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ABSTRACT

Tensor decomposition is increasingly being used for many
data analysis operations from clustering, trend detection,
anomaly detection, to correlation analysis. However, as
we argue in the paper, many of the tensor decomposition
schemes are sensitive to noisy data, an inevitable problem in
the real world that can lead to false conclusions. The prob-
lem is compounded by over-fitting when the data is sparse.
Recent research has shown that it is possible to avoid over-
fitting by relying on probabilistic techniques. However, these
have two major deficiencies: (a) firstly, they assume that all
the data and intermediary results can fit in the main mem-
ory, and (b) they treat the entire tensor uniformly, ignoring
potential non-uniformities in the noise distribution. To deal
with these challenges, in this paper, we propose a Noise
Adaptive Tensor Decomposition (nTD) method, which aims
to tackle both of these challenges: in particular, nTD lever-
ages a grid-based two-phase decomposition strategy for two
complementary purposes: firstly, the partitioning helps en-
sure that the memory footprint of the decomposition is kept
low; secondly (and more importantly) the noise profiles of
the grid partitions enable us to develop a sample assignment
strategy (or s-strategy) that best suits the noise distribu-
tion of the given tensor, leading to nTD method, which can
leverage available rough knowledge regarding where in the
tensor noise might be more prevalent. Experiments show
that nTD’s performance is significantly better than conven-
tional ALS-based CP decomposition on noisy tensors.

1. INTRODUCTION
Tensors are multi-dimensional arrays and are commonly

used for representing multi-dimensional data, such as sen-
sor streams and social networks [17, 31]. Thanks to
the widespread availability of multi-dimensional data in
many applications domains, tensor decomposition opera-
tions (such as CP [9] and Tucker [27]) are increasingly being
used to implement various data analysis tasks, from clus-
tering, anomaly detection [17], correlation analysis [24], to
pattern discovery [12].

Yet, tensor decomposition process is subject to several ma-
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Figure 1: A sample 3-mode tensor, partitioned into a grid
of sub-tensors; the figure also highlights a subset of the sub-
tensor which are noisy

jor challenges: One major challenge with tensor decompo-
sition is its computational complexity: decomposition algo-
rithms have high computational costs and, in particular, in-
cur large memory overheads (also known as the intermediary
data blow-up problem) and, thus, basic algorithms and naive
implementations are not suitable for large problems. Re-
cently distributed/parallel implementations, such as Grid-
Parafac [21], GigaTensor [13], HaTen2 [11], TensorDB [15,
19], were proposed to deal with the high computational cost
of the task. In addition the tensor decomposition process
can be negatively affected from noise in the data – in partic-
ular, especially for sparse data avoiding over-fitting to the
noisy data can be a significant challenge.

Recent research has shown that it is possible to avoid such
over-fitting by relying on probabilistic techniques [28]. Un-
fortunately, existing probabilistic approaches have two ma-
jor deficiencies: (a) firstly, they assume that all the data
and intermediary results can fit in the main memory and
(b) they treat the entire tensor uniformly, ignoring possi-
ble non-uniformities in the distribution of noise in the given
tensor.

To deal with the first challenge, in this paper, we propose
a Noise Adaptive Tensor Decomposition (nTD) method: nTD
partitions the tensor into multiple sub-tensors and then de-
composes each sub-tensor probabilistically through Bayesian
factorization – the resulting decompositions are then recom-
bined through an iterative refinement process to obtain the
decomposition for the whole tensor. Simultaneously nTD de-
velops a resource allocation strategy that accounts for the
impact of the noise density of one sub-tensor on the decom-
position accuracies of the other sub-tensors:

This provides several benefits:

• Firstly, the partitioning helps ensure that the memory
footprint of the decomposition is kept low.



• Secondly, the probabilistic framework used in the first
phase ensures that the decomposition is robust to the
presence of noise in the sub-tensors.

• Thirdly,a priori knowledge about noise distribution
among the sub-tensors (Figure 1) is used to obtain a
resource assignment strategy that best suits the noise
profile of the given tensor.

Experiments show that nTD’s accuracy and memory con-
sumption are significantly better than conventional ALS
based CP decomposition on noisy tensors.

1.1 Organization of this Paper
This paper is organized as follows: In the next section,

we present the related work.Section 3 presents the rele-
vant notations and the background. Section 4 describes
the overview of the grid based probabilistic tensor decom-
position (GPTD) scheme. Section 5 introduces the proposed
sample assignment strategy (s-strategy) to adapt GPTD to dif-
ferent noise profiles, leading to a novel noise adaptive ten-
sor decomposition (nTD) approach.Section 6 experimentally
evaluates the effectiveness of the nTD and its alternative im-
plementations. Experiments show that nTD indeed improves
the decomposition accuracy of noise polluted tensors and the
proposed sample assignment strategy (s-strategy) helps op-
timize the nTD performance under different noise scenarios.
We conclude the paper in Section 7.

2. RELATED WORK
Tensor based representations of data and tensor decom-

positions (especially the two widely used decompositions
CP [9] and Tucker [27]) are proven to be effective in multi-
aspect data analysis for capturing high-order structures in
multi-dimensional data. In [16], for example, the authors
incorporate contextual information to the traditional HITS
algorithm, formulating the task as tensor decomposition.
In [1], authors introduce a tensor-based framework to iden-
tify epileptic seizures and, in [25], authors use tensors to in-
corporate user click information to improve web search. [8]
shows that tensor decomposition of fMRI data can help in
differentiating healthy and Alzheimer affected individuals.

There are two widely used toolboxes for tensor manipula-
tion: the Tensor Toolbox for Matlab [3] (for sparse tensors)
and N-way Toolbox for Matlab[2] (for dense tensors). Yet,
due to the significant cost [17] of tensor decompositions, var-
ious parallel algorithms and systems have been developed.
[26] proposes MACH, a randomized algorithm that speedups
the Tucker decomposition while providing accuracy guaran-
tees. More recently, [13] proposed GigaTensor, a massively
distributed Map-Reduce based implementation of CP de-
composition (also known as PARAFAC). Authors introduce
a series of optimizations, which (in combination with the
use of the Map-Reduce environment) lead to a highly scal-
able PARAFAC decomposition platform. In [20], authors
propose PARCUBE, a sampling based, parallel and sparsity
promoting, approximate PARAFAC decomposition scheme.
Scalability is achieved through sketching of the tensor (us-
ing biased sampling) and parallelization of the decomposi-
tion operations onto the resulting sketches. TensorDB [15,
19] leverages a block-based framework to store and retrieve
data, extends array operations to tensor operation, and in-
troduces optimization schemes for in-database tensor de-
composition. HaTen2 [11] focuses on sparse tensors and
presents a scalable tensor decomposition suite of methods
for Tucker and PARAFAC decompositions on a MapReduce

framework. SCOUT [12] is a recent coupled matrix-tensor
factorization framework, also built on MapReduce. In addi-
tion to parallelism, it also leverages computation reordering
as well as data transformation and reuse to reduce the com-
putational cost of the process.

In [7], authors develop a probabilistic framework, pTucker,
for modeling structural dependency from partially observed
multi-dimensional arrays. [30] implements a deterministic
Bayesian inference algorithm, which formulates CP factor-
ization with a hierarchical probabilistic model and employs
Bayesian treatment by incorporating a sparsity-inducing
prior over multiple latent factors and the appropriate hyper-
priors over all hyperparameters, resulting in automatic rank
determination. [22] proposed a Bayesian framework for low-
rank decomposition of multiway missing observations tensor
data. The method helps with the discovery of the decom-
position rank from the data; moreover, inference scales lin-
early with the observation size, which helps the proposed
approach scale very well. [6] proposes a loss function that
helps the tensor decomposition process handle both Gaus-
sian and grossly non-Gaussian perturbations.

3. BACKGROUND AND NOTATIONS
We now present the relevant background and notations.

3.1 Tensors and Tensor Decompositions
Tensors are generalizations of matrices: while a matrix is

essentially a 2-mode array, a tensor is an array of larger num-
ber of modes. Intuitively, the tensor model maps a relational
schema with N attributes to an N-modal array (where each
potential tuple is a tensor cell).

Tensor decomposition process generalizes the matrix de-
composition process to tensors and rewrites the given tensor
in the form of a set of factor matrices (one for each mode
of the input tensor) and a core matrix (which, intuitively,
describes the spectral structure of the given tensor). The
two most popular tensor decomposition algorithms are the
Tucker [27] and the CANDECOMP/PARAFAC (CP) [9] de-
compositions. While CP decomposes the input tensor into a
sum of component rank-one tensors (leading into a diagonal
core ), Tucker decomposition results in a dense core. In this
paper, we focus on the CP decomposition process.

3.2 CP Decomposition
Given a tensor X , CP factorizes the tensor into factor

matrices with F rows (where F is a user supplied non-zero
integer value also referred to as the rank of the decomposi-
tion). For the simplicity of the discussion, let us consider a
3-mode tensor X ∈ R

I×J×K. CP would decompose X into
three matrices A,B, and C, such that

X ≈ X̃ = [A,B,C] ≡

F
∑

f=1

af ◦ bf ◦ cf ,

where af ∈ R
I, bf ∈ R

J and cf ∈ R
K. The factor matrices

A, B, C are the combinations of the rank-one component
vectors into matrices; e.g., A= [ a1 a2 · · · aF ]. Since tensors

may not always be exactly decomposed, the new tensor X̃

obtained by recomposing the factor matrices A, B, and C
is often different from the input tensor, X . The accuracy
of the decomposition is often measured by considering the
Frobenius norm of the difference tensor:

accuracy(X , X̃ ) = 1− error(X , X̃ ) = 1−

(

‖X̃ −X‖

‖X‖

)

.



(a) uni noise (b) sc noise (b) mm noise

Figure 2: Alternative noise profiles of a tensor

Alternating least squares (ALS) is the most conventional
method for tensor decomposition: at each iteration, ALS es-
timates one factor matrix while maintaining other matrices
fixed; this process is repeated for each factor matrix asso-
ciated to the modes of the input tensor until convergence
condition is reached.

3.3 Noise Profiles of Tensors
In a given tensor, noise can be distributed in several ways.

• In uniform (uni) noise (Figure 2(a)), there is no un-
derlying pattern and noise is not clustered across any
slice or region of the tensor.
• Slice-concentrated (sc) noise (Figure 2(b)) is clustered

on one or more slices on the tensor across one or more
modes. This type of noise is common in the real-world,
where, for example, a sensor is mis-calibrated or dam-
aged. The sensor may still be recording, but all obser-
vations involving that sensor are inherently noisy and
these observations would be concentrated on a slice of
the tensor corresponding to the faulty sensor.

• In multi-modal (mm) noise, again, the noise is clus-
tered; however, in this case the noise is expected to
occur when a combination of a subset of the values
across two or more modes are considered together as in
Figure 2(c). This may, for example, occur if a certain
type of sensors (described by one mode in the tensor)
are known to provide a noisy reading in certain types of
environments (described by another mode of the same
tensor).

In addition to the above, noise may impact the observed
values in different ways: in value-independent noise, an ex-
isting value may be overwritten by a completely random
new value, whereas in value-independent noise existing val-
ues may be perturbed (often with a Gaussian noise – defined
by its strength, or standard deviation, σ). When we consider
noise profiles, another relevant parameter is the noise den-
sity, which can be defined as the ratio of the cells that are
subject to noise1. In general, a tensor may be subject to
different sources of noise simultaneously.

Note that, during the decomposition process, information
about the nature of the noise may or may not be available.
In the next section, we propose a decomposition technique
that does not assume the availability of any a priori knowl-
edge about noise distribution, which is basic technique of
nTD, Grid Based Probabilistic Tensor Decomposition (GPTD)
. Then, in Section 5, we extend this to scenarios where we
have very rough information (more specifically, the relative
noise density of the sub-tensors) about the noise distribution
and develop a noise adaptive decomposition (nTD) technique
that leverages this information to improve decomposition
accuracy.

1In this paper, without loss of generality, we assume noise
are on cells that already have values (i.e., the observed values
be faulty, but there are no spurious observations) and, thus,
we define noise density as the ratio of non-null cells.

Algorithm 1 Phase 1: Monte Carlo based Bayesian decom-
position of each sub-tensor

Input: Sub-tensor X~k, sampling number L

Output: Decomposed factors U
(1)
~k

, U
(2)
~k

, . . ., U
(N)
~k

1. Initialize model parameters U
(1)1
~k

, U
(2)1
~k

, . . ., U
(N)1
~k

.

2. For l = 1, . . . , L

(a) Sample the hyper-parameter, α:

• αl ∼ p(αl|U
(1)l
~k

,U
(2)l
~k

, . . . ,U
(N)l
~k

,X~k
)

(b) For each mode j = 1, . . . , N ,

i. Sample the corresponding hyper-parameter, Θ:

• Θ
U

(j)l
~k

∼ p(Θ
U

(j)l
~k

|U
(j)l
~k

)

ii. For ij = 1, ..., Ij , sample the mode (in parallel):

U
(j)(l+1)
~k(ij )

∼ p

(

U
(j)
~k(ij)

∣

∣

∣

∣

U
(1)l
~k

, . . . ,U
(j−1)l
~k

,

U
(j+1)l
~k

, . . . ,U
(N)l
~k

,

Θl

U
(j)
~k

, αl,X~k

)

3. For each mode j = 1, . . . , N ,

• U
(j)
~k

=

∑L
i=1 U

(j)i
~k

L

4. GRID BASED PROBABILISTIC TEN-

SOR DECOMPOSITION (GPTD)
In the real world, information of about the nature of the

noise may not be provided. Grid Based Probabilistic Ten-
sor Decomposition (GPTD), basic technique of (nTD,is pro-
posed without any priori knowledge about noise distribu-
tion. GPTD techniques firstly partition the given tensor into
blocks, initially decompose each block independently, and
then iteratively combine these decompositions into a final
composition. We firstly discuss the sub-tensor decomposi-
tion process next.

4.1 Phase 1: Monte Carlo based Bayesian De-
composition of Sub-tensors

As we discussed in the introduction, in this paper, we
propose to leverage probabilistic tensor factorization, an ex-
tension of the probabilistic matrix factorization, to better
deal with over-fitting, which is a challenge especially when
the data is noisy.

Intuitively, each entry in the factor matrices are modeled
as probabilistic variables and decomposition is posed as a
maximization problem where these (latent) random vari-
ables fit the observed data. In the presence of noise in the
data, the observed variables may also be modeled probabilis-
tically: since the observations cannot be precisely described,
they may be considered as samples from a probability dis-
tribution. In this paper, following [23], in the presence of
data uncertainty (due to noise), we describe the fit between
the observed data and the predicted latent factor matrices,
probabilistically, as follows:

X~k(i1,i2,...,iN )

∣

∣

∣
U

(1)
~k

,U
(2)
~k

. . . ,U
(N)
~k

∼N ([U
(1)
~k(i1)

,U
(2)
~k(i2)

. . . ,U
(N)
~k(iN )

], α−1),
(1)



where the conditional distribution of X~k(i1,i2,...,iN )
given

U
(j)
~k

(1 ≤ j ≤ N) is a Gaussian distribution with mean

[U
(1)
~k(i1)

,U
(2)
~k(i2)

, . . .,U
(N)
~k(iN )

] and the observation precision α.

We also impose independent Gaussian priors on the modes:

U
(j)
~k(ij )

∼N (µ
U

(j)
~k

,Λ−1

U
(j)
~k

) ij = 1...Ij (2)

where Ij is the dimensionality of the jth mode. Given

this, one can estimate the latent features U
(j)
~k

by

maximizing the logarithm of the posterior distribution,

log p(U
(1)
~k

,U
(2)
~k

. . . ,U
(N)
~k
|X~k). One difficulty with the ap-

proach, however, is the tuning of the hyper-parameters of the
model: α and Θ

U
(j)
~k

≡ {µ
U

(j)
~k

,Λ
U

(j)
~k

} for 1 ≤ j ≤ N . [28]

notes that one can avoid the difficulty underlying the estima-
tion of these parameters through a fully Bayesian approach ,
complemented with a sampling-based Markov Chain Monte
Carlo (MCMC) method to address the lack of the analytical
solution.

The process is visualized in Algorithm 1 in pseudo-code
form.

4.2 Phase 2: Iterative Refinement
Once the individual sub-tensors are decomposed, the next

step is to stitch the resulting sub-factors into the full F -
rank factors, A(i) (each one along one mode), for the input

tensor, X . Let us partition each factor A(i) into Ki parts
corresponding to the block boundaries along mode i:

A
(i) = [A

(i)T
(1) A

(i)T
(2) ...A

(i)T
(Ki)

]T .

Given this partitioning, each sub-tensor X~k,
~k =

[k1, . . . , ki, . . . , kN ] ∈ K can be described in terms of these
sub-factors:

X~k ≈ I ×1 A
(1)
(k1)
×2 A

(2)
(k2)
· · · ×N A

(N)
(kN )

(3)

The current estimate of the sub-factor A
(i)

(ki)
can be revised

using the following update rule [21]:

A
(i)

(ki)
←− T

(i)

(ki)

(

S
(i)

(ki)

)−1
(4)

where

T
(i)
(ki)

=
∑

~m∈{[∗,...,∗,ki,∗,...,∗]}

U
(i)
~m

(

P ~m ⊘ (U
(i)T
~m A

(i)
(ki)

)
)

S
(i)

(ki)
=

∑

~m∈{[∗,...,∗,ki,∗,...,∗]}

Q~m ⊘
(

A
(i)T

(ki)
A

(i)

(ki)

)

such that, given ~m = [m1,m2, . . . ,mN ], we have

• P ~m = ⊛
N
h=1(U

(h)T
~m A

(h)

(mh)
) and

• Q~m = ⊛
N
h=1(A

(h)T

(mh)A
(h)

(mh)).

Above, ⊛ denotes the Hadamart product and ⊘ denotes the
element-wise division operation.

4.3 Overview of GPTD
The two phases of the decomposition process are visual-

ized in Algorithm 2 and Figure 3. Note that, in the second

phase of the process, each A
(i)
(ki)

is maintained incremen-

tally by using, for all 1 ≤ j ≤ N , (a) the current estimates

Algorithm 2 The outline of the GPTD process

Input: Input tensor X , partitioning pattern K, and decomposi-
tion rank, F , and per sub-tensor sample count, L

Output: Tensor decomposition X̊

1. Phase 1: for all ~k ∈ K

• decompose X~k
into U

(1)
~k

, U
(2)
~k

, . . ., U
(N)
~k

with sample count L using Algorithm 1.

2. Phase 2: repeat

(a) for each mode i = 1 to N

i. for each modal partition, ki = 1 to Ki,

A. update A
(i)
(ki)

using U
(i)
[∗,...,∗,ki,∗,...,∗]

, for

each block X [∗,...,∗,ki,∗,...,∗]
; more specifi-

cally,

• compute T
(i)
(ki)

, which involves the use of

U
(i)
[∗,...,∗,ki,∗,...,∗]

(i.e. the mode-i factors

of X [∗,...,∗,ki,∗,...,∗]
)

• revise P [∗,...,∗,ki,∗,...,∗]
using

U
(i)
[∗,...,∗,ki,∗,...,∗]

and A
(i)
(ki)

• compute S
(i)
(ki)

using the above

• update A
(i)
(ki)

using the above

• for each ~k = [∗, . . . , ∗, ki, ∗, . . . , ∗]

– update P~k
and Q~k

using

– U
(i)
~k

and A
(i)
(ki)

until stopping condition

3. Return X̊
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Figure 3: Illustration of sub-tensor based tensor decompo-
sition: the input tensor is partitioned into smaller blocks,
each block is decomposed (potentially in parallel), and the
partial decompositions are stitched together through an it-
erative improvement process

for A
(j)
(kj)

and (b) the decompositions in U
(j); i.e., the F -

rank sub-factors of the sub-tensors in X along the different
modes of the tensor. This implies that a sub-tensor which
is poorly decomposed due to noise may negatively impact
decomposition accuracies also for other parts of the tensor.
Consequently, it is important to properly allocate resources
to prevent a few noisy sub-tensors among all from negatively
impacting the accuracy of the whole decomposition – which
is discussed next.



5. NOISE ADAPTIVE TENSOR DECOM-

POSITION
One crucial piece of information that the basic GPTD pro-

cess fails to account for is the potential a priori knowledge
about the distribution of the noise across the input tensor.
In the real world, noise is rarely uniformly distributed. More
often, we would expect that noise would be clustered across
slices of the tensor (corresponding, for example, to unreli-
able sensors) or be clustered in a multi-modal fashion as
discussed in Section 3.3. In many cases, even if we do not
have precise knowledge about the cells that are subject to
noise or the amount of noise they contain, we may have a
rough idea about the distribution of noise across the grid
partitions. In this section, we aim to answer the question
“can we leverage rough information that may be available
about noise distribution in tensor decomposition?”.

This leads to a novel noise adaptive grid based probabilis-
tic tensor decomposition (nTD) scheme. Remember from Sec-
tion 4.2 that a sub-tensor which is poorly decomposed due to
noise may negatively impact decomposition accuracies also
for other parts of the tensor. Consequently, it is important
to allocate resources in a way to prevent noisy sub-tensors
from negatively impacting the decomposition accuracy for
the whole decomposition. In this section, we note that grid
partitioning can also provide opportunities for taking into
account the noise profile of the input tensor. More specif-
ically, rough knowledge about the noise profiles of the grid
partitions enables us to develop a sample assignment strat-
egy (or s-strategy) that best suits the noise distribution
in a given tensor. In particular, nTD assigns the ranks and
samples to different sub-tensors in a way that maximizes
the overall decomposition accuracy of the whole tensor with-
out negatively impacting the efficiency of the decomposition
process. Since probabilistic decomposition can be costly,
nTD algorithm considers a priori knowledge about each sub-
tensor’s noise density to decide, for each sub-tensor, the ap-
propriate number of Gibbs samples to achieve good accuracy
with the given number of samples.

5.1 Does density affect?
Density is a critical parameter in the area of data analysis.

Intuitively, It should be hard to learn the noise profile from
the sparse data. As Eq. 2 stated, parameter Λ−1 indicates
the variance of data. Λ−1 should have certain correlation
with noise distribution. However, if the data is too sparse,
while lower than certain threshold, there is no difference
between real value and noise, which leads to the pattern
of Λ−1 should be hard to learn. As shown in Fig. 4, 4,
S0,S1,S2,S3,S4,S5 are sub-tensors from different region of
MovieLen data, which have different densities. S0, S1, S2
density is lower than 1.0 × 10−5, S3,S4,S5 are sub-tensors,
which density is higher than 1.0× 10−5. So we can find out,
in the fig. 4 (a), with increasing of each high density sub-
tensor’s noise percentage, Λ−1 is almost linearly increasing.
However, in the fig. 4 (b), no pattern can be allocated in
lower density sub-tensors.

So, intuitively, while the tensor density is low, profile of
noise can’t provide enough information to leverage. Instead,
density is better candidate to be utilized to improve the
performance of decomposition. In the section 6, experiments
also verify this observation.

5.2 Noise Sensitive Sample Assignment: First
Attempt

âL’d’ As we experimentally show in Section 6, there is

(a) High Density sub-tensor (b) Low Density sub-tensor

Figure 4: Comparison of density influences about the noise
profile learning

a direct relationship between the amount of noise a (sub-
)tensor has and the number of Gibbs samples it requires for
accurate decomposition. On the other hand, the number of
samples also directly impacts the cost of the probabilistic
decomposition process. Consequently, given a set of sub-
tensors, with different amounts of noise, uniform assignment

of the number of samples, L =
(

L(total)

|K|

)

, where L(total) is

the total number of samples for the whole tensor and |K| is
the number of sub-tensors, may not be the best choice.

In fact, the numbers of Gibbs samples allocated to dif-
ferent sub-tensors X~k in Algorithm 1 do not need to be the
same. As we have seen in Section 4.1, Phase 1 decomposi-
tion of each sub-tensor is independent from the others and,
thus, the number of Gibbs samples of different sub-tensors
can be different. This observation, along with observation
that more samples can provide better accuracy for noisy
sub-tensors, can be used to improve the overall decomposi-
tion accuracy for a given number of Gibbs samples. More
specifically, the number of samples a noisy sub-tensor, X~k,
is allocated should be proportional to the density, nd~k, of
noise it contains:

L(X~k) = ⌈γ × nd~k⌉+ Lmin, (5)

where Lmin is the minimum number of samples a (non-
noisy) tensor of the given size would need for accurate de-
composition and γ is a control parameter. Note that the
value of γ is selected such that the total number of samples
needed is equal to the number, L(total), of samples allocated
for the whole tensor:

L(total) =
∑

~k∈K

L(X~k). (6)

5.3 Noise Sensitive Sample Assignment: Sec-
ond Attempt

Equations 5 and 6, above, help allocate samples across
sub-tensors based on their noise densities. However, they ig-
nore the relationships among the sub-tensors. In Section 4.2,
we have seen that, during the iterative refinement process
of Phase 2, inaccuracies in decomposition of one sub-tensor
can propagate across the rest of the sub-tensors. Therefore,
a better approach could be to consider how errors can prop-
agate across sub-tensors when allocating samples.

5.3.1 Accounting for Accuracy Inter-dependencies
among Sub-Tensors

More specifically, in this section, we note that if we could
assign a significance score to each sub-tensor, X~k, that takes
into account not only its noise density, but also the position
of the sub-tensor relative to other sub-tensors, we could use
this information to allocate samples.

Let X be a tensor partitioned into a set (or grid) of sub-

tensors X = {X~k |
~k ∈ K}. According to the update rule
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(c) Pairwise refinement dependencies

Figure 5: A sample grid and the corresponding pairwise
refinement dependencies among the sub-tensors per Equa-
tion 4

!"#$%&'!()*+,*

+,* +-*

!"#$%&'!()*+-*

(a) Two sub-tensors with pairwise impact

!"#$%&'!()*+,*
!"#$%&'!()*+-*+,*

-* +-*
,*

(b) Their compressions onto shared modes

!"#
$# !$#

"# !"#
$# !$#

"#

(c) Well-aligned sub-tensors (d) Poorly aligned sub-tensors

Figure 6: Measuring the alignment of two sub-tensors: (a)
the sub-tensors with pairwise impact, (b) their compressions
onto their shared modes, (c) well-aligned tensors have simi-
lar distributions on this compressed representation, whereas
(d) poorly aligned tensors have dissimilar distributions

(Equation 4) in Section 4.2, if two sub-tensors are lined up
along one of the modes of the tensor, they can be used to
revise each other’s estimates. This means that the update
rule ties each sub-tensor’s accuracy directly to

∑

1≤i≤N Ki

other sub-tensors (that line up with the given sub-tensor
along one of the N modes – see Figure 5).

Moreover, we see that if the two sub-tensors are simi-
larly distributed along the modes that they share, then they
are likely to have high impacts on each other’s decompo-
sition; in contrast, if they are dissimilar, their impacts on
each other will also be minimal. In other words, given two
sub-tensors X~j and X~l, we can compute an alignment score,

align(X~j ,X~l), between X~j and X~l as

align(X~j ,X~l) = cos(X
~l
~j
X

~j

~l
),

where cos() is the cosine similarity function and X
~b
~a is the

version of the sub-tensor X~a compressed, using the stan-
dard Frobenius norm, onto the modes along which the sub-
tensor X~a and X~b are aligned (Figure 6). Intuitively, this
pairwise alignment score describes how the decomposition
of one sub-tensor will impact another. A sub-tensor which
is not aligned with the other sub-tensors is likely to have
minimal impact on the accuracy of the overall decompo-
sition even if it contains significant amount of noise. In
contrast, a sub-tensor which is well-aligned with a larger
portion of other sub-tensors may have a large impact on the
other sub-tensors, and consequently, on the whole tensor.
Consequently, while the former sub-tensor may not deserve
a significant amount of resources, the accuracy of the lat-
ter sub-tensor is critical and hence that tensor should be
allocated more resources to ensure better overall accuracy.

5.3.2 Sub-Tensor Centrality based Sample Assign-
ment

Therefore, given pairwise alignment scores among the sub-
tensors, one option is to measure the significance of a sub-
tensor relative to other sub-tensors using a centrality mea-
sure like PageRank (PR [4]), which computes the signifi-
cance of each node in a (weighted) graph relative to the
other nodes. More specifically, given a graph, G(V, E), the
PageRank score ~p[i], of a node vi ∈ V is obtained by solv-
ing ~p = (1 − β)A ~p + β~s, where A denotes the transition
matrix, β is a parameter controlling the random walk likeli-
hood , and ~s is a teleportation vector such that for vj ∈ V ,
~s[j] = 1

‖V ‖
. Therefore, given (a) the set (or grid) of sub-

tensors X = {X~k |
~k ∈ K} and (b) their pairwise alignment

scores, we can associate a significance score,

τ~k =
~p[~k]−min~j∈K(~p[

~j)]

max~j∈K(~p[
~j])−min~j∈K(~p[

~j])
,

to each sub-tensor X~k by computing PageRank scores de-
scribed by the vector ~p. Given this score, we can then rewrite
Equation 5 as

L(X~k) = ⌈γ × τ~k × nd~k⌉+ Lmin, (7)

taking into account both the noise density of the sub-tensor
along with its relationship to other sub-tensors.

5.4 Noise Sensitive Sample Assignment: S-
Strategy

The above formulation considers the position of each sub-
tensor in the whole sub-tensor to compute its significance
and then multiplies this with the corresponding noise density
to decide how much resources to allocate to that sub-tensor.
This, however, may not properly take into account the re-
lationship among the noisy sub-tensors as well as the posi-
tioning of the other sub-tensors relative to the noisy ones.

In this paper, we note that a better approach would be
to consider the noise densities of the sub-tensors directly
when evaluating the significance of each sub-tensor. More
specifically, instead of relying on PageRank, we propose to
use a measure like personalized PageRank (PPR [5]), which
computes the significance of each node in a (weighted) graph
relative to a given set of seed nodes. Given a graph, G,
and a set, S ⊆ G, of seed nodes, the PPR score ~p[i], of a
node vi ∈ G is obtained by solving ~p = (1 − β)A ~p + β~s,



Algorithm 3 Overview of nTD: noise adaptive decomposi-
tion (with noise based resource allocation)

Input: original tensor X , partitioning pattern K, noisy sub-
tensor KP , and decomposition rank, F and total sam-
pling number L

Output: tensor decomposition, X̂

1. obtain the noise profile of the sub-tensors of X ,

2. for sub-tensor ~k ∈ K, assign a decomposition rank F~k
= F

and a sampling number L~k
based on noise-sensitive sample

allocation strategy, described in Section 5.4.

3. obtain the decomposition, X̂ , of X using the GPTD al-
gorithm (Algorithm 2), given partitioning pattern K and

the initial decomposition ranks {F~k
| ~k ∈ K} and sampling

number {L~k
| ~k ∈ K},

4. Return X̂

where A denotes the transition matrix, β is a parameter
controlling the overall importance of the seeds, and ~s is a
seeding vector such that if vi ∈ S, then ~s[i] = 1

‖S‖
and

~s[i] = 0, otherwise. Therefore, given (a) the set (or grid) of

sub-tensors X = {X~k |
~k ∈ K}, (b) their pairwise alignment

scores, and (c) a seeding vector

~s[~k] =
nd~k

∑

~j∈K nd~j ,

we associate a noise sensitive significance score,

η~k =
~p[~k]−min~j∈K(~p[

~j])

max~j∈K(~p[
~j])−min~j∈K(~p[

~j])
,

to each sub-tensor X~k based on the PPR scores, described
by the vector ~p, relative to the noisy tensors. Given this
score, we rewrite Equation 5 as

L(X~k) = ⌈γ × η~k⌉+ Lmin. (8)

5.5 Overview of nTD
The pseudo-code of the proposed noise adaptive tensor

decomposition (nTD) process is visualized in Algorithm 3.

6. EXPERIMENTAL EVALUATION
In this section, we report experiments that aim to as-

sess the effectiveness of the proposed noise adaptive tensor
decomposition approach. In particular, we compare the de-
composition (GPTD, Section 4) ALS-based grid tensor decom-
position (GridParafac [21]). We further assess the proposed
noise-sensitive sample assignment strategy (s-strategy) by
comparing the performance of nTD, which leverages this
strategy, against GPTD with uniform assignment.

6.1 Experiment Setup
Key parameters and their values are reported in Table 1.

Data Sets. In these experiments, we used three real
datasets: Epinions [32], Ciao [32], and MovieLens [10, 31].
The first two of these are comparable in terms of their
sizes and semantics: they are represented in the form of
5000×5000×999 (density 1.4×10−6) and 5000×5000×996
(density 1.7 × 10−6) tensors, respectively, and both have
the schema 〈user, item, category〉. The MovieLens data set
(943× 1682× 2001, density 3.15× 10−5) is denser and has a
different schema, 〈user,movie, time〉. In all three data sets,

Parameters Alternative values

Noise Density 10%; 30%; 50%; 80%
# partitions 2 × 2 × 2; 4 × 4 × 4

Per sub-tensor Gibbs
sample count

1; 3; 5; 10; 30; 80

Target Rank (F ) 10

Table 1: Parameters – default values, used unless otherwise
specified, are highlighted

the tensor cells contain rating values between 1 and 5 or (if
the rating does not exist) a special “null” symbol.
Noise. In these experiments, uniform type of noise were
introduced by modifying the existing ratings in the data set
(Because of space limitation, sc and mm types noise aren’t
introduced in this paper, but the performance of those two
types are similar as uniform type noise). More specifically,
given a uniform noise profile and density, we have selected
a subset of the existing ratings (ignoring “null” values) and
altered the existing values – either by selecting a completely
new rating (which we refer to as value-independent noise).
Evaluation Criteria. We use the root mean squares error
(RMSE) inaccuracy measure to assess the decomposition ef-
fectiveness. We also report the decomposition times and
memory consumptions. Unless otherwise reported, the exe-
cution time of the overall process is reported as if sub-tensor
decompositions in Phase 1 and Phase 2 are all executed se-
rially, without leveraging any sub-tensor parallelism. Each
experiment was run 10 times with different random noise
distributions and averages are reported.
Hardware and Software. We ran experiments on a quad-
core CPU Nehalem Node with 12.00GB RAM. All codes
were implemented in Matlab and run using Matlab R2015b.
For conventional ALS-based CP decomposition, we used
MATLAB Tensor Toolbox Version 2.6 [3].

6.2 Discussion of the Results
GPTD vs. ALS-based Decomposition. We start
the discussion of the results by comparing the proposed
grid probabilistic tensor decomposition (GPTD) against the
more conventional ALS based grid decomposition, as well as
monolithic (no-grid) probabilistic and ALS decompositions.
As we see in Figure 7, GPTD provides significantly better ac-
curacy than the conventional ALS based approaches and also
requires significantly lesser ALS based grid decompositions.
As we expected, we also see that increasing the number of
sub-tensors results in a significant drop in the per-sub-tensor
memory requirement (therefore improving the scalability of
the tensor decomposition process) – though the execution
time of the second phase of the process (where the initial
decompositions of the sub-tensors are stitched together) in-
creases due to the existence of more sub-tensors to consider.

An important observation in Figures 7 (c) is that the
memory requirement for the ALS-based techniques is very
sensitive to data density: While the MovieLens tensor has
smaller dimensionality then the other two, it has a slightly
higher density (3.15×10−5 vs. 1.7×10−6). Consequently, for
this data set, the memory consumptions of the ALS-based
techniques (especially when the number of grid partitions
used are low) are significantly higher than their memory
consumptions for the other two data sets. In contrast, the
results show that the probabilistic approach is not sensitive
to data density and GPTD has similar memory usage for all
three data sets.
Impact of Noise Density. These results are confirmed
in Figure 8(a) & (c), where we vary the noise density be-
tween 10% and 80%: as we see here, for all considered noise
densities and for all three data sets, the RMSE provided by
GPTD is significantly better than the RMSE provided by the



(a) RMSE (b) Memory requirement (c) Execution time

Figure 7: Comparison of different approaches (uniform noise; value independent noise; noise density 10%; F = 10; num.
Gibbs samples per sub-tensor = 3; max. num. of P2 iteration = 1000; 4 sub-tensors with noise)
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Figure 8: (a)GPTD vs. GridParafac (2× 2× 2 grid; varying
noise density; uniform noise; value independent noise; num.
Gibbs samples per sub-tensor = 3; F = 10; max. num. of
P2 iteration = 1000); (b) GPTD with different num. of Gibbs
samples (4 × 4 × 4 grid; uniform noise; value independent
noise; noise density 10%; F = 10; max. num. of P2 iteration
= 1000

conventional ALS-based GridParafac and this RMSE gain
does not come with a significant execution time penalty.
Impact of Numbers of Samples. A key parameter of
the GPTD algorithm is the number of Gibbs samples used per
sub-tensor in Phase 1. As we see in Figure 8(b)&(d), as we
would expect, increasing the number of Gibbs samples helps
reduce the decomposition error (measured using RMSE) ;
however having more samples increases the execution time
of the algorithm.

It is important to note that, when the number of Gibbs
samples is low, the algorithm is very fast, indicating that
the worst case complexity of the Bayesian iterations arises
only when the number of Gibbs samples is very high. Most
critically, as we have already seen in Figures 7 and 8(a), the
GPTD algorithm does not need too many Gibbs samples: us-
ing a few (in these experiments, even just 1) Gibbs samples
per sub-tensor is sufficient to provide significantly better ac-
curacy than ALS, reported in Figures 7 (a), with similar or
better time overhead as reported in Figures 7 (b).
Impact of the Proposed s-strategy. In Figure 9, we
compare the performance of nTD with noise-sensitive sam-
ple assignment (i.e., s-strategy) against GPTD with uni-
form sample assignment and the two naive noise adapta-
tions, presented in Sections 5.2 and 5.3.1, respectively. Note
that in the scenario considered in this figure, we have 640
total Gibbs samples for 64 sub-tensors, providing on the av-
erage 10 samples per sub-tensor. In these experiments, we

data and density nd nd × std std

MovieLen (3.15× 10−5) 1.0221 1.0238 1.0261
Epinion (1.7× 10−6) 1.5562 1.5744 1.5265

Table 2: Comparison of RMSE of nTD algorithm on dif-
ferent density tensors, with 4 num. of noisy sub-tensors
(4 × 4 × 4 grid; uniform noise; value independent noise;
noise density 10%; total num. of samples = 640; Lmin = 9,
F = 10; max. num. of P2 iteration = 1000)

set Lmin to 9 (i.e. very close to this average), thus requir-
ing that 576(= 64 × 9) samples are uniformly distributed
across the sub-tensors – this leaves only 64 samples to be
distributed adaptively across the sub-tensors based on the
noise profiles of the sub-tensors and their relationships to
other sub-tensors. As we see in this figure, the proposed
nTD is able to leverage these 64 uncommitted samples to
significantly reduced RMSE relative to GPTD with uniform
sample assignment. Moreover, we also see that naive noise
adaptations can actually hurt the overall accuracy. These
together show that the proposed s-strategy is highly effec-
tive in leveraging rough knowledge about noise distributions
to better allocate the Gibbs samples across the tensor.

As expected, nTD is costlier than GPTD as it requires ad-
ditional preprocessing to compute sub-tensor alignments in
Phase 2. However, the required pre-processing is trivially
parallelizable and, as we detail later in the appendix, this
overhead can be significantly reduced by allocating addi-
tional computational resources.
Impact of the tensor density. As we discussed in section
5.1, tensor density affect noise pattern learning along with
the noise percentage for probabilistic decomposition process.
To verify the impact of sub-tensor density. We replace cur-
rent the adaptive parameter, noise density (nd), with sub-
tensor density(std) and the product of nd and std (nd ×
std). Then we consider two different density dataset Moive-
Len and Epinion and compare RMSE of nTD algorithm. Be-
cause only replacing the adaptive parameter, the execution
time won’t be affected, which is hidden in this paper. Table
2 indicates there is a trade off between noise density and sub-
tensor density. While tensor density is higher than specific
threshold (in this experiment, it is around 1.0×10−5), noise
density will domain the RMSE gain. Otherwise, leveraging
sub-tensor density as adaptive parameter can make better
RMSE performance.

7. CONCLUSIONS
Real-world data can be noisy. Recent research has shown

that it is possible to improve the resilience of the tensor de-
composition process to overfitting (an important challenge
in the presence of noisy data) by relying on probabilistic
techniques. However, existing techniques assume that all
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Figure 9: RMSE and execution time (without sub-tensor parallelism) for nTD with different num. of noisy sub-tensors (4×4×4
grid; uniform noise; value independent noise; noise density 10%; total num. of samples = 640; Lmin = 9, F = 10; max. num.
of P2 iteration = 1000)

the data and intermediary results can fit in the main mem-
ory and (more critically) they treat the entire tensor uni-
formly, ignoring potential non-uniformities in the noise dis-
tribution. In this paper, we noted that, even if we do not
have precise knowledge about the cells of the tensor that
are subject to noise or the amount of noise they contain,
we may have a rough idea about the distribution of noise
across the tensor. Given this, we proposed a novel noise-
adaptive decomposition (nTD) technique that leverages rough
information about noise distribution to improve the tensor
decomposition performance. nTD partitions the tensor into
multiple sub-tensors and then decomposes each sub-tensor
probabilistically through Bayesian factorization. The noise
profiles of the grid partitions and their alignments are then
leveraged to develop a sample assignment strategy (or s-

strategy) that best suits the noise profile of a given tensor.
Experiments show that nTD is significantly better than con-
ventional CP decomposition on noisy tensors.

8. REFERENCES
[1] E. Acar, et al. Multiway Analysis of Epilepsy Tensors.

Bioinformatics, pages 10-18, 2007.
[2] C. A. Andersson and R. Bro. The N-Way Toolbox for

Matlab. Chem. and Intel. Lab. Systems, 52(1):1-4, 2000.
[3] B. W. Bader, T. G. Kolda, et al. MATLAB Tensor Toolbox

Version 2.5, Available online, January 2012. URL:
http://www.sandia.gov/∼tgkolda/TensorToolbox.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. WWW, 1998.

[5] S. Chakrabarti, Dynamic personalized pagerank in
entity-relation graphs. WWW 2007.

[6] E. C. Chi and T. G. Kolda Making Tensor Factorizations
Robust to Non-Gaussian Noise. tech. report, arXiv:
1010.3043v1, 2010.

[7] W. Chu, Z. Ghahramani, Probabilistic Models for Incomplete
Multi-dimensional Arrays. AISTATS 2009.

[8] I. Davidson, et al. Network discovery via constrained tensor
analysis of fmri data. KDD 2013.

[9] R. A. Harshman, Foundations of the PARAFAC procedure:
Model and conditions for an explanatory multi-mode factor
analysis. UCLA Working Papers in Phonetics, 16:1-84, 1970.

[10] F. M. Harper and J. A. Konstan. The MovieLens Datasets:
History and Context. TiiS 5, 4, Article 19, 2015.

[11] I. Jeon, E. Papalexakis, U. Kang, and C. Faloutsos. HaTen2:
Billionscale tensor decompositions. ICDE’15, 1047-1058, 2015

[12] B. Jeon, et al. SCouT: Scalable Coupled Matrix-Tensor
Factorization - Algorithm and Discoveries. ICDE 2016.

[13] U. Kang, et al. Gigatensor: scaling tensor analysis up by 100
times algorithms and discoveries. KDD 2012

[14] H. Kim and H. Park, Nonnegative matrix factorization based
on alternating nonnegativity constrained least squares and
active set method, SIAM J. Matrix Anal. Appl., vol. 30, no.
2, pages 713-730, 2008

[15] M. Kim and K.S. Candan. Efficient Static and Dynamic
In-Database Tensor Decompositions on Chunk-Based Array
Stores. CIKM, 2014.

[16] T.G. Kolda and B.W. Bader. The tophits model for
higher-order web link analysis. Workshop on Link Analysis,
Counterterrorism and Security, 2006

[17] T. G. Kolda, J. Sun. Scalable tensor decompositions for
multi-aspect data mining. ICDM, 363-372 2008.

[18] X. Li, et al. Focusing Decomposition Accuracy by
Personalizing Tensor Decomposition (PTD). CIKM 2014.

[19] X. Li, et al. 2PCP: Two-phase CP decomposition for
billion-scale dense tensors. ICDE 2016.

[20] E. Papalexakis, C. Faloutsos, and N. Sidiropoulos. Parcube:
Sparse parallelizable tensor decompositions. ECML PKDD,
pp. 521-536, 2012.

[21] A.H. Phan and A. Cichocki, PARAFAC algorithms for
large-scale problems, Neurocomputing, vol. 74, no. 11, pp.
1970-1984, 2011.

[22] P. Rai et al. Scalable Bayesian Low-Rank Decomposition of
Incomplete Multiway Tensors. ICML 2014

[23] R. Salakhutdinov and A. Mnih, Probabilistic Matrix
Factorization. NIPS 07, pages 1257-1264

[24] J. Sun, S. Papadimitriou, and P. S. Yu. Window based tensor
analysis on high dimensional and multi aspect streams.
ICDM, pages 1076-1080, 2006.

[25] J.T. Sun, H.J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd: a
novel approach to personalized web search. WWW 2005

[26] C. E. Tsourakakis, Mach: Fast randomized tensor
decompositions. Arxiv preprint arXiv:0909.4969, 2009

[27] L. Tucker, Some mathematical notes on three-mode factor
analysis. Psychometrika, 31:279-311, 1966.

[28] L. Xiong, et al. Temporal collaborative filtering with
bayesian probabilistic tensor factorization. SDM 2010.

[29] Q. Zhang, M. Berry, B. Lamb, and T. Samuel. A parallel
nonnegative tensor factorization algorithm for mining global
climate data. ICCS’09, pages 405-415, 2009.

[30] Q. Zhao, L. Zhang, A. Cichoki, Bayesian CP Factorization of
Incomplete Tensors with Automatic Rank Determination.
IEEE Trans. on Pat. Analysis and Mach. Intel. 2014.

[31] http://grouplens.org/datasets/movielens/



[32] http://www.public.asu.edu/∼jtang20/datasetcode/
truststudy.htm


