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Abstract. Previous papers have modelled the behaviour of populations which are subject
to kleptoparasitism, and found those ecological situations in which kleptoparasitism should
occur. Individuals were considered to be in one of several states, and an equilibrium distribu-
tion for the population was found. It was then assumed, for analytical purposes but without
proof, that the population was actually in that equilibrium. In this paper, we show that the
equilibrium is a stable one, and that it is reached in a relatively short time for all reasonable
values of the ecological parameters. Thus, a population may be expected to spend most of
the time in equilibrium, and this assumption of these previous works is justified.

1. Introduction

“Kleptoparasitism” may be defined as the stealing by one animal of food that has
been caught by another (Rothschild and Clay 1952). For the kleptoparasite, there-
fore, it provides an alternative source of food, in place of, or in addition to, catching
its own prey. In particular, aggressive kleptoparasitism is defined (Giraldeau and
Caraco 2000) as the situation in which an attacker uses force to gain the food for
its own use e.g. an eagle supplanting other eagles from the carcass of a salmon
(Hansen 1986).

Observations of kleptoparasitism have been reported amongst many different
animal populations, including insects (Jeanne 1972), fish (Grimm and Klinge 1996),
mammals (Kruuk 1972), and, most commonly, birds, as we see below. The behav-
iour may be inter-specific (members of one species stealing from members of
another) or intra-specific (members of a species stealing from each other).

Observations of birds acting as kleptoparasites are amongst the most detailed,
and an extensive review (Brockmann and Barnard 1979) gives a list of observa-
tions of kleptoparasitism by birds. It is noted there that this behaviour is much more
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common in some orders of birds than others, and it is especially prevalent amongst
sea-birds.

More recent observations include the sighting of gulls attacking each other for
food (Steele and Hockey 1995), oystercatchers feeding on cockles (Triplet et al
1999) and skuas attacking albatrosses and giant-petrels (Spear et al 1999).

1.1. Models

Various authors have attempted to construct mathematical models to describe the
phenomenon of kleptoparasitism. This is done in order to understand why it hap-
pens, and what advantage it gives to the animal. In particular, we can ask why it
occurs in some situations, and among some species, and not in others - what are the
conditions which determine whether or not it is an advantageous strategy for an ani-
mal to adopt? On initial consideration, it is a surprising form of behaviour, because
it seems to disadvantage the population - time is wasted fighting over food which
could be spent finding more new food. However, when we consider individuals, it is
seen that it can be more profitable, in terms of food intake rate, to capture food from
another individual, rather than search for it directly. The models attempt to explain
under what environmental conditions kleptoparasitism is more likely to occur.

The models made so far have been of various kinds:

1. Holmgren (1995) constructed a simulation model for intraspecific kleptopar-
asitism, in which the animals were modelled as particles, moving at constant
speed in initially random directions. They behaved in a deterministic manner,
fighting whenever one searching for food met another one already handling.
The animals were distinct, thus allowing the simulation of a group in which
the individuals differ in their dominance over each other.

2. Ruxton and Moody (1997) took a special case of Holmgren (1995), in which
all the animals were identical, to develop a model, in which the proportions of
searchers, handlers and fighters within the population were modelled by dif-
ferential equations. They found analytical solutions for the equilibrium state
of the population.

3. Broom and Ruxton (1998) then extended the Ruxton and Moody (1997) model
in various ways. In particular, they allowed for the possibility that a searcher,
finding a handling animal, may or may not choose to attack it, and they found
in what circumstances an attack would be made.

1.2. Equilibrium and stability

The models above indicate that a population participating in kleptoparasitism will
have an equilibrium state, in which the numbers of searchers, handlers and those
fighting over food are constant. For the purpose of analysis, it had then been assumed
that the population was actually in this equilibrium state.

The aim of this paper is to show that this equilibrium state is stable, and that the
population rapidly converges to the equilibrium. This clearly has important ecologi-
cal consequences. If we think, for example, of a population of birds at the beginning
of the day, when all are initially searching for food, then it is of interest to know
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whether the equilibrium will have been reached before the end of the day - do the
population spend most of the day in the equilibrium state, or are they still progress-
ing towards it by nightfall? If the time period for convergence to equilibrium is of
the order of one day, then equilibrium will never be achieved, because at the end of
the day the birds will return to their nests, and start again the next day from their ini-
tial state of all searching, and none handling or fighting. We aim to find out whether
it does indeed take a day or more to reach equilibrium, or whether equilibrium is
reached considerably more quickly; if the time taken is short compared to one day,
then the birds will spend most of the day in the equilibrium population proportions.

(We may note here that equilibrium may be approached exponentially, and thus
it is never completely attained; we are interested in the practical situation where the
vast majority of the population has reached the equilibrium state. If the approach to
equilibrium is via an exact exponential decay with a time constant T , then after a low
multiple of T the deviation from the equilibrium values will be very small. Thus, for
example, after time T ln100 ≈ 4.6T the difference between the starting value and
the equilibrium value will have decreased to (1/e)ln100 = 1% of its initial level.)

Clearly, if conclusions about animal behaviour are based on treating the pop-
ulation as if it is in equilibrium, then it is important to determine whether this is
reasonable, or whether the population spends all of its time far from equilibrium.
(It should be noted that this statement is equally true of any biological system, and
that methods used here may have more general application.)

2. Stability and convergence to equilibrium

2.1. Convergence to equilibrium in the absence of kleptoparasitism

In this situation, which is a special case of the Ruxton and Moody (1997) model,
without kleptoparasitism, the population density P (a constant) is comprised of
searchers, density S, foraging for their own food, and handlers, density H . The
density of food is f , also assumed to be constant. It is assumed that searchers ran-
domly explore a certain volume per unit time, with a rate νf of finding any prey
that is within this volume, thus finding food at a total rate of νf f S; this gives the
rate at which searchers become handlers. It is also assumed that the length of time
required to handle food follows an exponential distribution, with mean time th, so
that the rate at which handlers again become searchers is H/th. Thus, the equation
for the net rate at which handlers become searchers is

dS/dt = H/th − νf f S.

However, since H + S = P , and writing C = νf f th,we have

dS/dt = P/th − (C + 1)S/th,

which is a linear first-order differential equation, with solution

S = P/(C + 1) + PCe−(C+1)t/th/(C + 1),

H = PC/(C + 1) − PCe−(C+1)t/th/(C + 1),

using S(0) = P .
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The number of searchers and handlers approach the equilibrium values S∗ =
P/(C + 1), H ∗ = PC/(C + 1) via exponential decay, with a time constant of
th/(C + 1). This is clearly lower than th, the handling time for prey, and so we see
that equilibrium is reached very quickly. This result is perhaps a surprising one, as
it does not appear to involve the rate of finding prey, νf f . The reason is that when
C(= νf f th) is small, then H ∗ = PC/(C + 1) ≈ PC is also small, so that little
time is required to reach H ∗ starting from H = 0. In fact, the time required for H to
get close to equilibrium is of the order of PC/(Sνf f ) � Pνf f th/(P νf f ) = th,
as given by the formula th/(C + 1), when C is very small.

The fact that our explicit solution for H and S shows exponential decay to the
steady state also makes it clear that this equilibrium is a stable one - any disturbance
from it would similarly decay exponentially back to the equilibrium.

We comment at this point that the equilibrium solution obtained here is an
example of the Type II functional response identified by Holling: the uptake rate

H

thP
= C

th(C + 1)
= (1/th)f

f + 1/νf th
.

2.2. The Ruxton-Moody model

In this model (Ruxton and Moody 1997), as modified by Broom and Ruxton (1998),
the total population, with density P , is partitioned into three sets: searchers, han-
dlers and those fighting over food, with densities S, H, and A respectively. In
addition to foraging for food, and handling it, (as in the previous section), search-
ers also explore a volume per unit time, looking for other handlers and having a
certain rate νh of finding them. They thus find them at a rate νhHS. We will assume
here that all such encounters lead to a contest for the food item, and that the lengths
of these contests have an exponential distribution with mean ta/2. At the end of the
contest, losers become searchers and winners become handlers. The length of time
required to handle food is also assumed to come from an exponential distribution,
with mean time th.

These rates of change between the groups can then be expressed as the differ-
ential equations:

dS/dt = H/th + A/ta − νf f S − νhHS

dH/dt = −H/th + A/ta + νf f S − νhHS

dA/dt = −2A/ta + 2νhHS

together with
S + H + A = P.

The equilibrium values S∗, H ∗ and A∗ of S, H and A can be found by setting
the time derivatives equal to zero. It is found that

S∗ = −(C + 1) +
√

(C + 1)2 + 4CtaPνh

2Ctaνh

H ∗ = CS∗,

and then A∗ = P − S∗ − H ∗.
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2.2.1. Stability of equilibrium when kleptoparasitism takes place
To see whether this equilibrium is stable, we consider a small perturbation of the
population from the equilibrium, so that

H = H ∗ + εh,

S = S∗ + εs,

A = A∗ − εh − εs.

Putting these expressions for H, S and A into the equations, and neglecting
terms in ε2, we get the set of coupled linear equations

ds/dt = −(C/th + 1/ta + νhH
∗)s + (1/th − 1/ta − νhS

∗)h
dh/dt = (C/th − 1/ta − νhH

∗)s − (1/th + 1/ta + νhS
∗)h

which we rewrite, for clarity, as

ds/dt = as + bh

dh/dt = cs + dh

These are in the standard form for a set of homogenous linear differential equa-
tions, and the solutions for h and s will be of the form Aem1t + Bem2t , where m1
and m2 are the two solutions of the auxiliary equation

m2 − (a + d)m + ad − bc = 0.

The roots are given by

m = (a + d ±
√

(a + d)2 − 4(ad − bc))/2 = (a + d ±
√

(a − d)2 + 4bc)/2

We can see immediately that

ad − bc = 2(C + 1)/(tath) + 4CνhS
∗/th

is positive. This tells us that the discriminant in the solution of the quadratic equa-
tion is less than (a + d)2, and so

√
(a + d)2 − 4(ad − bc) < |a + d|. In addition,

we see that
a + d = −(C + 1)/th − 2/ta − (C + 1)νhS

∗

is negative. Re-writing the discriminant as

((C + 1)(1/th − νhS
∗) − 2/ta)

2 + 4(C − 1)2νhS
∗/th

clearly shows that it is positive and thus both values of m are real and negative.
The solutions for h and s can therefore both be written as Ae−αt + Be−βt with
α, β > 0. This shows that both h and s decay exponentially to zero; thus, any small
disturbances of the population when it is in its equilibrium state decay to zero, and
so the equilibrium state is stable.
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2.2.2. Convergence to equilibrium
The non-linearity of the system of differential equations makes a complete analyt-
ical solution very difficult (perhaps even impossible) to find. Thus, we have to use
indirect means to study the convergence of the system, and, indeed, to show that it
does converge.

The pattern of the coefficients of S and H in the original equations suggest that
it may be helpful to consider the combinations S + H and S − H . We make this
transformation, and also take the opportunity to change the origin, by defining

x = (S + H − S∗ − H ∗)/P,

and
y = (S − H − S∗ + H ∗)/P .

We then get

dx/dt = −(2/ta + νhS
∗(C + 1))x − νhS

∗(C − 1)y − νhP (x2 − y2)/2

and
dy/dt = −(C − 1)x/th − (C + 1)y/th

and note that
x(0) = (P − S∗ − H ∗)/P = A∗/P

and
y(0) = (P − S∗ + H ∗)/P = 1 + (C − 1)S∗/P.

The equilibrium values of x and y are each 0, by construction.
The fact that H, S, H ∗ and S∗ all lie in the interval [0, P ] enables us to put

limits on x, y and combinations of x and y. Thus, we have

−1 ≤ x ≤ 1

and
−2 ≤ y ≤ 2.

We can, additionally, form tighter bounds by reverting to the original variables.
If we consider x + y = 2(S − S∗)/P , we find

−2S∗/P ≤ x + y ≤ 2S/P ≤ 2,

and also since x − y = 2(H − H ∗)/P , then

−2H ∗/P ≤ x − y ≤ 2H/P ≤ 2.

We illustrate these inequalities in Figure 1, where the valid region is the polygon
ABDEI.

The individual equations for dx/dt and dy/dt did not prove amenable to
analysis, other than by numerical solution, which we consider later. However, by
considering G = x2 + γy2, (γ > 0), progress can be made. G is chosen for ana-
lytical convenience, enabling us to eventually put bounds on the behaviour of x

and y, and thus H and S. Clearly, G is always positive, and, in equilibrium, when
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Fig. 1. Convergence regions for the function G in the plane with transformed variables
x = (S + H − S∗ − H ∗)/P, y = (S − H − S∗ + H ∗)/P , where H ∗ and S∗ are the
equilibrium handling and searching densities; thus the equilibrium in this figure is at O.

x = y = 0, G = 0 . We aim to analyse dG/dt , and then, by estimating the rate of
convergence of G, to estimate how quickly the system approaches equilibrium.

We find

dG/dt = 2xdx/dt + 2γydy/dt

= −4x2/ta − 2C(x2νhS
∗ + xyνhS

∗ + γ xy/th + γy2/th)

−2(x2νhS
∗ − xyνhS

∗ − γ xy/th + γy2/th) − νhPx(x2 − y2)

Choosing γ = νhS
∗th gives

dG/dt = −4x2/ta − 2CνhS
∗(x + y)2 − 2νhS

∗(x − y)2 − νhPx(x2 − y2).
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In the region OKABC, consider moving parallel to AB, such that x + y = λ,
with 0 ≤ λ ≤ 2, and note that in this region x − y ≥ −2CS∗/P . This gives

dG/dt ≤ −4x2/ta − 2CνhS
∗λ2 − 2νhS

∗(x − y)2 + νhxλ2CS∗

= −4x2/ta − 2νhS
∗(x − y)2 − 2CνhS

∗λy

= −2CG/th − 2νhS
∗(x − y)2 − 2CS∗νhxy + (2C/th − 4/ta)x

2.

In this region, xy ≥ 0. Also, as will be seen in 2.2.3, in order for kleptoparasit-
ism to take place, Cta < th, so that 2C/th < 2/ta < 4/ta , and so 2C/th−4/ta < 0.
Therefore dG/dt ≤ −2CG/th, and thus G decays to 0 faster than e−2Ct/th i.e. with
a time period less than th/2C.

The same result applies in OFH, where again xy ≥ 0.
Similarly, in the region OCDEF, moving parallel to EF, with x − y = λ(0 ≤

λ ≤ 2), and using the fact that x + y ≥ −2S∗/P , we get

dG/dt ≤ −4x2/ta − 2CνhS
∗(x + y)2 + 2νhS

∗λy

= −4x2/ta − 2CνhS
∗(x + y)2 + 2S∗νhy(x − y)

= −2G/th − 2CνhS
∗(x + y)2 + 2S∗νhxy + (2/th − 4/ta)x

2.

In this region, xy ≤ 0, so if 2/th − 4/ta ≤ 0, then dG/dt ≤ −2G/th; again,
if 2/th − 4/ta ≥ 0 then we can rewrite the expression for dG/dt as

dG/dt ≤ −4G/ta − 2CνhS
∗(x + y)2 + 2S∗νhxy + (2/th − 4/ta)x

2.

so that dG/dt ≤ −4G/ta . The same result applies in OHIK, where xy ≤ 0.
We thus see that in some parts of the valid region convergence of G has a time

period less than th/2C(= 1/2νf f ) and in others it is less than th/2 or ta/4 (depend-
ing on the parameter values). Thus, convergence is at least as fast as exponential,
with the time period the maximum of th/2, 1/2νf f and ta/4. It is interesting to
note, therefore, that the time for convergence is half of max {expected handling
time, expected time to find prey, expected time to complete a fight}. The time to
find another handler is not important here.

2.2.3. To kleptoparasitise or not?
Broom and Ruxton (1998) showed that kleptoparasitism should always take place in
the Ruxton-Moody model if νf f ta < 1 i.e Cta < th; animals should challenge han-
dlers whenever they find them, because either the rate at which they find their own
food is low, and/or the contest times are low enough for them not to be too costly.
Conversely, kleptoparasitism should never occur if νf f ta > 1, for the opposite
reasons - food is plentiful without having to steal it, and/or fighting is very costly.

If C > 1 therefore, (so that th/2 > th/2C), and Cta ≤ th, ( so that klepto-
parasitism occurs), then th > ta and therefore th/2 > ta/4. The limiting factor
for convergence is thus th/2. Conversely, if C ≤ 1, (so that th/2 < th/2C), we
must compare ta/4 with th/2C. As explained above, in order for kleptoparasitism
to occur, Cta < th, so th/C > ta , and thus th/2C > ta/4; therefore, convergence
is faster than th/2C = 1/2νf f .
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Thus, for the Broom and Ruxton (1998) model, if νf f ta < 1 then kleptopara-
sitism occurs, and convergence is at least as fast as max{th/2, th/2C}, whereas if
νf f ta > 1 then kleptoparasitism does not occur, and in this case the time constant
for approaching equilibrium is exactly th/(C + 1).

3. Numerical solution of the evolution equations

As mentioned previously, it did not prove possible to analyse the equations for
x and y to the same extent as the equation for G. Whilst it was possible to find
some bounds on the rates of change of x and y in the valid region, these bounds
were not very helpful in producing bounds on the rate of exponential decay, as was
accomplished for G.

We therefore resorted to numerical solution, by a simple difference approxi-
mation. This necessitated choosing specific values for the parameters, and we used
those listed in Broom and Ruxton (1998): that is, P = 20, ta = 5, th = 10, νf =
0.01, νh = 0.05, together with f = 10. These values were in turn taken from
Holmgren (1995), where it is seen that they are essentially arbitrary; little justifi-
cation is given for the values, and indeed no units are given. It is, therefore, worth
discussing them at this point. P is the population density, in animals per unit area,
and so we can use animals/hectare. ta/2 and th are the mean times for a fight and for
handling - they may therefore be expected to be of the order of seconds, for small
prey (or possibly several minutes for larger prey). νf f is the rate at which prey are
found within a certain area - number of prey per hectare per second- and νhH is
the rate at which handlers are found - number of handlers per hectare per second.
We can therefore see that the values above are not unreasonable using these units.
However, any conclusions based on specific values need to be carefully assessed
for their inherent reasonableness, as we shall see.

3.1. C = 1

The above choice gives C = 1, which leads to a simple equation for y,

dy/dt = −2y/th,

so that y decays exponentially , with time constant th/2. However, the x-equation
is still not tractable:

dx/dt = −2(1/ta + νhS
∗)x − νhP (x2 − y2)/2.

This equation clearly depends on P, νh and ta . However, changing P or νh has
the same effect - increasing either parameter increases the rate of encounters, and
thus the amount of kleptoparasitism occurring. Indeed, by rewriting the original
equations in terms of proportions of the population in each state, it is seen that only
the product νhP occurs in the equations, and so it is immaterial whether we vary νh

or P - each will have the same effect. We therefore carried out the numerical solu-
tion for a range of values of P and ta , in each case keeping all the other parameters
at their default values.
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The results are shown in the C = 1 rows of Tables 1 and 2, which show the
times taken for G to fall to 1/e of its original value; this enables comparison with
the earlier analytical work.

Looking at the C = 1 row in each Table, we can see that the times for G to
decay generally show remarkable similarity. Except for the largest values of ta , the
times are all very close to 2.5 for a wide range of values of P and ta . The reason
for this will be discussed in the following section.

3.2. C �= 1

Further numerical exploration of the rate of convergence of G, for different values
of P, ta and C (by varying νf f , but keeping th = 10) revealed some interesting
effects, as shown in Tables 1 and 2.

(We should bear in mind, from 2.2.3, that in the Broom-Ruxton model, klep-
toparasitism should only occur when C ≤ th/ta i.e. C ≤ 2 with our parameters in
Table 1. Thus, the rows for C = 3 and C = 10 should not, in practice, be relevant in
that model. In Table 2, the criterion for kleptoparasitism will differ in each column,
as ta changes. However, the deterministic model of Moody-Ruxton assumes that
attacks always take place, for any value of C.)

Firstly, let us consider Table 1. We can see that when P is very low, the decay
time for G is given, to a very good approximation, by T = th/2(C + 1), and when
P is very large, then T = th/4C describes the data well. (Thus, when C = 1,
the results for low and high P are the same, th/4, and this explains the numerical
results for the decay of G - the times listed are all � 10/4 = 2.5.) When C < 1,
the times increase with increasing P , and when C > 1, the opposite effect occurs.

It is straightforward to understand the results for the extreme values of P . Firstly,
for small P , there is actually very little kleptoparasitism, because the population
density is so small that animals rarely find each other. In this case, the population
behaves as if there is no kleptoparasitism, when we saw in 2.1 that the decay time
for S ( and H , and thus for x and y) was th/(C+1). Since G = x2+γy2, then if x, y

are both proportional to e−t (C+1)/th , G will be proportional to (e−t (C+1)/th)2 =
e−2t (C+1)/th , and so the time period for the decay of G will be T = th/2(C + 1)

as observed.

Table 1. Time for G to decay to 1/e of its initial value, for varying C and P (and default
values of other parameters)

C P=0.01 P=1 P=20 P=100 P=10,000

0.01 4.9578 5.7063 16.5933 45.833 197.82

0.5 3.3347 3.4509 3.9806 4.3381 4.9102

1 2.5002 2.5125 2.4799 2.4667 2.4988

2 1.6665 1.6484 1.4852 1.3779 1.2710

3 1.2503 1.2328 1.0843 0.97465 0.85630

10 0.4545 0.4503 0.4026 0.3453 0.2665
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Table 2. Time for G to decay to 1/e of its initial value, for varying C and ta (and default
values of other parameters)

C ta=0.01 ta=1 ta=5 ta =10 ta=100

0.01 4.9744 7.3778 16.5933 26.5265 102.2387

0.5 3.3366 3.5725 3.9806 4.2177 5.1355

1 2.5000 2.4914 2.4799 2.5084 2.9142

2 1.6661 1.6059 1.4852 1.4592 1.7303

3 1.2497 1.2004 1.0843 1.0557 1.3038

10 0.4547 0.4448 0.4026 0.3907 0.6068

At the other extreme, of large P , any handler will very quickly be found by a
searcher and the pair will enter a contest. Thus, the vast majority of the population
will be involved in fights. From the formula for S∗, it is easy to see that S∗ � H ∗ �√

P (so that A∗ � P ), and so x(0) = 1 − (C + 1)S∗/P � 1 − √
P/P � 1 and

y(0) = 1 + (C − 1)S∗/P � 1. Therefore, initially the population is very near B,
in Fig 1, where y = x = 1; indeed, for all t , x − y = 2(H − H ∗)/P � 1/

√
P , so

that x � y for all t . Returning to the equation for dG/dt , and discarding terms not
involving P , we find that, when P is large

dG/dt � −2Cνh

√
P 4x2 − νhP 2x2(x − y)

For large P, S∗ is also large, and so with y � x,we may approximate G =
x2 + νhthS

∗y2 � νhthS
∗x2. Then we find

dG/dt = −8CG/th + 4CG/th = −4CG/th.

The time period for exponential decay is therefore th/4C(= 1/4νf f ), as observed.
Table 2 shows the decay times of G for various combinations of C and ta .Again,

when ta is small, we see a similar behaviour to that seen previously, with the time
given approximately by th/2(C + 1). This is because small ta means that contests
are very short, and so food is effectively transferred, from handler to attacker, with
no loss of time, and the handling ratio of the population is the same as if there
had been no fighting. We thus have the same result as occurred when there was no
kleptoparasitism.

At the other extreme, of large ta , it is clear that the vast majority of the popula-
tion will be involved in fighting, because once two animals have entered a contest
it takes a long time to resolve (although it should be noted again that in the Broom-
Ruxton model, kleptoparasitism would only occur in this case if C were very low
e.g. C < 0.1 when ta = 100). The short times seen in the table (apart from when
C = 0.01) show that equilibrium is reached before any contests are finished - it is a
question of animals getting into contests, rather than resolving the contests, which
determines the time to reach equilibrium. These results are interesting, because they
may be taken as an indication of a more complex model, where injuries or recovery
time are needed, which might be considered to be included within ta .
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The decay time of G gives us a good indication of the decay times of x and y,
and hence of H and S, the observables. In fact, if x, y have equal exponential decay,
then their time to decay to 1% of their initial values will be given by a multiple 2
ln100(= 9.21) of the time taken for G to decay to 1/e of its original value. Even
when x and y are not exact identical exponentials, it is found numerically that the
time for the observables H and S to approach to within 1% of their equilibrium
values is never more than about 10 × the decay times listed for G. Thus, for most
combinations of parameters, the population is getting very near to its equilibrium
state in less than one minute. Convergence is very rapid.

It is clear that when kleptoparasitism is occurring to a significant extent, due to
high P or νh, then the time required for convergence to equilibrium (1/4νf f ) is
based on the rate of finding prey, rather than the handling time, as occurred in the
non-kleptoparasitic case discussed in 2.1. The reason for the difference is that when
kleptoparasitism takes place, the equilibrium value S∗ � √

P , and so, unless P is
small, there has to be a large change in the number of searchers, which requires
a large time if the rate of finding prey is low; (in the non-kleptoparasitic case,
S∗ = P/(C + 1), so a significant fraction of the population remained searchers,
and thus only a small change in S was required, taking a relatively short time).

Generally, the results in Tables 1 and 2 are all fractions of th; the deviations from
this are when C is small and P or ta is large. In these conditions, the vast majority
of the population are fighting, but over a very small amount of food. Thus, each
piece of food is being continually stolen from one handler to another searcher, and
so on, so that the actual uptake rate is very low. It is clear that this scenario is very
unlikely in reality. The combination of a low rate of finding prey and a high rate of
fighting is unviable - the population will simply not survive, because there will be
mass starvation. In these conditions, there is a breakdown of the assumptions on
which the model is based. In all realistic conditions, the model converges within a
low multiple of the handling time.

4. Other behaviours and more general systems

We have assumed that the only behaviours allowed are our rather limited list of
searching, handling and fighting. Other possibilities might include resting after a
meal and/or recovering after a contest. A more realistic (and inevitably more com-
plex) model would include such factors, which could possibly affect our result
about the speed at which equilibrium is attained. In order to see whether this would
affect our conclusion of rapid convergence, we approximated the system as a con-
tinuous-time Markov chain with transition intensity matrix Q. In this case,

Q =



−1/th − νhS 1/th νhS

νf f −νf f − νhH νhH

1/ta 1/ta −2/ta



 .

We can see that the complicating factor in our original equations, the non-linear
term νhSH , manifests itself now as variable terms within the matrix Q.

It is well known (Anderson 1991) that the least negative eigenvalue, λ2 ( apart
from 0) of the intensity matrix leads to the exponential decay time T = −1/λ2.
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We found these eigenvalues, and hence the convergence times, for the range of
parameter values used in the numerical simulations previously. We did this taking
the values of S and H in Q as i) their initial values S = P, H = 0 and ii) their equi-
librium values S = S∗, H = H ∗; in both cases, we got results within an order of
magnitude of the previous results (and usually closer) , except for the high-P -low-C
regime, where we had already concluded that the model is inappropriate.

The speed of convergence in fact depends upon two key factors - the sizes of
the transition rates, and the pattern of transitions between the states. For example,
consider two extreme cases of n-state behaviour:

1. Firstly, that in which each state leads to just one other, and so on (as in a queue)
with a final return transition i.e. searcher → handler → · · · → searcher, with n

possible behavioural states. When all the exit-rates from states are 1, we found
that T = n2/2π2.

2. At the other extreme, suppose that each state leads, with equal probability, to
every other state. Assuming, again, an exit-rate of 1 from each state, this gives
a convergence time of T = (n − 1)/n.

We would expect that the latter would be the most efficient way of producing con-
vergence, whilst the former model would be the slowest, and so we expect that
for a general n-state system, the convergence time will depend on the number of
states as

T ∝ nδ, 0 ≤ δ ≤ 2.

Thus, for example, if our model with 3 states is replaced by a more sophisticated
one with 6 states, the convergence time should not increase by more than a factor
of (6/3)2 = 4, which will still only be of the order of minutes.

The idea that the rate of convergence of a system depends on the “topology” of
that system might well have applications elsewhere, in models of other biological
processes. Equally, the use of linear approximations to give an indication of the
rate of convergence of a system may have wider applicability.

5. Conclusion

Previous works (Ruxton and Moody 1997, Broom and Ruxton 1998) have modelled
the behaviour of a population of birds under kleptoparasitism. Individuals were con-
sidered to be in one of three states, and an equilibrium distribution of individuals
among the states was found. Subsequent analysis proceeded on the assumption that
the population was indeed in this equilibrium. In this paper, we have considered
whether this assumption is reasonable, by looking at the time taken to converge to
this equilibrium in this model.

Our model is, of course, still very idealised. We have not allowed for variation
in any of the parameters once the model is running eg the amount of prey might
decrease during the period when foraging is taking place. We have also assumed
that the only behaviours allowed are our rather limited list of searching, handling
and fighting. Other possibilities, including resting and/or recovering, would result
in a more complicated model, but it seems that the convergence time might only
increase as the square of the number of behavior states included in the model.
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However, with our assumptions, we have found, from the analysis in the pre-
ceding sections, that the time period required to reach the equilibrium state is short,
unless νf f is very low in a population where a great deal of kleptoparasitism is
occurring (high P or high νh).

For a population with a low number of animals per unit volume, or where the
chance of finding a handler is low, or the mean time for a contest is low, then the
decay time for the variable G that we have introduced is always less than the time
required to handle prey; thus, within, say, a few minutes at most, the population will
have essentially reached equilibrium. As explained, this result is the same whether
or not kleptoparasitism has occurred, because in these situations such a phenom-
enon is unlikely anyway, or has no effect - either there are so few encounters that
stealing is irrelevant, or encounters are so brief that effectively there is a free transfer
of food.

For populations with high density, or a high rate of finding handlers, klepto-
parasitism is more significant. When it does not occur - because the fighting time,
ta/2, is sufficiently long to deter attacks or because the rate of finding food, νf f , is
sufficiently high to make it easy for the animal to find its own food - then we found
that equilibrium is reached within a fraction of the handling time. However, when
kleptoparasitism does occur, the picture is more complicated. When νf f 
 1, then
the time period, of the order of 1/νf f , might be a very long time; the discussion
in Section 2.1 is now relevant, where a slow process dominates a quicker one. We
see that, if νf f is very low (when there is little food available, or the rate of finding
it is low) then it will be difficult for searchers to become handlers, and for other
searchers, in turn, to find these handlers, and so equilibrium will take longer to
reach.

It is likely, however, that the combination of parameter values which produce
very long times to convergence are unrealistic. All sensible parameter values will
produce fast convergence, and therefore the population will indeed spend most of
the time in its equilibrium state. This then validates the assumptions of previous
work in this area, and conclusions reached in that work are seen to be justified.
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