the72

analytic expression of the equilibrium distribution of pairs at a given number of each73

strategy in both populations, we analyze the resulting game (i.e., investigate its NEs74

and their stability) when individual fitness is defined as expected payoff per unit time.75

When interaction times are all the same, we recover the classic results. Otherwise, more76

complicated evolutionary outcomes emerge such as multiple interior NEs (some of which77

are stable and some unstable) as well as strict NE that differ from the classic game.78

These possibilities are illustrated there by a thorough analysis of the Owner–Intruder79

game (Broom and Rychtář, 2013), the bimatrix version of the Hawk–Dove game where80

individuals assume one of the two roles, owner or intruder.81

In Section 3, when pairs disband, the resulting singles form new pairs at random82

through the mass action principle with a finite encounter rate. Since the analytic expres-83

sion of the equilibrium distribution of pairs at a given number of each strategy in both84

populations is no longer tractable unless all interaction times are the same, we analyze85

the Owner–Intruder game, with unequal interaction times, numerically.86
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2. Instantaneous pair formation87

We consider a bimatrix game with two strategies denoted by ei (i = 1, 2) for the row88

player in population 1 and fj (j = 1, 2) for the column player in population 2. The payoff89

bimatrix is90

[

f1 f2

e1 πe
11, π

f
11 πe

12, π
f
12

e2 πe
21, π

f
21 πe

22, π
f
22

]

(1)

where πe
ij (respectively, πf

ij) is the payoff to ei (respectively fj) when interacting with fj91

(respectively ei). In contrast to classic evolutionary game theory, we explicitly incorporate92

the duration of interactions into the game through the time interaction matrix93

(

f1 f2
e1 τ11 τ12
e2 τ21 τ22

)

(2)

where τij is the expected time two players using strategy ei and fj stay together.94

In this section, we assume that, when pairs split, all these newly single individuals95

immediately form new pairs at random. We are interested in the equilibrium distribution96

of strategy pairs (ei, fj) for given numbers of the different strategies. Let nij be the97

number of strategy pair (ei, fj). As shown in Appendix A, pair dynamics are98

dn11

dt
= −n11

τ11
+

(

n11

τ11
+ n12

τ12

)(

n11

τ11
+ n21

τ21

)

n11

τ11
+ n12

τ12
+ n21

τ21
+ n22

τ22

dn12

dt
= −n12

τ12
+

(

n11

τ11
+ n12

τ12

)(

n12

τ12
+ n22

τ22

)

n11

τ11
+ n12

τ12
+ n21

τ21
+ n22

τ22

dn21

dt
= −n21

τ21
+

(

n21

τ21
+ n22

τ22

)(

n11

τ11
+ n21

τ21

)

n11

τ11
+ n12

τ12
+ n21

τ21
+ n22

τ22

dn22

dt
= −n22

τ22
+

(

n21

τ21
+ n22

τ22

)(

n12

τ12
+ n22

τ22

)

n11

τ11
+ n12

τ12
+ n21

τ21
+ n22

τ22

(3)

and the equilibrium distribution satisfies99

nij

τij
=

(

ni1

τi1
+ ni2

τi2

)(

n1j

τ1j
+

n2j

τ2j

)

(

n11

τ11
+ n12

τ12
+ n21

τ21
+ n22

τ22

) for i, j = 1, 2. (4)
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Intuitively, at equilibrium, the number of disbanding (ei, fj) pairs per unit time (i.e., the100

left-hand side
nij

τij
of (4)) must equal the number of newly formed (ei, fj) pairs from the101

newly single ei strategists
(

ni1

τi1
+ ni2

τi2

)

and fj strategists
(

n1j

τ1j
+

n2j

τ2j

)

.102

We observe that at the equilibrium distribution,
nij

τij
satisfy the generalized Hardy–103

Weinberg equation, i. e.,104

n11

τ11

n22

τ22
=

n12

τ12

n21

τ21
. (5)

Given the number of e1 and f1 strategists (Ne1 = n11 + n12 and Nf1 = n11 + n21, respec-105

tively) as well as the total number of individuals N = n11 + n12 + n21 + n22 in either106

population, Appendix A shows that the unique nonnegative solution to (4) and (5) is107

(assuming τ12τ21 6= τ11τ22)108

n11 =

√
A + (Ne1 +Nf1)(τ12τ21 − τ11τ22)−Nτ12τ21

2(τ12τ21 − τ11τ22)
,

n12 =
−
√
A+ (Ne1 −Nf1)(τ12τ21 − τ11τ22) +Nτ12τ21

2(τ12τ21 − τ11τ22)
,

n21 =
−
√
A− (Ne1 −Nf1)(τ12τ21 − τ11τ22) +Nτ12τ21

2(τ12τ21 − τ11τ22)
,

n22 =

√
A− (Ne1 +Nf1)(τ12τ21 − τ11τ22) +N(τ12τ21 − 2τ11τ22)

2(τ12τ21 − τ11τ22)
,

(6)

where109

A = (Nτ12τ21 − (Ne1 +Nf1)(τ12τ21 − τ11τ22))
2 + 4Ne1Nf1τ11τ22(τ12τ21 − τ11τ22). (7)

When τ12τ21 = τ11τ22 the above distributional equilibrium corresponds to the standard110

Hardy–Weinberg distribution111

(n11, n12, n21, n22) =

(

Ne1Nf1

N
,
Ne1Nf2

N
,
Ne2Nf1

N
,
Ne2Nf2

N

)

(8)

where Ne2 ≡ N − Ne1 and Nf2 ≡ N − Nf1 . This is an important special case since it112

includes the classic situation, i.e., all interaction times are the same (τ11 = τ12 = τ21 = τ22).113

2.1. Fitness and evolutionary outcomes114

Following Křivan and Cressman (2017), we define fitness as the expected payoff that115

an individual of a given phenotype obtains per unit of interaction time. For example, let116
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us consider an individual playing strategy e1 in population 1. The probability that this117

individual is paired with an individual playing strategy f1 is n11/(n11 + n12) and with an118

individual playing strategy f2 is n12/(n11+n12). When paired with an individual playing119

strategy f1, the focal individual receives payoff πe
11/τ11 per unit of time. Similarly, when120

paired with an individual playing strategy f2, the focal individual gets payoff πe
12/τ12 per121

unit of time. Thus, the focal individual has expected payoff (i.e., fitness) Πe1 given by122

the first equation in (9). The fitness for individuals playing e2 and those in the second123

population are calculated analogously, which leads to (i, j = 1, 2)124

Πei =
ni1

ni1 + ni2

πe
i1

τi1
+

ni2

ni1 + ni2

πe
i2

τi2

Πfj =
n1j

n1j + n2j

πf
1j

τ1j
+

n2j

n1j + n2j

πf
2j

τ2j
.

(9)

The corresponding time-constrained bimatrix game based on payoff bimatrix (1) and time125

interaction matrix (2) is then the two-strategy game with payoffs given by the fitness126

functions (9) evaluated at the distributional equilibrium (6) for fixed size N of each127

population.1128

To analyze this time-constrained bimatrix game, we examine how its NE structure129

depends on model parameters. We start by looking for NE in pure strategies (i.e., both130

populations are monomorphic) before considering NE where both populations are poly-131

morphic (i.e., the interior NE later in this section) and boundary NE (where exactly one132

population is polymorphic) in Section 2.3. Let us consider the equilibrium where all indi-133

viduals of population 1 play strategy e1 while all individuals of the second population play134

strategy f1. Then n11 = N and fitnesses of residents are Πe1 =
πe
11

τ11
and Πf1 =

π
f
11

τ11
. Now135

consider a mutant of the first population playing strategy e2 in the resident system. This136

mutant can pair only with f1−strategists in which case its fitness is Πe2 =
πe
21

τ21
. Similarly,137

Πf2 =
π
f
12

τ12
. Thus, the strategy (e1, f1) cannot be invaded if

πe
21

τ21
<

πe
11

τ11
and

π
f
12

τ12
<

π
f
11

τ11
, in138

which case (e1, f1) is a strict NE.2 Similar considerations for other pure strategy pairs139

show that a strategy (ei, fj) is a strict NE for the fitness functions given in (9) if it is a140

1We will use the phrase “fitness functions” rather than “payoffs” for these time-constrained games
from now on to avoid confusion with payoffs in (1).

2If (e1, f1) is a strict NE, it must also resist invasion by mutants in population 1 that use any other
strategy (including a mixed strategy) besides e1. However, since the fitness of the focal mutant is linear
in the components of its mixed strategy, it is enough to verify (e1, f1) cannot be invaded by the pure
strategy e2 (and by f2 in population 2).
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strict NE of the classic game given by a time-adjusted payoff bimatrix141

[

f1 f2

e1
πe
11

τ11
,
π
f
11

τ11

πe
12

τ12
,
π
f
12

τ12

e2
πe
21

τ21
,
π
f
21

τ21

πe
22

τ22
,
π
f
22

τ22

]

. (10)

We remark that the inequality conditions for a strict NE are independent of population142

size. Furthermore, the fitness functions (9) when the populations are not monomorphic143

are convex combinations of the appropriate entries in the time-adjusted payoff bimatrix144

(e.g., Πe1 = α
πe
11

τ11
+ (1−α)

πe
12

τ12
for some 0 ≤ α ≤ 1). It is the same for the classic bimatrix145

game except that for us α is no longer a linear function of the strategy frequencies of the146

other population since the distributional equilibrium is not the standard Hardy–Weinberg147

distribution. In fact, α depends on population size N as well.148

A strict NE can be pictured as corresponding to a particular vertex of the unit square149

(cf. Figure 2 with the axes scaled to be frequencies of the first strategy in each population150

instead of numbers and with vertices given as solid dots corresponding to strict NE). It is151

well-known (see Figs. 10.1, 10.2, 11.1 in Hofbauer and Sigmund, 1998, or Figs. 3.3.1, 3.3.2,152

3.3.3 in Cressman, 2003) that a classic two-strategy bimatrix game may have no strict153

NE, exactly one strict NE (e.g., Figure 2A), or exactly two strict NE that are diagonally154

opposite each other (e.g., Figure 2E). Furthermore, the classic two-strategy bimatrix game155

(with nondegenerate payoff bimatrix) can be classified by its strict NE and its interior156

NE (i.e., its unique NE where both populations are polymorphic) if it exists.157

By examining interior NE, we will see this classification method fails for two-strategy158

time-constrained bimatrix games (see Section 2.2). These equilibria must satisfy Πe1 =159

Πe2 and Πf1 = Πf2 so that neither phenotype can increase its payoff by unilaterally160

switching its strategy. Unfortunately, obtaining analytic formulas for interior NE seems161

to be out of reach except in two special cases.162

One special case is when interaction times satisfy τ12τ21 = τ11τ22. Then the payoffs (9)163

evaluated at the equilibrium distribution (8) are the same as the payoffs for the classic164

bimatrix game with payoff matrix given by the time adjusted payoff matrix (10), i.e.,165

Πei =
Nf1

N

πe
i1

τi1
+

Nf2

N

πe
i2

τi2

Πfj =
Ne1

N

πf
1j

τ1j
+

Ne2

N

πf
2j

τ2j
,

(11)
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where i, j = 1, 2, and the interior NE simplifies to166

(Ne1 , Nf1) =

(

Nτ12(π
f
22τ21 − πf

21τ22)

τ22(π
f
11τ22 − πf

12τ21) + τ12(π
f
22τ21 − πf

21τ22)
,

Nτ21(π
e
22τ12 − πe

12τ22)

τ22(π
e
11τ22 − πe

12τ21) + τ12(π
e
22τ21 − πe

21τ22)

)

(12)

whenever both components are strictly between 0 and N . In fact, this is the interior NE167

of the classic bimatrix game with time-adjusted bimatrix (10).168

The other special case is interior symmetric NE (i.e., those on the main diagonal where169

Ne1 = Nf1) for role-independent time constrained bimatrix games. As discussed in Section170

2.2, there are up to two such diagonal interior symmetric NE and the formulas for these171

are given in Křivan and Cressman (2017).172

To find interior NE in the general case, we can instead consider the replicator equation173

at fixed population size N . This dynamics is given by3174

dNe1

dt
=

Ne1(N −Ne1)

N
(Πe1(Ne1 , Nf1)− Πe2(Ne1, Nf1))

dNf1

dt
=

Nf1(N −Nf1)

N
(Πf1(Ne1, Nf1)− Πf2(Ne1 , Nf1))

(13)

where Πei(Ne1 , Nf1) and Πfi(Ne1 , Nf1) are fitnesses (9) evaluated at the equilibrium dis-175

tribution (6) for a given (Ne1 , Nf1). Rest points of the replicator equation with Ne1 and176

Nf1 strictly between 0 and N are the interior NE of the underlying game (Hofbauer and177

Sigmund, 1998). Moreover, when all τij = τ are equal, the dynamics (13) is the replicator178

equation of the classic bimatrix game (up to the factor τ that only affects the speed along179

trajectories and not the evolutionary outcome).180

Through the Owner-Intruder game with time-constraints, we illustrate the two special181

cases mentioned above (i.e., either τ12τ21 = τ11τ22 or interior symmetric NE) as well as182

the replicator method for the general case.183

2.2. Owner–Intruder game184

The classic owner intruder game (Maynard Smith, 1982; Hofbauer and Sigmund, 1998;185

Cressman, 2003; Broom and Rychtář, 2013) is the two-role extension of the symmetric186

3Replicator dynamics at fixed population size assume that frequencies of e1 strategists p1 are described

by
dp1

dt
= p1(1−p1)(Πe1 (Ne1 , Nf1)−Πe2(Ne1 , Nf1)) (Hofbauer and Sigmund, 1998). Because Ne1 = p1N

and the overall size N of population 1 is assumed to be fixed, we obtain
dNe1

dt
=

dp1

dt
N which yields the

first equation in (13).
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Hawk–Dove game (i.e., matrix game) that models the situation in which an individual187

either owns a site or is an intruder trying to seize a site. An individual can either be a188

Hawk (strategy e1 if owner and f1 if intruder) or a Dove (strategy e2 if owner and f2 if189

intruder) in either of the two roles. The payoff bimatrix of the game is190

[

Owner\Intruder Hawk Dove

Hawk
V−C
2

, V−C
2

V, 0
Dove 0, V V

2
, V
2

]

where V (the value attached to the site) and C (the cost of fighting) are positive. It is an191

example of a role-independent bimatrix game since an individual’s payoff depends only192

on the strategies used in the interaction and not on whether the individual is the owner193

or the intruder.4194

When the cost of fighting is low (C < V ), the classic game has a single NE (e1, f1) =195

(H,H) where individuals in both positions behave as hawks. When the cost of fighting is196

high (C > V ) there are two strict NE (e2, f1) = (D,H) and (e1, f2) = (H,D) as well as a197

mixed NE (p1, q1) = (V/C, V/C), where Hawk strategy is played with probability V/C in198

both roles. This mixed NE cannot be a (two-species) ESS, because bimatrix games can199

have ESSs only in pure strategies (Selten, 1980).5200

For the time-constrained bimatrix game, we first analyze its strict NE through the201

following time-adjusted bimatrix (cf. (10))202

[

Owner\Intruder Hawk Dove

Hawk
V−C
2τ11

, V−C
2τ11

V
τ12

, 0

Dove 0, V
τ21

V
2τ22

, V
2τ22

]

.

The following list contains all strict NE of the time-constrained Owner–Intruder game203

(Figure 1). After each item in this list, the panels in Figure 2 that have this strict NE204

are indicated in parentheses.205

• If V > C, then strategy (H,H) is a NE (e.g., Figure 2A–D).206

4Broom and Rychtář (2013) refer to role independence as an “uncorrelated asymmetry” (see also the
role games of Hofbauer and Sigmund (1998)). Mathematically, role independence is equivalent to the
second payoff entries in the bimatrix forming the transpose of the matrix of first entries. It is assumed
that the pure strategy sets for both roles are the same as well as the ordering of their elements. Typically,
the strategies are given the same name in both roles (e.g., Hawk and Dove) and the same order. Every
role-independent bimatrix game is the two-role extension of a symmetric matrix game and has NE where
both populations use the same strategy; namely, a NE of the matrix game. In addition, there may be
other NE.

5In fact, a strategy pair is an ESS for a classic bimatrix game if and only if it is a strict NE.
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A

(H,H)

(H,H)

(H,H)

(D,H)

(D,D)

(H,D)

(D,H)

τ21

τ12

C V

2τ22

(D,D)

B

(H,H)

(H,H)

(H,H)

(D,H)

(D,D)

(H,D)

(H,D)

τ12

τ21

C V

2τ22

(D,D)

Figure 1: Strict NE of the Owner–Intruder game as functions of V and 2τ22 parameters. Panel
A assumes that τ21 < τ12 and panel B assumes the opposite inequality.

• If τ12 > 2τ22 and τ21 > 2τ22, then strategy (D,D) is a NE (e.g., Figure 2B, F, G,207

H).208

• If V < C and τ12 < 2τ22, then strategy (H,D) is a NE (e.g., Figure 2E, J).209

• If V < C and τ21 < 2τ22, then strategy (D,H) is a NE (e.g., Figure 2E, I).210

Dependence of strict NEs as a function of model parameters are shown in Figure 1. There211

is at least one strict NE for all parameter values except in the degenerate situations where212

V = C, τ12 = 2τ22, or τ21 = 2τ22 (these are the dashed lines in Figure 1) that are discussed213

in Section 2.3.214

Of particular note is that, although strategy pair (Dove, Dove) is never an ESS (i.e.215

a strict NE) for the classic Owner–Intruder game (since Dove is never an ESS for the216

Hawk–Dove matrix game), this pair is a strict NE when 2τ22 < min{τ12, τ21}. This analysis217

shows that when compared with the classical model, the model that considers duration218

of interactions can have strategy (D,D) as a NE provided the interaction time between219

Doves is small.220

In the special case where interaction times satisfy τ12τ21 = τ11τ22, the interior NE
(provided it exists) is given by (12) as

(Ne1 , Nf1) =

(

Nτ12V (τ21 − 2τ22)

τ 222(V − C) + τ12V (τ21 − 2τ22)
,

Nτ21V (τ12 − 2τ22)

(V − C)τ 222 + τ21V (τ12 − 2τ22)

)

.

We observe that when all interaction times are the same, the interior equilibrium is221

(Ne1, Nf1) = (V/C, V/C) exactly as in the classical Owner–Intruder game.222
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To investigate interior NE further for the Owner–Intruder game, fitness functions (9)223

are now224

Πe1 =
n11(V − C)

2τ11(n11 + n12)
+

n12V

τ12(n11 + n12)
,

Πe2 =
n22V

2τ22(n21 + n22)
,

Πf1 =
n11(V − C)

2τ11(n11 + n21)
+

n21V

τ21(n11 + n21)
,

Πf2 =
n22V

2τ22(n12 + n22)
.

(14)

Evaluating these at the equilibrium distribution (6) yields225

Πe1 =
(Cτ12 + (2τ11 − τ12)V )(

√
A−Nτ12τ21)

4Ne1τ11τ12(τ11τ22 − τ12τ21)
+

τ12(V − C)(Ne1 +Nf1) + 2τ11V (Ne1 −Nf1)

4Ne1τ11τ12

Πe2 =−
V
(√

A+N(τ12τ21 − 2τ11τ22)− (Ne1 +Nf1)(τ12τ21 − τ11τ22)
)

4τ22(N −Ne1)(τ11τ22 − τ12τ21)

Πf1 =−
√
A(Cτ21 + (2τ11 − τ21)V )

4Nf1τ11τ21(τ12τ21 − τ11τ22)
+

Nτ12(Cτ21 + 2τ11V − τ21V )

4Nf1τ11(τ12τ21 − τ11τ22)
−

(C − V )(Ne1 +Nf1)

4Nf1τ11
+

2τ11V (Nf1 −Ne1)

4Nf1τ11τ21

Πf2 =−
V
(√

A+N(τ12τ21 − 2τ11τ22)− (Ne1 +Nf1)(τ12τ21 − τ11τ22)
)

4τ22(N −Nf1)(τ11τ22 − τ12τ21)
,

where A is given in (7). To find interior NE, we need to solve Πe1 = Πe2 and Πf1 = Πf2 .226

Two-strategy, bimatrix games that are role-independent have role-independent inter-227

action times if and only if τ12 = τ21 (i.e., the length of Hawk–Dove interactions does228

not depend on whether the Hawk is the owner or the intruder).6 Symmetric NE of229

the role-independent time-constrained Owner–Intruder game are then those of the time-230

constrained Hawk–Dove matrix game, which are found analytically in Křivan and Cress-231

man (2017) using Solve command of Mathematica 11.232

Since attempts to use this method to find interior NE when the time-constrained233

bimatrix game was not role-independent or interaction times did not satisfy τ12τ21 = τ11τ22234

6We call a multi-strategy time-constrained bimatrix game “role-independent” if both its payoff bima-
trix and its time interaction matrix are role-independent. This last requirement is equivalent to the time
interaction matrix being symmetric (i.e., τij = τji for all i, j).
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failed, we now analyze the NE of the Owner–Intruder game numerically through the235

replicator equation, focusing on the cases where V > C and V < C separately.236

First, assume that V > C (Figure 2, panels A–D). Then (H,H) is always a strict237

NE. When the time-constrained Owner–Intruder game is role-independent, the replicator238

equation is invariant along the main diagonal of the unit square and its trajectories in239

the unit square are reflections in the main diagonal (Figure 2A,B,C). Furthermore, on the240

diagonal, the dynamics (13) restricts to the replicator equation for the time-constrained241

Hawk–Dove matrix game, which was analyzed by Křivan and Cressman (2017). They242

showed that, when interaction times between two Hawks are long enough (and all other243

interaction times are the same), there exist two (symmetric) interior NEs and the one with244

fewer Hawks is locally asymptotically stable while the other one is unstable. However,245

numerical simulations (e.g., Figure 2C) show that both interior symmetric NE (i.e., those246

gray points that are on the main diagonal) are saddles (i.e., unstable) for the bimatrix247

replicator dynamics.7248

Simulations of the replicator equation for the role-independent time-constrained Owner–249

Intruder game with V > C show that long interaction times between Hawks now lead to250

two new asymmetric interior NE (i.e., those off the main diagonal shown as black interior251

dots in Figure 2C). Numerical simulations suggest that these two equilibria are neutrally252

stable as they appear to be surrounded by a family of closed trajectories. The domain of253

the phase space filled by these closed curves is separated from the rest by two heteroclinic254

orbits that join the two symmetric NE. In particular, the symmetric strict NE (H,H)255

where all individuals play Hawk is not globally asymptotically stable.256

The neutral stability of the asymmetric NE disappears when the time interaction257

matrix is role dependent. For example, it is reasonable to assume that interaction time258

between intruding Hawk and owning Dove is longer than that between intruding Dove259

and owning Hawk (i.e., τ21 > τ12) because an owning Dove tries to defend its site against260

attacking Hawk. This role-dependent interaction time makes one of the two interior261

asymmetric NE unstable while the other becomes locally asymptotically stable (Figure262

2D).263

Now assume that V < C (Figure 2, panels E–K). Hawk is no longer an ESS for264

7From extensive simulations of the replicator equation, it seems likely that any interior symmetric
NE of two-strategy role-independent time-constrained bimatrix games are always saddles but we have no
proof of this conjecture. In the special case where τ12τ21 = τ11τ22 (and τ12 = τ21), interior symmetric
NE are saddles since, from (11), Πe1 (and Πf1) depends only on the strategy frequency of the other
population, implying that the Jacobian of replicator dynamics (13) evaluated at interior equilibrium (12)
has zeros on the main diagonal. This extends the same well-known result for classic role-independent
bimatrix games (Hofbauer and Sigmund, 1998).

12



the classic Hawk–Dove game and the only NE is the interior ESS where the population265

plays Hawk with probability V
C
. On the other hand, the classic Owner–Intruder game has266

two strict NE (H,D) and (D,H)8 and the unstable interior NE where both populations267

plays Hawk with probability V
C
. This corresponds to the time-constrained game with all268

interaction times equal (Figure 2E). When Hawk–Dove interactions are sufficiently long269

compared to Dove–Dove interactions (specifically, τ21 > 2τ22 and τ12 > 2τ22), then (D,D)270

is the only NE (Figure 2F). With a lower cost (Figure 2G), two neutrally stable symmetric271

interior NE that are surrounded by a family of closed trajectories appear. Furthermore,272

a small perturbation of these NE by introducing a slight role dependence in interaction273

times makes one of them locally asymptotically stable and the other unstable (panel274

H). Larger differences for role dependent interaction times (panels I and J respectively)275

eliminates interior NE altogether and make the paradoxical ESS (D,H) (respectively,276

(H,D)) globally asymptotically stable. Panel K is a degenerate case where τ12 = τ21 =277

2τ22 and so has boundary NE as discussed in the following section. Finally, panel L278

assumes V = C = 1, τ11 = 3 and all other interaction times are 1. This parametrization279

corresponds to the situation where sets of the NE along the boundary of square [0, N ]×280

[0, N ] exist. As calculated in the following section, the sets of NE are 0 ≤ Ne1 < 3
4
N281

when Nf1 = N and 0 ≤ Nf1 <
3
4
N when Ne1 = N .282

2.3. Boundary NE283

The previous two sections analyzed the strict NE and interior NE for two-strategy284

time-constrained bimatrix games. These games may also have NE on an edge of the285

square that are not at a vertex (i.e., partially mixed NE where only one of the two286

populations is polymorphic). For example, suppose that population 1 is polymorphic287

and population 2 is monomorphic at pure strategy f1, i.e., Nf1 = N . Then, at a NE on288

this edge, the fitnesses of both strategies of population 1 must be equal, i.e., Πe1 = Πe2.289

Since n12 = n22 = 0, Πe1 =
πe
11

τ11
and Πe2 =

πe
21

τ21
from (9).9 In this degenerate case where290

πe
11

τ11
=

πe
21

τ21
, a point along the edge Nf1 = N is a NE if and only if Πf1 ≥ Πf2. Since291

n21 = Ne2 , n11 = Ne1 and N = Ne1 +Ne2,292

Πf1 =
Ne1

N

πf
11

τ11
+

Ne2

N

πf
21

τ21
. (15)

8The second strict NE is often called the “paradoxical ESS” (Maynard Smith, 1982) since it corre-
sponds to the intruder always taking over the site and becoming the owner.

9In classic two-strategy bimatrix games, the pure strategy pair (e1, f1) may be a NE in this situation
but not a strict NE. We have ignored this degenerate case in the classification of pure strategy NE in
Sections 2.1 and 2.2 of our time-constrained bimatrix game through (10) above.

13



On the other hand, the invasion fitness of strategy f2 when there are no individuals playing293

this strategy is (see Appendix B)294

Πf2 =
Ne1π

f
12τ21 +Ne2π

f
22τ11

Nτ11τ22 +Ne1(τ12τ21 − τ11τ22)
. (16)

Solving Πf1 = Πf2 gives us, in general, up to two roots for Ne1 satisfying 0 ≤ Ne1 ≤ N .295

These roots divide the edge into closed subintervals, on each of which Πf1 −Πf2 does not296

change sign. Each such subinterval with this difference nonnegative is then a connected set297

of NE.10 However, since each point on this edge is a rest point of the replicator equation,298

none can be asymptotically stable under this dynamics.299

For the Owner–Intruder game, boundary NE emerge on the top edge of the square300

[0, N ] × [0, N ] where Nf1 = N when V = C since
πe
11

τ11
=

πe
21

τ21
= 0 along this edge. By301

evaluating when Πf1 ≥ Πf2 along this edge, we find the following four cases for sets of NE302

of the form (Ne1 , N)303

1. τ11 ≤ 2τ12 and τ21 < 2τ22 and 0 ≤ Ne1 ≤ N304

2. τ11 > 2τ12 and τ21 < 2τ22 and 0 ≤ Ne1 ≤ Nτ11(τ21−2τ22)
2(τ12τ21−τ11τ22)

305

3. τ11 < 2τ12 and τ21 ≥ 2τ22 and Nτ11(τ21−2τ22)
2(τ12τ21−τ11τ22)

≤ Ne1 ≤ N306

Similarly, let us consider the right edge of the square where all individuals of the first307

species play strategy Hawk, i.e., Ne1 = N. When V = C, this leads to the following sets308

of NE for the Owner–Intruder game.309

1. τ11 ≤ 2τ21 and τ12 < 2τ22 and 0 ≤ Nf1 ≤ N310

2. τ11 > 2τ21 and τ12 < 2τ22 and 0 ≤ Nf1 ≤ Nτ11(τ12−2τ22)
2(τ12τ21−τ11τ22)

311

3. τ11 < 2τ21 and τ12 > 2τ22 and Nτ11(τ12−2τ22)
2(τ12τ21−τ11τ22)

≤ Nf1 ≤ N312

These sets of NE on the boundary are illustrated in Figure 2L for the role-independent313

time-constrained Owner–Intruder game with V = C. From Křivan and Cressman (2017)314

the interior NE in this figure appears for τ11 > τ(3−C/V +2
√

1− C/V ) = 2τ (assuming315

τ12 = τ22). In this case the NEs on the edges form two disconnected components. Since316

τ12 = τ21, the NE component on the upper edge is then the reflection in the main diagonal317

of the component on the right-hand edge.318

We note that sets of NE also appear (Figure 2K) on the lower (respectively, left-319

hand) edges of the square when τ12 = 2τ22 (respectively, τ21 = 2τ22). By other choices of320

interaction time τ11 we can also get disconnected components along these edges.321

10In classical games, this set is called a NE component (Cressman, 2003).
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Figure 2: The replicator dynamics for the Owner–Intruder game depending on V , C and
interaction times when pairing is instantaneous. The first four panels (i.e., panels A, B, C, and
D) assume V > C (in fact, V = 4 and C = 1). The other panels assume V = 1 ≤ C with
C = 4 (panels E, F, I, J, K), C = 1.5 (panels G, H) and C = 1 (panel L). All interaction
times not equal to 1 are indicated in each panel. Thus, panels A and E respectively are the
replicator dynamics of the classic Owner–Intruder game for V > C and V < C respectively since
all interaction times are the same. In particular, the main diagonal is invariant in these two
panels since the time-constrained game is role-independent. For the same reason, this invariance
holds in panels B, C, F, G, K, L but not in the other four panels (D, H, I, J) that have role
dependent interaction times (i.e., τ12 6= τ21). In panel B, strategy pairs (H,H) and (D,D) are
strict NE (since min{τ12, τ21} > 2τ22 and V > C) and an unstable saddle symmetric interior NE
appears. In panel C, Hawk-Hawk interaction time is long enough (τ11 = 5) that two unstable
saddle symmetric interior NE emerge along with two neutrally stable asymmetric ones. Panel
D is an asymmetric perturbation of the interaction time matrix from panel C (specifically τ12
shifts from 1 to 1.1) that perturbs the two asymmetric NE to a stable and unstable one. Since
min{τ12, τ21} > 2τ22 and V < C in panels F, G, H, (D,D) is the only strict NE. It may be globally
asymptotically stable (panel F) or only locally asymptotically stable when there are four interior
NE with two unstable saddles and two neutrally stable (the role-independent case of panel G)
or two unstable saddles together with one unstable and one stable NE (panel H with perturbed
interaction matrix compared to panel G). In the role-dependent interaction matrices of panels
I and J, τ12 (respectively τ21) is large enough that the paradoxical ESS (D,H) (respectively
(H,D)) is the only strict NE and it is globally asymptotically stable. Finally, panels K and L
illustrate that sets of boundary NE emerge (thick black line segments) when V = 1, C = 4,
τ11 = τ12 = τ21 = 2τ22 = 1 (panel K), and V = C (panel L).

3. Non instantaneous pair formation322

So far we have assumed that pair formation is instantaneous, i.e., there are no singles.323

This assumption is natural in population genetics, where alleles exist as singles only during324

meiosis but otherwise they are always paired in diploid individuals. However, since it may325

be more realistic in general to assume that it takes some time for singles to form pairs, we326

consider both singles and paired individuals in this section. We also assume that, when a327

pair disbands, these new singles are ready immediately to start searching for new partners328

with encounter rate λ and new pairs are formed by random encounters between one single329

from each population.11330

11These last assumptions rule out applying the methods to bimatrix games where newly single indi-
viduals may wait after disbanding before they are ready to form new pairs. For example, in the model
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The number of singles of the two strategies for population 1 are denoted by nei for331

i = 1, 2 and for population 2 by nfj for j = 1, 2. Then332

Nei = nei + ni1 + ni2

Nfj = nfj + n1j + n2j

(17)

are the total number of individuals playing a given strategy. We continue to assume that333

the total number of individuals in each population is N (i.e., Ne1+Ne2 = N = Nf1 +Nf2).334

Distributional dynamics of singles and pairs when pair formation is described by the335

mass action law are then336

dne1

dt
= −λne1(nf1 + nf2) +

n11

τ11
+

n12

τ12
dne2

dt
= −λne2(nf1 + nf2) +

n21

τ21
+

n22

τ22
dnf1

dt
= −λnf1(ne1 + ne2) +

n11

τ11
+

n21

τ21
dnf2

dt
= −λnf2(ne1 + ne2) +

n12

τ12
+

n22

τ22
dn11

dt
= λne1nf1 −

n11

τ11
dn12

dt
= λne1nf2 −

n12

τ12
dn21

dt
= λne2nf1 −

n21

τ21
dn22

dt
= λne2nf2 −

n22

τ22
.

(18)

Appendix C shows that (18) has a unique distributional equilibrium for a fixed N and337

given Ne1 and Nf1 .338

Assuming that singles do not get any payoffs, the fitnesses (i.e., the expected payoff339

to an individual per unit time) of the four strategies evaluated at the unique equilibrium340

for parental care of offspring known as the Battle of the Sexes (Dawkins, 1976), when fast females mate
with philandering males to produce offspring, it is assumed that the male immediately deserts and begins
searching for a new mate whereas the female remains and cares for the offspring for a certain amount of
time before searching for a new mate.
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of (18) are (i, j = 1, 2)341

Πei =
ni1

Nei

πe
i1

τi1
+

ni2

Nei

πe
i2

τi2
,

Πfj =
n1j

Nfj

πf
1j

τ1j
+

n2j

Nfj

πf
2j

τ2j
.

(19)

These fitness functions depend on N , Ne1 and Nf1 . Since, at the unique distributional342

equilibrium of (18),343

nij = λneinfiτij, i, j = 1, 2 (20)

fitnesses (19) simplify to (i, j = 1, 2)344

Πei =
λ(nf1π

e
i1 + nf2π

e
i2)

λnf1τi1 + λnf2τi2 + 1
,

Πfj =
λ(ne1π

f
1j + ne2π

f
2j)

λne1τ1j + λne2τ2j + 1
.

(21)

The time-constrained bimatrix game with non instantaneous pair formation based on345

payoff bimatrix (1) and time interaction matrix (2) is then the two-strategy game with346

payoffs given by the fitness functions (21) evaluated at the distributional equilibrium of347

(18) for fixed size N of each population and encounter rate λ. As in Section 2, we are348

interested in the NE of this game and its evolutionary outcome.349

3.1. Classic bimatrix game with non instantaneous pair formation350

The classic model implicitly assumes all interaction times are equal (i.e., τij = τ for351

all i, j = 1, 2). However, since the classic model also assumes that individuals are always352

interacting (i.e., always in pairs), the question arises whether the classic predictions remain353

valid when pair formation requires time. This section examines the question.354

The equilibrium distribution of (18) is355

nei =
Nei

N

(√
4λNτ + 1− 1

)

2λNτ

nfj =
Nfj

N

(√
4λNτ + 1− 1

)

2λNτ
.

Substituting these expressions to (21) leads to356

Πei =
4Nλ

(1 +
√
1 + 4λτN)2

(

πe
i1

Nf1

N
+ πe

i2

Nf2

N

)

,

Πfj =
4Nλ

(1 +
√
1 + 4λτN)2

(

πf
1j

Ne1

N
+ πf

2j

Ne2

N

)

.

(22)
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Thus, up to the positive factor 4Nλ

(1+
√
1+4λτN)2

, these are the payoffs of the classic bimatrix357

game with payoff matrix (1). From this it follows that the NE of the classic bimatrix358

game with non instantaneous pair formation is the same as the the classic bimatrix game359

and, moreover, the trajectories of the replicator equation are the same (up to the speed360

along the trajectory). Thus, the two games have the same evolutionary outcomes.361

To rephrase, standard evolutionary game theory models of bimatrix games can ex-362

plicitly incorporate time constraints without affecting the game-theoretic analysis as long363

as all interaction times are the same. It is then irrelevant whether pair formation is364

instantaneous or requires some time.365

3.2. Evolutionary outcomes with non instantaneous pair formation366

As we saw in Section 2, evolutionary outcomes of time-constrained bimatrix games367

with instantaneous pair formation depend heavily on pair interaction times when these368

are not all the same (e.g., Figure 2). This section analyzes the same phenomena when369

pair formation is not instantaneous.370

We start by characterizing the strict NE of these games. From (21), at strategy pair371

(e1, f1),372

Πe1 =
λnf1π

e
11

λnf1τ11 + 1
, Πf1 =

λne1π
f
11

λne1τ11 + 1
,

since ne2 = nf2 = 0. Note that the fitness Πe1 (Πf1) does not depend on distributional373

equilibrium of population 1 (2). Thus, the invasion fitnesses of strategy e2 and f2 are374

Πe2 =
λnf1π

e
21

λnf1τ21 + 1

and375

Πf2 =
λne1π

f
12

λne1τ12 + 1

as given in (21) with ne2 = nf2 = 0. Furthermore, at this strategy pair, N = ne1 + n11 =376

ne1 + λne1nf1τ11 = nf1 + n11. Thus, ne1 = nf1 and so N = λτ11n
2
e1
+ ne1 and377

ne1 =
−1 +

√
1 + 4Nλτ11
2λτ11

= nf1 .

Strategy pair (e1, f1) is a strict NE provided Πe1 > Πe2 and Πf1 > Πf2 , i.e.,378

πe
11

τ11(
√
4λNτ11 + 1 + 1)

>
πe
21

τ21
(√

4 λNτ11 + 1− 1
)

+ 2τ11

πf
11

τ11(
√
4λNτ11 + 1 + 1

>
πf
12

τ12
(√

4λNτ11 + 1− 1
)

+ 2τ11
.

(23)
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Similarly, we can obtain conditions for other strict NE. Contrary to the case of instan-379

taneous pairing where these conditions are given by the adjusted payoff matrix (10), we380

cannot write these conditions in a similar form when pairing is non-instantaneous. This381

is seen from expressions (23), where the invasion fitness for strategy e2 (f2) depends not382

only on interaction time τ21 (τ12), but also on interaction time τ11.383

As λ increases to infinity, payoff Πe1 (Πf1) converges to πe
11/τ11 (πf

11/τ11) and invasion384

fitness Πe2 (Πf2) converges to πe
21/τ21 (πf

12/τ12). Thus, when the encounter rate of singles385

is large, the strict NE of the time-constrained bimatrix game with non instantaneous pair386

formation are the same as the strict NE of the time-constrained bimatrix game of Section387

2 (i.e., with instantaneous pair formation). In fact, for large λ, the interior NE match as388

well since there are essentially no singles in the system.389

The next section illustrates these general results for the Owner–Intruder game.390

3.3. The Owner–Intruder game with non instantaneous pair formation391

When all interaction times equal to τ as in Section 3.1, there is an interior NE if and392

only if V < C. As a function of λ and τ , it is given by393

ne1 = nf1 =
V (−1 +

√
1 + 4λNτ)

2Cλτ

ne2 = nf2 =
(C − V )(−1 +

√
4λNτ )

2Cλτ

Ne1 = Nf1 =
NV

C
,

(24)

which is the classic result for the case when V < C.394

However, for a general time interaction matrix, an analytic expression for the interior395

NE is not available. Our recourse is to apply the replicator equation (13) with payoffs396

(21) when pairing is non-instantaneous. On contrary to the case of instantaneous pairing,397

we cannot now express the distributional equilibrium at the current strategy numbers398

explicitly. Thus, we have to solve replicator equation (13) together with the system of399

algebraic equations400

Ne1 = ne1(1 + λnf1τ11 + λnf2τ12)

Nf1 = nf1(1 + λne1τ11 + λne2τ21).
(25)

This is a semi-explicit index 1 differential-algebraic equation (Ascher and Petzold, 1998)401

that we solve numerically using Mathematica 10.402

Figure 3 shows the results for two encounter rates. Panels A–H use the same parameter403

values (i.e., V, C, τij) as corresponding panels in Figure 2. For the role-independent time-404

constrained cases (panels A–C, E–G), trajectories remain reflections of each other with405
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respect to the main diagonal. We see that for large enough encounter rate (λ = 10 in406

panels A–H) the strict NE still match those of Section 2. However, there are differences407

in stability of interior NE between Figures 2 and 3. The neutral stability of the two408

off-diagonal equilibria in Figure 2C and G is lost and the two equilibria become unstable.409

Figure 3C and G show two trajectories that start close to the two equilibria and that410

converge to equilibrium (Ne1, Nf1) = (100, 100) and (Ne1 , Nf1) = (0, 0), respectively.411

Panels C’, D’, G’, and H’ show numerical simulations for yet smaller encounter rate412

(λ = 1). We observe that this leads to disappearance of interior NE in panels C’ and D’,413

and to destabilization of the interior stable NE in panel H that is replaced by a locally414

stable limit cycle in panel H’. These numerical simulations, for the parameter values used,415

show that small and intermediate encounter rates make coexistence of both strategies in416

polymorphic state less likely.417
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Figure 3: The replicator dynamics for the Owner–Intruder game when pairing is not instanta-
neous. For role-independent time-constrained bimatrix games (panels A, B, C, E, F, G, C’, G’),
the main diagonal remains invariant. The encounter rate between singles is λ = 10 in panels
A–H and λ = 1 in panels C’–H’. Other parameters are the same as in the corresponding panels
of Figure 2. Panels A and E are identical to their corresponding panels in Figure 2 since these
are all equivalent to the classic bimatrix game. There are also no noticeable differences between
panels B and F compared to Figure 2. The differences with Figure 2 (which emerges for very
large λ) are as follows. For long interaction times between Hawks when V > C, the four interior
NE of Figure 2 disappear completely when λ = 1 (panels C’ and D’) whereas the two asymmetric
interior NE become unstable for intermediate λ (panel C). When the interaction time between
Doves is short and V < C, the asymmetric interior NE of the role-independent time-constrained
bimatrix game lose stability and the two symmetric interior shift apart as λ decreases (panels G
and G’). With role-dependent interaction times, the asymptotically stable interior NE of Figure
2H eventually becomes unstable when λ decreases and a stable limit cycle emerges.

4. Discussion418

This article extends to two-strategy bimatrix games the new approach to evolution-419

ary game theory developed by Křivan and Cressman (2017) for two-player, two-strategy,420

symmetric normal form games (i.e., matrix games) that incorporates the effect pair in-421

teraction times that depend on the players’ strategies have on the evolutionary outcome.422

Evolutionary game theory applied to bimatrix games is based on two populations (or423

two roles) where individuals interact in pairs, one from each population. Classical bima-424

trix games, similarly to matrix games, assume that individuals get payoffs when paired,425

pairing is random and instantaneous, and the number of different types of pairs is given426

by the Hardy–Weinberg distribution. The evolutionary outcome of the bimatrix game is427

then predicted through an analysis of the NE structure of its payoff bimatrix and how428

this is connected to the eventual behavior of the game dynamics (e.g., the replicator429

equation). A complete analysis of the evolutionary outcome is well-known for all classical430

two-strategy bimatrix games (Hofbauer and Sigmund, 1998; Cressman, 2003).431

When interaction times depend on strategies used by the pair, the Hardy–Weinberg432

distribution of pairs is no longer relevant and expected individual payoff is now a nonlinear433

function of the numbers using each strategy in the two populations whether the pair434

formation process among disbanded pairs is instantaneous (Section 2) or not (Section 3).435

However, in both cases, we show the existence of a unique distribution as a function of436
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these numbers at the beginning of these respective sections,12 although we are only able437

to provide an analytic expression for it when pair formation is instantaneous (see equation438

(6)). Nevertheless, this allows us to define a time-constrained, bimatrix game in Section439

2 and in Section 3 where payoff (which we call the fitness function) is given as expected440

individual payoff per unit time. As pointed out in Sections 2 and 3.1, this new formulation441

reduces to the classic bimatrix game when all interaction times are the same.442

What is then of interest is how different interaction times affect the evolutionary443

outcome. To this end, we completely characterized strict NE for all two-strategy, time-444

constrained, bimatrix games (Sections 2.1 and 3.2 respectively). When pairing is in-445

stantaneous (Sections 2.1) strict NE are characterized through their time-adjusted payoff446

matrices (10). A strict NE corresponds to a locally asymptotically stable rest point of the447

replicator equation where both populations use one of their pure strategies as indicated448

by solid dots at vertices of the squares of Figures 2 and 3 respectively.449

Unfortunately, other NE of the time-constrained bimatrix game are more difficult450

to analyze. In particular, the analytic formula for interior NE is not available except451

in special circumstances due to the complicated distribution that replaces the Hardy–452

Weinberg distribution in these games. Since interior NE correspond to interior rest points453

of the replicator equation, they can be approximated by simulating this dynamics for454

particular games. No attempt is made for a complete analysis of all two-strategy time-455

constrained bimatrix games.13 Instead, we focus on the time-constrained Owner–Intruder456

game. This classic role-independent bimatrix game has an easily understood evolutionary457

outcome.458

When the cost of fighting over a resource C is less than its value V , both the owner of459

the resource and the intruder should fight for it (i.e., both play Hawk) even though their460

payoff by doing so is less than if they split the resource without fighting (i.e., both play461

Dove) in the classic bimatrix game.14 The reason is that Hawk strictly dominates Dove462

in each population. Although (Hawk, Hawk) remains a strict NE in the time-constrained463

bimatrix game, other NE emerge as interaction times change. From panel B of Figures 2464

and 3, we see that (Dove, Dove) can also be a strict NE (in which case there is also an465

interior NE) when their interaction time is short enough compared to the equal time of466

12In Section 3, this includes the distribution of pairs and singles
13The difficulty of doing such an analysis can be appreciated by considering the complete analysis for

the two-locus two-allele viability selection model of population genetics. Pontz et al. (2018) show that
this two-dimensional dynamics on the unit square has at least 192 different phase portraits. We feel our
model will have a comparable (or even higher) number of different cases.

14The same result occurs for the bimatrix version of the Prisoner’s Dilemma game where both players
Defect at the evolutionary outcome even though they would be better off if both Cooperate.
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the other interactions. Furthermore, while (Dove, Dove) is not a strict NE if only (Hawk,467

Hawk) interaction time changes, up to four interior NE can appear if this interaction time468

is large enough, some of which are (neutrally) stable and some unstable (panels C and469

D).470

When V < C, (Hawk, Hawk) is never a strict NE. In the classic bimatrix game,471

there are two strict NE; namely, (Hawk, Dove) and the paradoxical ESS (Dove, Hawk)472

where the intruder always wins the resource (i.e., the owner and intruder switch roles473

through each interaction) as well as one unstable saddle symmetric interior NE where474

both populations play the ESS of the classic symmetric Hawk–Dove matrix game. The475

replicator equation predicts the paradoxical ESS will be the evolutionary outcome if and476

only if the initial population distribution has more Hawks as intruders than as owners.477

As shown in Figure 2, panels I and J, either one of these strict NE can disappear by478

introducing a role dependence into the time interaction matrix (2). In fact, both must479

disappear when (Dove, Dove) becomes a strict NE through their interaction time being480

short enough compared to the equal time of the other interactions in Figures 2 and 3,481

in which case interior NE may (panels G and H) or may not appear (panel F). There482

are also marked differences between the evolutionary outcomes when pair formation is483

instantaneous compared to when it is non instantaneous, as detailed in the main text.484

In this article, although we have relaxed the implicit assumption of classic evolution-485

ary game theory that all interactions take the same amount of time, we have assumed486

that newly single individuals are immediately available to form pairs. This rules out487

straightforward application of our methods to models where some single individuals from488

a disbanded pair wait before joining the pair formation process. For instance, this occurs489

in parental care models, e.g., Battle of the Sexes (Dawkins, 1976; Hofbauer and Sigmund,490

1998; Mylius, 1999; Cressman, 2003; Broom and Rychtář, 2013) when males are immedi-491

ately available to mate after a couple disbands whereas females will not mate immediately492

but stay to care for offspring if abandoned by their mate. In this article, we assume that493

both populations have the same number of individuals, which is required when pair for-494

mation is instantaneous. On the other hand, when pair formation is non-instantaneous,495

all calculations can be generalized to population 1 having a different size than population496

2, although the formulas are more complex.15497

In this article, we have generalised two-strategy bimatrix games by explicitly including498

interaction times when pure strategists from each population are paired. When applied499

to the classic Owner-Intruder game where each individual, at given interaction, is either a500

15With unequal population size, the time-constrained bimatrix game with all τij equal is no longer the
classic bimatrix game as in Section 3.1.
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Hawk or a Dove, we have a model where owners and intruders have a choice between two501

levels of effort when engaged in a conflict (Hawks are willing to expend a great deal of time502

and effort to obtain the resource while Doves are not). Another approach to this conflict503

situation is to allow intermediate levels of effort, resulting in a time-constrained Owner-504

Intruder game with a continuum of pure strategies. In the classic game with continuous505

strategy sets (for a recent review see Cressman and Apaloo, 2018), the analysis of NE that506

have additional properties such as Continuously Stable Strategy (CSS) or Neighborhood507

Invader Strategy (NIS) are particularly important. Although beyond the scope of this508

article, it is then essential to first understand the effect of interaction times on these509

concepts of CSS and NIS.510

The results of this article show that the evolutionary outcome for bimatrix games511

becomes more complex when interaction times are incorporated into the game-theoretic512

model. The results are also more complex than those reported by Křivan and Cressman513

(2017) for matrix games with strategy-dependent interaction times as is to be expected514

given the conceptual differences between classic matrix and bimatrix games. It is our515

contention that these added complexities are often unavoidable to make the evolutionary516

model more realistic. This is especially true when the model purports to describe a517

behavioral system where pairs interact for different amounts of time.518
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Appendix A. Pairs distributional dynamics when pairing is instantaneous525

Here we derive pair dynamics (3). Let us consider a small time interval ∆. Because526

pairs nij split up following a Poisson process with parameter τij , in this time interval527

a proportion ∆
τij

of the nij pairs disbands and there will be (ni1

τi1
+ ni2

τi2
)∆ singles playing528

strategy ei and (
n1j

τ1j
+

n2j

τ2j
)∆ singles playing strategy fj. The total number of disbanded529

singles in each population in time interval ∆ is530

(

n11

τ11
+

n12

τ12
+

n21

τ21
+

n22

τ22

)

∆. (A.1)

If these singles immediately and randomly pair, the proportion of newly formed nij pairs531

among all newly formed pairs will be532

(ni1

τi1
+ ni2

τi2
)∆

(

n11

τ11
+ n12

τ12
+ n21

τ21
+ n22

τ22

)

∆

(
n1j

τ1j
+

n2j

τ2j
)∆

(

n11

τ11
+ n12

τ12
+ n21

τ21
+ n22

τ22

)

∆
. (A.2)

To obtain the number of newly formed (eifj) pairs in the time interval ∆ we multiply533

(A.2) by the number of newly formed pairs (which equals the number of disbanded singles534

because we assume instantaneous pairing) in time interval ∆ and we obtain535

(

ni1

τi1
+ ni2

τi2

)(

n1j

τ1j
+

n2j

τ2j

)

n11

τ11
+ n12

τ12
+ n21

τ21
+ n22

τ22

∆.

Writing difference equations for pairs536

nij(t+∆) = nij(t)−
nij(t)

τij
∆+

(

ni1(t)
τi1

+ ni2(t)
τi2

)(

n1j(t)

τ1j
+

n2j(t)

τ2j

)

n11(t)
τ11

+ n12(t)
τ12

+ n21(t)
τ21

+ n22(t)
τ22

∆ (A.3)

and letting ∆ −→ 0+, we obtain the pair dynamics (3) in the main text.537

From538

Ne1 = n11 + n12

Nf1 = n11 + n21

Ne2 = N −Ne1

Nf2 = N −Nf1

(A.4)

and the generalized Hardy–Weinberg equation (5), Mathematica provides two equilibrium539

solutions for nij in terms of N , Ne1 and Nf1 . However, only the one given in (6) is non-540

negative when 0 ≤ Ne1, Nf1 ≤ N .541
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It is not immediately clear that A ≥ 0 where A is given in (7). To see this, expand A542

as the following quadratic expression in Ne1543

A =Ne1
2(τ12τ21 − τ11τ22)

2 − 2Ne1(τ12τ21 − τ11τ22)(Nτ12τ21 −Nf1(τ11τ22 + τ12τ21))+

(τ12τ21(N −Nf1) +Nf1τ11τ22)
2 = aNe1

2 + bNe1 + c.

The minimum value of this upward parabola is544

c− b2

2a
= 4Nf1τ11τ12τ21τ22(N −Nf1).

Since 0 ≤ Nf1 ≤ N , this minimum is non-negative and so A ≥ 0.545

Appendix B. Calculation of the invasion fitness (16)546

The fitness of strategy f2, Πf2 , given in (9) calculated at the distributional equilibrium547

(6) is548

Πf2 =

√
A(πf

22τ12 − πf
12τ22) +Nτ12(π

f
12τ21τ22 − 2πf

22τ11τ22 + πf
22τ12τ21)

2τ12τ22(N −Nf1)(τ12τ21 − τ11τ22)
−

(τ12τ21 − τ11τ22)(π
f
12τ22(Nf1 −Ne1) + πf

22τ12(Ne1 +Nf1))

2τ12τ22(N −Nf1)(τ12τ21 − τ11τ22)
,

where A is given in (7). The invasion fitness of strategy f2 when there are no individuals549

playing this strategy is then limNf1
→N Πf2 . We observe that550

lim
Nf1

→N
A = (Nτ11τ22 +Ne1(τ12τ21 − τ11τ22))

2.

Since N ≥ Ne1, Nτ11τ22 +Ne1(τ12τ21 − τ11τ22) ≥ 0,551

lim
Nf1

→N

√
A = Nτ11τ22 +Ne1(τ12τ21 − τ11τ22)

and the numerator of Πf2 simplifies to552

(N −Nf1)(π
f
12τ22 + πf

22τ12)(τ12τ21 − τ11τ22).

Thus, both the numerator and denominator of Πf2 converge to 0 when Nf1 → N and we553

calculate the limit using L’Hospital’s rule554

lim
Nf1

→N
Πf2 =

Ne1π
f
12τ21 +Ne2π

f
22τ11

Nτ11τ22 +Ne1(τ12τ21 − τ11τ22)
. (B.1)
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Similarly, the fitness of strategy e2, Πe2, given in (9) calculated at the distributional555

equilibrium (6) is556

Πe2 =

√
A(πe

22τ21 − πe
21τ22) +Nτ21(π

e
21τ12τ22 − 2π2

22τ11τ22 + π2
22τ12τ21)

2τ21τ22(N −N21)(τ12τ21 − τ11τ22)
−

(τ12τ21 − τ11τ22)(π
e
21τ22(Ne1 −Nf1) + πe

22τ21(Ne1 +Nf1))

2τ21τ22(N −Ne1)(τ12τ21 − τ11τ22)
.

The invasion fitness of strategy e2 when there are no individuals playing this strategy is557

lim
Ne1

→N
Πe2 =

Nf1π
e
21τ12 +Nf2π

e
22τ11

Nτ11τ22 +Nf1(τ12τ21 − τ11τ22)
(B.2)

by again applying L’Hospital’s rule.558

Appendix C. Uniqueness of distributional equilibrium of (25)559

Fix Nei and Nfi (i = 1, 2) and define qei =
nei

Nei

(qfi =
nfi

Nfi

) as the proportion of ei (fj)560

strategists in the population who are single. From (25) it follows that561

qe1 =
1

1 + λNf1qf1τ11 + λNf2qf2τ12

qe2 =
1

1 + λNf1qf1τ21 + λNf2qf2τ22

qf1 =
1

1 + λNe1qe1τ11 + λNe2qe2τ21

qf2 =
1

1 + λNe1qe1τ12 + λNe2qe2τ22
.

(C.1)

By Lemma 2 in Garay et al. (2017), there is a unique solution with qei and qfj between 0562

and 1.563
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