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Abstract

Population structure can have a significant effect on evolution. For some systems with sufficient symmetry,
analytic results can be derived within the mathematical framework of evolutionary graph theory which relate
to the outcome of the evolutionary process. However, for more complicated heterogeneous structures, com-
putationally intensive methods are required such as individual-based stochastic simulations. By adapting
methods from statistical physics, including moment closure techniques, we first show how to derive existing
homogenised pair approximation models and the exact neutral drift model. We then develop node-level ap-
proximations to stochastic evolutionary processes on arbitrarily complex structured populations represented
by finite graphs, which can capture the different dynamics for individual nodes in the population. Using these
approximations, we evaluate the fixation probability of invading mutants for given initial conditions, where
the dynamics follow standard evolutionary processes such as the invasion process. Comparisons with the
output of stochastic simulations reveal the effectiveness of our approximations in describing the stochastic
processes and in predicting the probability of fixation of mutants on a wide range of graphs. Construction
of these models facilitates a systematic analysis and is valuable for a greater understanding of the influence
of population structure on evolutionary processes.
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1. Introduction

Models of evolutionary dynamics were originally deterministic and assumed well-mixed populations in1

which every individual of a given type is identical. Stochastic models of these finite well-mixed popula-2

tions [25] have been studied, however real populations are usually characterised by a complicated relationship3

structure between individuals [42]. To account for this, a class of mathematical models known as evolutionary4

graph theory have been developed which show that the population structure can significantly influence the5

outcome of evolutionary dynamics [20, 40]. In these models, structured populations are represented by finite6

graphs, where each node represents an individual in the population and relationships between individuals7

are represented by the edges of the graph. Stochastic evolutionary processes can be considered analytically8

and precise results can be derived for a number of simple graphs, such as the circle, star and complete9

graphs [5, 6, 20], mainly due to their symmetry. Analytic approaches for investigating evolutionary dynam-10

ics on complex graphs have also been proposed. However, such methods are usually limited by assumptions11

such as large populations [27, 28] or are specifically designed for investigating evolutionary processes under12

weak selection [1, 43], where the evolutionary game has only a small effect on reproductive success.13

Important quantities of interest such as the exact fixation probability and time can, in principle, be14

obtained by solving the discrete-time difference equations of the underlying stochastic model [11], although15

this is only feasible for very small populations unless there are simplifying symmetries. Individual-based16

stochastic simulations [3, 21] provide numerically accurate representations of the evolutionary process on17

arbitrary graphs but have limited scope for generating conceptual insights into the dynamics on their own.18
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They can also be computationally expensive on larger graphs, but as a precise representation of the underlying19

stochastic model, they allow us to evaluate the accuracy of approximate models by comparison.20

Here we develop approximations to the stochastic model by using insights from methods in statistical21

physics that have also been used extensively for epidemic modelling [4, 14, 16, 29, 33, 34]. Such methods22

have been applied to develop pair approximations for evolutionary processes on graphs which satisfy the23

homogeneity assumption that all individuals can be considered identical and interchangable [8, 10, 26, 30, 37].24

However, the underlying assumptions linking these models to the underlying stochastic dynamics are not25

always clear. One contribution of this work is to derive these models explicitly by identifying the required26

assumptions. The starting point for all of our approximations is to derive an equation to describe the time-27

evolution of the state of any given individual node. From this equation, various routes to approximation28

become apparent by applying different assumptions. We then investigate the applicability and accuracy of29

the resulting approximation methods.30

Evolutionary graph theory is traditionally explored as a discrete-time stochastic model. While it is31

possible to work with these dynamics, it is easier to work with a continuous-time approximation to the32

process. The continuous-time system is represented by a master equation describing how the probability of33

being in each system state changes. From the master equation we obtain exact equations (with respect to34

the continuous-time process) for the probabilities of the states of individual nodes (Theorem 2.1). These35

equations can then be approximated by adopting moment-closure methods. We focus on evaluating the36

probability that at the end of the evolutionary process, an initial subset of mutants placed on the graph37

will take over the whole population and ‘fixate’. Using this continuous-time system is justified because the38

fixation probability and expected time to fixation are identical to those of the original discrete-time process.39

Within this framework we study when accurate approximations can be derived.40

In Sections 2.1-2.3 we introduce the stochastic evolutionary dynamics and the master equation, and41

derive a description of how node-level quantities change in the master equation. We then discuss and42

develop various techniques that can be used to approximate these systems of equations in Section 3. Within43

these approximation frameworks we derive the pair approximation models used in the literature, which we44

will call the homogenised pair approximation, and the exact neutral drift model, and build new node level45

approximation methods. In Section 4 we demonstrate how the different methods can be used to approximate46

the dynamics of the original discrete-time process. Section 4.1 studies how the methods perform when47

approximating the fixation probability of a single initial mutant placed on idealised and on complex graphs.48

Section 4.2 then shows how the methods perform when studying the evolutionary game dynamics in a Hawk-49

Dove game. In Section 5 we discuss the results obtained from the methods developed and the insights these50

can give.51

2. The stochastic model52

2.1. Stochastic evolutionary dynamics53

We consider a population whose relationship structure is represented by a strongly connected undirected54

graph (V,E) where V = {1, 2, ..., N} is the set of nodes and E denotes the set of edges. This can be55

represented by an adjacency matrix G, where Gij = 1 if j is connected to i, and Gij = 0 otherwise, with56

Gii = 0 for all i ∈ V . We consider populations consisting of two types of individuals, type A and type57

B, either of which can be in the role of invading mutant in a resident population. Each node is occupied58

by either an A or a B individual. Therefore we can let Ai = 1 if and only if node i is occupied by an A59

individual and Ai = 0 otherwise and let Bi denote the same for individuals of type B. Since Bi = 1 − Ai,60

the state of the system can be represented by the values of Ai at any given time. If there exists an edge61

(i, j) ∈ E between nodes i, j ∈ V , then the offspring of the individual in node j can replace the individual in62

node i and vice versa. To study the evolutionary dynamics between these two types of individual we require63

a measure of fitness. We can describe the fitness payoff received from interactions between individuals by64

the following payoff matrix:65

A B( )
A a b
B c d

,
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where an A individual obtains a payoff a when interacting with another A individual and payoff b when66

interacting with a B individual. Similarly, a B individual obtains payoffs c and d when interacting with an67

A individual and a B individual respectively.68

To define fitness based on the payoff, following similar definitions in the literature [9, 20, 28, 40, 38],69

the fitness of each individual is assumed to be f = fback + wP , where fback is the background fitness of all70

individuals, P is the average payoff received from interactions with neighbours, and w ∈ [0,∞) is a parameter71

which controls the contribution of the game payoff to fitness.72

The fitness of an A individual which occupies node j, f jA, is therefore given by73

f jA = fback + w

a
N∑
i=1

GijAi + b
N∑
i=1

GijBi

N∑
i=1

Gij

, (1)

and similarly the fitness of a B individual occupying node j is given by74

f jB = fback + w

c
N∑
i=1

GijAi + d
N∑
i=1

GijBi

N∑
i=1

Gij

. (2)

In the special case of constant fitness, where the fitness of individuals remains constant independent of the75

interactions with other individuals, we take the payoff matrix as76

A B( )
A r r
B 1 1

,

so that A individuals have relative payoff equal to r.77

Traditional evolutionary graph theory considers a discrete-time Markovian evolutionary process in which78

only one event can happen at each time step. When an event occurs, one individual reproduces and a79

connected individual dies, with the offspring replacing it. We refer to the mechanism by which this takes80

place as an update mechanism or rule. The probability of a certain event taking place depends upon81

this update mechanism. Some of the most commonly considered update mechanisms are birth-death with82

selection on birth (invasion process) [20], death-birth with selection on birth [22], birth-death with selection83

on death [2] and death-birth with selection on death (voter model) [28]. The methods developed in this84

paper will be presented in the general case, and can be applied to any of the above update rules, but we85

shall focus on the invasion process when generating specific examples. In the invasion process, we select an86

individual to reproduce in proportion to their fitness (selection on birth) and then the offspring replaces a87

connected individual selected uniformly at random for death (birth then death).88

2.2. The master equation89

To approximate the discrete-time evolutionary process we first translate the discrete-time system to an90

approximate continuous-time system. To do this we model each (replacement) event using a Poisson process.91

The rate at which each event happens is equal to the probability of that event in the discrete-time model.92

Therefore the total event pressure will be the sum of all such probabilities, which is equal to one, so that93

the time until the next event follows a Poisson process with rate parameter one. We then determine which94

event takes place using the relevant probability. Under this continuous-time system the fixation probability95

and expected time to fixation will be identical to those of the discrete-time system, since we use the same96

probabilities whenever an event occurs and the expected time between events is constant. This is important97

because these are the main quantities of interest in evolutionary dynamics.98

We will use this system to build approximation methods to study the original discrete-time process. We99

choose to use continuous-time because it enables us to build a system of ordinary differential equations to100
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approximate the dynamics, which allow us to make use of efficient numerical solvers and enable us to derive101

some analytic results.102

Since this evolutionary process is a continuous-time Markov process, we can construct a master equation103

to describe the dynamics. Let Si = (s1, s2, ..., sN ) be a state of the system, where i ∈ {1, ..., 2N} and where104

sj = 1 if node j is a type A individual and sj = 0 otherwise. We define S1 = (0, 0, ..., 0) and S2N = (1, 1, ..., 1)105

to be the states consisting of only B individuals and only A individuals, respectively.106

We introduce a vector p(t) which represents the probabilities of each system state at time t. That is,107

the ith entry of p(t), pi(t), is the probability that the system is in state Si at time t. This Markovian108

evolutionary process has 2N possible states and the transitions between them are governed by a 2N × 2N109

transition rate matrix R whose entries depend upon the graph and update mechanism we consider.110

We write the rate of change in the state probabilities using the master equation of the Markov process:111

dp

dt
= Rp. (3)

Such an equation can be constructed for any graph under a Markovian update mechanism. The absorbing112

states correspond to the all type B or all type A states, S1 and S2N , so are given by p1 and p2N .113

Since we consider a strongly connected adjacency matrix G, provided we have at least one type A and one114

type B it is possible to get to either of the absorbing states and therefore from any mixed initial condition the115

system will always end up distributed between these two states. We define the fixation probability PA
fix(S(i))116

of type A from an initial state S(i) to be the probability of being in the all A absorbing state, that is117

PA
fix(Si) = lim

t→∞
(p2N (t)|pi(0) = 1),

where pi(0) is the probability of being in the state Si at time t = 0. Similarly we define the fixation118

probability of type B as119

PB
fix(Si) = lim

t→∞
(p1(t)|pi(0) = 1).

The computational cost of implementing system (3) increases exponentially with N [11], and thus the120

computation of the fixation probability becomes infeasible as the population size increases. Therefore it121

is of interest to build approximation methods. Pair approximations of the master equation have been122

developed under the homogeneity assumption that all nodes on the underlying graph are identical and123

interchangable [10, 37], which can give interesting insight into the evolutionary dynamics. However the124

homogeneity assumptions made in these approximations result in the loss of insight into graph and node-125

specific dynamics, so we aim to develop approximations of the master equation which can capture this126

information.127

2.3. Node level equations128

We approximate the master equation by approximating the dynamics of the state probabilities of in-129

dividual nodes in the population. This is motivated by approaches in statistical physics and epidemic130

modelling [4, 16, 33, 34], and first requires exact equations describing how the probability of each node being131

occupied by a certain type changes with time, which can be derived from the master equation (3).132

Definition 2.1. Let χ(Ωt
j→i|St) denote the rate at which the individual in node j replaces the individual133

in node i at time t given that the system is in state S at time t; we refer to this as the replacement rate.134

Definition 2.2. Xt
C denotes the event that the set of nodes C is in state X at time t; for example At

{i} is135

the event that node i is in the type A state at time t.136

Throughout this paper we shall use the shorthand Bt
{i}A

t
{j}X

t
C to represent the intersection of events137

Bt
{i} ∩A

t
{j} ∩X

t
C .138

Theorem 2.1. Under any Markovian update mechanism, for a structured population represented by the139

adjacency matrix G, the rate of change of the probability that the individual in node i is an A individual is140
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dP (At
{i})

dt
=

N∑
j=1

∑
XV \{i,j}

GijP (Bt
{i}A

t
{j}X

t
V \{i,j})χ(Ωt

j→i|Bt
{i}A

t
{j}X

t
V \{i,j})

−
N∑
j=1

∑
XV \{i,j}

GijP (At
{i}B

t
{j}X

t
V \{i,j})χ(Ωt

j→i|At
{i}B

t
{j}X

t
V \{i,j}), (4)

where the sum over XV \{i,j} is over all possible states of the nodes V \{i, j}.141

Proof. See Appendix A.142

This theorem can be applied to any update mechanism by choosing an appropriate definition for the143

replacement rate, χ(Ωt
j→i), which we shall define for the invasion process as an example.144

Example 2.1 (Invasion process). The invasion process is an adaptation of the Moran process [25] to struc-145

tured populations. Each event is determined by selecting an individual to reproduce with probability propor-146

tional to its fitness. It produces an identical offspring which replaces one of the connected individuals which147

is chosen uniformly at random. Therefore the rate at which the individual in node j replaces the individual148

in node i at time t under the invasion process rules is given by149

χ(Ωt
j→i|S) =

f tj |S
F t|S

1

kj
, (5)

where f tj is the fitness of the individual occupying node j at time t, F t =
N∑

m=1
f tm is the total fitness of the150

population, and kj denotes the degree of node j. Here, the factor f tj/F
t is the rate at which node j is selected151

to reproduce, and 1/kj is the probability of replacing the neighbouring individual i which is selected uniformly152

at random.153

When calculating χ(Ωt
j→i) in Equation (4), we will use the following expression for the fitness of the154

individual at a given node j at time t,155

f tj = fback + wP (At
{j})

a
N∑
i=1

GijP (At
{i}) + b

N∑
i=1

GijP (Bt
{i})

N∑
i=1

Gij

+ wP (Bt
{j})

c
N∑
i=1

GijP (At
{i}) + d

N∑
i=1

GijP (Bt
{i})

N∑
i=1

Gij

,

(6)
which is a sum of equations (1) and (2) weighted by the node probabilities. We use this definition because156

when we evaluate Equation (6) given that the system is in a particular state S, as required by Equation (4),157

the values of P (At
{k}) and P (Bt

{k}) are either 1 or 0, which leads to the fitness of node j in that particular158

system state (Equations (1) and (2)). However, by defining fitness in terms of the node probabilities, this159

allows us to have a description of fitness which we can approximate (see Sections 3.2 and 3.3).160

3. Approximating the stochastic model161

In other fields, such as epidemiology, the construction of node-level equations such as Equation (4) can162

lead to a hierarchy of moment equations whereby these equations are written in terms of pair probabilities,163

pairs are written in terms of triples and so on, until the full system state size is reached and the hierarchy164

is closed. This is useful when we can find appropriate closure approximations to close this hierarchy at a165

low order. However, we see that such an approach cannot be used here because we condition against the166

full system state in Equation (4) which means that the full system size appears even at the first order. We167

therefore attempt to find other methods to simplify this system of equations.168

In this section we will describe three different techniques to derive approximations for this system. The169

first technique yields a system of equations which become computationally infeasible in some circumstances,170
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but by applying homogeneity assumptions to the underlying graph, we can derive the existing pair approx-171

imation models currently used in the literature [8, 10, 26, 30, 37] (Section 3.1). To reduce computation172

costs, we then develop methods based on restricting the number of states which we condition against in173

the replacement rate. We first obtain a method whose computational complexity scales linearly with the174

population size N and, after an appropriate scaling, approximates the fixation probability well on a wide175

range of graphs (Section 3.2). Then, in Section 3.3, we obtain a method which, although it scales with N2,176

provides a good approximation to the evolutionary dynamics over the whole time series for various graphs,177

and in particular provides a very accurate approximation to the initial dynamics of the evolutionary process178

on all graphs.179

3.1. Deriving the homogenised pair approximation model180

One way of simplifying (4) is to assume that the fitness f tj does not need to be normalised by the total181

fitness F t in the replacement rate (e.g. as in Equation (5) for the invasion process). This approximation182

is justified because it does not change the final value to which the exact node-level equations converge183

(and therefore the fixation probability), and will only transform the time series until fixation. Making this184

assumption, the node level equations simplify so that we only sum over the neighbours of the individual185

that we selected based on fitness. That is, when looking at the event where node j replaces node i, if we186

are selecting on death we need to condition against the state of all neighbours of i, and if selecting on birth187

we need to condition against the state of all neighbours of j. As an example, we shall assume here that188

selection occurs on birth so that we require conditioning on the neighbourhood of node j, however we can189

also make similar arguments when selecting on death. Using χ̄ to represent this modification of χ in (4) and190

Q to represent the new probability distribution with the modified time series we obtain191

dQ(At
{i})

dt
=

N∑
j=1

∑
XNj\{i}

GijQ(Bt
{i}A

t
{j}X

t
Nj\{i})χ̄(Ωt

j→i|Bt
{i}A

t
{j}X

t
Nj\{i})

−
N∑
j=1

∑
XNj\{i}

GijQ(At
{i}B

t
{j}X

t
Nj\{i})χ̄(Ωt

j→i|At
{i}B

t
{j}X

t
Nj\{i}), (7)

where Nj is the neighbourhood of node j, i.e. all nodes that are connected to j. To solve this system192

exactly requires the development of equations describing how the probability of each possible neighbourhood193

of nodes changes. This in turn would lead to a hierarchy of equations which is computationally similar to194

the master equation. However it is possible to develop approximation methods by assuming independence at195

the level of lower-order terms, such as individuals or pairs of nodes, and approximating the neighbourhood196

probabilities as a function of these.197

For example, we can make a pair approximation by applying Bayes’ Theorem and assuming statistical198

independence at the level of pairs to rewrite the neighbourhood probability in terms of pair probabilities.199

Applying Bayes’ Theorem to the probabilities on the right hand side of Equation (7) we get200

dQ(At
{i})

dt
=

N∑
j=1

∑
XNj\{i}

GijQ(At
{j})Q(Bt

{i}X
t
Nj\{i}|A

t
{j})χ̄(Ωt

j→i|Bt
{i}A

t
{j}X

t
Nj\{i})

−
N∑
j=1

∑
XNj\{i}

GijQ(Bt
{j})Q(At

{i}X
t
Nj\{i}|B

t
{j})χ̄(Ωt

j→i|At
{i}B

t
{j}X

t
Nj\{i}). (8)

If we assume statistical independence of all nodes in the neighbourhood of j, given the state of j, we can201

rewrite the neighbourhood probability Q(At
{j})Q(Bt

{i}X
t
Nj\{i}|A

t
{j}) as202

Q(At
{j})Q(Bt

{i}X
t
Nj\{i}|A

t
{j}) ≈ Q(At

{j})Q(Bt
{i}|A

t
{j})

∏
l∈Nj\{i}

Q(Xt
{l}|A

t
{j}),
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where Xt
{l} is event where node l is in the same state as it is in the event Xt

Nj\{i}. Substituting this into203

Equation (8) gives204

dQ(At
{i})

dt
≈

N∑
j=1

∑
XNj\{i}

GijQ(At
{j})Q(Bt

{i}|A
t
{j})

∏
l∈Nj\{i}

Q(Xt
l |At
{j})χ̄(Ωt

j→i|Bt
{i}A

t
{j}X

t
Nj\{i})

−
N∑
j=1

∑
XNj\{i}

GijQ(Bt
{j})Q(Ai|Bt

{j})
∏

l∈Nj\{i}

Q(Xt
l |Bt
{j})χ̄(Ωt

j→i|At
{i}B

t
{j}X

t
Nj\{i}).

Since Q(Bt
{i}|A

t
{j}) = Q(Bt

{i}A
t
{j})/Q(At

{j}), in order to evaluate these equations we require additional205

equations describing how pair probabilities change with time or some appropriate closure of pairs in terms206

of single node probabilities. From the master equation we can derive exact equations describing pairs. For207

the probability P (Bt
{i}A

t
{j}) we obtain208

dP (Bt
{i}A

t
{j})

dt
=

N∑
k=1

∑
XV \{i,j,k}

GjkP (Bt
{i}B

t
{j}A

t
{k}X

t
V \{i,j,k})χ(Ωt

k→j |Bt
{i}B

t
{j}A

t
{k}X

t
V \{i,j,k})

−
N∑

k=1

∑
XV \{i,j,k}

GjkP (Bt
{i}A

t
{j}B

t
{k}X

t
V \{i,j,k})χ(Ωt

k→j |Bt
{i}A

t
{j}B

t
{k}X

t
V \{i,j,k})

+

N∑
k=1

∑
XV \{i,j,k}

GikP (Bt
{k}A

t
{i}A

t
{j}X

t
V \{i,j,k})χ(Ωt

k→i|Bt
{k}A

t
{i}A

t
{j}X

t
V \{i,j,k})

−
N∑

k=1

∑
XV \{i,j,k}

GikP (At
{k}B

t
{i}A

t
{j}X

t
V \{i,j,k})χ(Ωt

k→i|At
{k}B

t
{i}A

t
{j}X

t
V \{i,j,k}). (9)

We can now apply the same assumption regarding total fitness that we used for the single node probabilities209

so that210

dQ(Bt
{i}A

t
{j})

dt
=

N∑
k=1

∑
XNk\{i,j}

GjkQ(Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j})χ̄(Ωt

k→j |Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j})

−
N∑

k=1

∑
XNk\{i,j}

GjkQ(Bt
{i}A

t
{j}B

t
{k}X

t
Nk\{i,j})χ̄(Ωt

k→j |Bt
{i}A

t
{j}B

t
{k}X

t
Nk\{i,j})

+

N∑
k=1

∑
XNk\{i,j}

GikQ(Bt
{k}A

t
{i}A

t
{j}X

t
Nk\{i,j})χ̄(Ωt

k→i|Bt
{k}A

t
{i}A

t
{j}X

t
Nk\{i,j})

−
N∑

k=1

∑
XNk\{i,j}

GikQ(At
{k}B

t
{i}A

t
{j}X

t
Nk\{i,j})χ̄(Ωt

k→i|At
{k}B

t
{i}A

t
{j}X

t
Nk\{i,j}). (10)

Applying Bayes’ Theorem to the neighbourhood probability Q(Bt
{i}B

t
{j}A

t
{k}X

t
V \{i,j,k}) we obtain211

Q(Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j}) = Q(Bt

{j}A
t
{k})Q(Bt

{i}X
t
Nk\{i,j}|B

t
{j}A

t
{k})

We can now assume statistical independence of the remaining nodes given the state of j and k so that212

Q(Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j}) ≈ Q(Bt

{j}A
t
{k})Q(Bt

{i}|B
t
{j}A

t
{k})

∏
l∈Nk\{i,j}

Q(Xt
{l}|B

t
{j}A

t
{k}).
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Since we know that node i is connected to node j we can assume that given the state of node j, the state of213

node i is independent of node k, and similarly the state of any node in the neighbourhood of k is independent214

of node j, which gives us215

Q(Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j}) ≈ Q(Bt

{j}A
t
{k})Q(Bt

{i}|B
t
{j})

∏
l∈Nk\{i,j}

Q(Xt
{l}|A

t
{k}).

Substituting this into Equation (10) gives216

dQ(Bt
{i}A

t
{j})

dt
≈

N∑
k=1

∑
XNk\{i,j}

GjkQ(Bt
{j}A

t
{k})Q(Bt

{i}|B
t
{j})

∏
l∈Nk\{i,j}

Q(Xt
{l}|A

t
{k})χ̄(Ωt

k→j |Bt
{i}B

t
{j}A

t
{k}X

t
Nk\{i,j})

−
N∑

k=1

∑
XNk\{i,j}

GjkQ(At
{j}B

t
{k})Q(Bt

{i}|A
t
{j})

∏
l∈Nk\{i,j}

Q(Xt
{l}|B

t
{k})χ̄(Ωt

k→j |Bt
{i}A

t
{j}B

t
{k}X

t
Nk\{i,j})

+

N∑
k=1

∑
XNk\{i,j}

GikQ(At
{i}B

t
{k})Q(At

{j}|A
t
{i})

∏
l∈Nk\{i,j}

Q(Xt
{l}|B

t
{k})χ̄(Ωt

k→i|At
{i}A

t
{j}B

t
{k}X

t
Nk\{i,j})

−
N∑

k=1

∑
XNk\{i,j}

GikQ(Bt
{i}A

t
{k})Q(At

{j}|B
t
{i})

∏
l∈Nk\{i,j}

Q(Xt
{l}|A

t
{k})χ̄(Ωt

k→i|Bt
{i}A

t
{j}A

t
{k}X

t
Nk\{i,j}).

While this system is closed, its computational complexity increases exponentially with the maximum node217

degree of the graph, so it is not numerically feasible for graphs with highly connected nodes. While this218

could potentially be addressed by introducing approximations for nodes with high degree and this may lead219

to accurate models, here we continue towards a simplified model. To do this, we follow the same process as220

in epidemic models and make a homogeneity assumption by assuming that any pair is equally likely to be221

in any given state [18, 33]; i.e. Q(Xt
{i}|Y

t
{j}) = Q(Xt|Y t) for all pairs (i, j). This leads to222

dQ(At
{i})

dt
≈

N∑
j=1

∑
XNj\{i}

GijQ(At
{j})Q(Bt|At)kj−nXQ(At|At)nX χ̄(Ωt

j→i|Bt
{i}A

t
{j}X

t
Nj\{i})

−
N∑
j=1

∑
XNj\{i}

GijQ(Bt
{j})Q(At|Bt)nX+1Q(Bt|Bt)kj−nX−1χ̄(Ωt

j→i|At
{i}B

t
{j}X

t
Nj\{i}),

where kj is the degree of node j and nX is the number of type A individuals in state XNj\{i}. Since the223

transition rate only depends on the number of type A and type B individuals in the neighbourhood of node224

j and not on their positions, the summand on the right hand side is equal for all states XNj\{i} which have225

the same configuration of A and B individuals. The frequency of a certain neighbourhood state across all226

possible configurations is given by the binomial coefficient, so that227

dQ(At
{i})

dt
≈

N∑
j=1

kj−1∑
n=0

Gij

(
kj − 1

n

)
Q(At

{j})Q(Bt|At)kj−n+1Q(At|At)nχ̄(Ωt
j→i|n)

−
N∑
j=1

kj−1∑
n=0

Gij

(
kj − 1

n

)
Q(Bt

{j})Q(At|Bt)n+1Q(Bt|Bt)kj−nχ̄(Ωt
j→i|n),

where χ̄(Ωt
A→B |n) is the rate at which we select one of the type A individuals to reproduce and replace a228

type B, given that there are n type A individuals and kj − n type B individuals in the neighbourhood of229

the selected node.230
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Since we have assumed that any pair is equally likely, this assumption only holds when every node in the231

graph forms k connections, which are chosen at random. Therefore we require that node i is equally likely232

to be connected to any other node and all nodes are topologically equivalent, so that the probability that a233

given node of type B is connected to x type A neighbours is given by a binomial distribution with n = k234

and p = Q(At|Bt). Therefore the probability of an individual being type A changes with rate235

dQ(At)

dt
≈

k∑
x=0

(
k

x

)
Q(At|Bt)xQ(Bt|Bt)

k−xQ(Bt)x

k−1∑
n=0

(
k − 1

n

)
Q(Bt|At)k−n+1Q(At|At)nχ̄(Ωt

A→B |n)

−
k∑

x=0

(
k

x

)
Q(At|At)xQ(Bt|At)

k−xQ(At)(k − x)

k−1∑
n=0

(
k − 1

n

)
Q(At|Bt)n+1Q(Bt|Bt)k−nχ̄(Ωt

B→A|n).

We can also apply these assumptions to the pair-level equations to obtain a closed system of equations236

which are efficient to solve numerically. The resulting model is equivalent to the model in [26], which was237

justified by using the assumption that the population occupies a regular graph, such that all individuals238

have degree k, and that all nodes are topologically equivalent, such that every pair of individuals is equally239

likely to be connected. We have shown that by applying these assumptions to the exact node-level equations240

(Equation (4)) we can derive these models.241

Similarly we can obtain a pair approximation model for the dynamics where we select on death by242

conditioning against the state of the neighbours of node i. Applying analogous assumptions to the previous243

example then leads to the model in [8]. These models have been shown to yield interesting qualitative244

results about the relative strengths of different strategies in evolutionary games on graphs. However, the245

homogeneity assumptions made result in losing important aspects of the structure, such as how individual246

nodes in the system can behave differently. In the next sections we will attempt to develop approximation247

methods which can capture this node-specific information.248

As we alluded to earlier, a natural method would be to use Equation (7) as a basis for this. However,249

difficulties in implementing this method on general networks as well as the number of equations that result250

leads us to a different direction for the present work.251

3.2. An unconditioned fitness approximation model252

Here we develop a method which removes the need to include the probability of whole neighbourhoods253

by removing the conditioning in the replacement rate. This causes the replacement rate to only depend on254

the marginal probabilities of the state of each node rather than the full system state. This assumption also255

motivated a model in [37] in which the authors construct a population-level approximation describing how256

the expected number of individuals of each type change with time. Under this assumption, Equation (4)257

becomes258

dP (At
{i})

dt
≈

N∑
j=1

∑
XV \{i,j}

GijP (Bt
{i}A

t
{j}X

t
V \{i,j})χ(Ωt

j→i)−
N∑
j=1

∑
XV \{i,j}

GijP (At
{i}B

t
{j}X

t
V \{i,j})χ(Ωt

j→i).

Since χ(Ωt
j→i) is now the same for all system states,259

dP (At
{i})

dt
≈

N∑
j=1

GijP (Bt
{i}A

t
{j})χ(Ωt

j→i)−
N∑
j=1

GijP (At
{i}B

t
{j})χ(Ωt

j→i).

Adding and subtracting
N∑
j=1

GijP (At
{i}A

t
{j})χ(Ωt

j→i) we obtain260
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dP (At
{i})

dt
≈

N∑
j=1

[
GijP̄ (Bt

{i}A
t
{j})χ(Ωt

j→i) +GijP (At
{i}A

t
{j})χ(Ωt

j→i)
]

−
N∑
j=1

[
GijP (At

{i}B
t
{j})χ(Ωt

j→i) +GijP̄ (At
{i}A

t
{j})χ(Ωt

j→i)
]

≈
N∑
j=1

GijP (At
{j})χ(Ωt

j→i)−
N∑
j=1

GijP (At
{i})χ(Ωt

j→i),

which is a closed set of N equations with at most N summands on the right hand side. Therefore by defining261

P̄ as an approximation to the probability distribution P we obtain the closed system262

dP̄ (At
{i})

dt
=

N∑
j=1

GijP̄ (At
{j})χ(Ωt

j→i)−
N∑
j=1

GijP̄ (At
{i})χ(Ωt

j→i), (11)

which is easy to solve numerically for an arbitrary graph.263

Example 3.1 (Neutral drift). In the special case of neutral drift, i.e. when all individuals have identical264

fitness, the unconditioned fitness model gives the exact fixation probability. With the dynamics of the invasion265

process under neutral drift we obtain χ(Ωt
j→i) = 1

Nkj
, and therefore Equation (11) can be written as266

dP̄ (At
{i})

dt
=

N∑
j=1

GijP̄ (At
{j})

1

Nkj
−

N∑
j=1

GijP̄ (At
{i})

1

Nkj
,

which is equivalent to the exact node equation (4) for the invasion process under neutral drift [32]. The267

unconditioned fitness model is also exact for all update mechanisms under neutral drift, but we do not write268

the equations explicitly here.269

As the population size N increases, the solution to Equation (11) moves further away from the exact270

fixation probability obtained either by solving the master equation (3) or from the output of stochastic271

simulations. To obtain a reasonable approximation to the fixation probability from a given initial condition272

we construct a scaling factor for the constant fitness case by comparing the ratio between the solution of273

Equation (11) on a complete graph to the exact fixation probability on a complete graph. We choose the274

complete graph because the exact fixation probability can be calculated analytically in this case. Whilst we275

consider the constant fitness case, it may also be possible to find a suitable scaling factor in the frequency276

dependent fitness case, however using a complete graph may no longer be appropriate because the relative277

strength of different strategies in some games is strongly affected by the average degree of the graph [28].278

Example 3.2 (Invasion process). For constant fitness under the dynamics of the invasion process, the279

exact fixation probability for m initial mutant A individuals on a complete graph is equivalent to the Moran280

probability [20]:281

ρ =
1− 1

rm

1− 1
rN

.

Since the fixation probability is known, we now need to solve Equation (11) on the complete graph to282

derive the ratio between the two. In the constant fitness case this can be done analytically, with the scaling283

factor for m initial mutants given by284

ρ

lim
t→∞

Ac(t)
=

1− 1
rm

1− 1

rN

1
r−1

(
−1 +

√
1 + m(r2−1)

N

) , (12)
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where Ac(t) = 1
N

N∑
j=1

P̄ (At
{j}). The derivation of this can be found in Appendix B.285

We can now define two methods for predicting the fixation probability under any Markovian update286

mechanism.287

• Method 1 (Unconditioned fitness model) Solve Equation (11) to provide an approximation to the288

dynamics of the evolutionary process. (see supplementary code for the unconditioned fitness model289

solver)290

• Method 2 (Scaled unconditioned fitness model) Solve Equation (11) and then use a scaling factor,291

the ratio of the exact fixation probability and the solution to Equation (11) for the complete graph, to292

provide an approximation to the fixation probability from a given initial condition.293

In Section 4 we investigate the numerical performance of these two methods. Note that for the purpose of this294

paper we have found the scaling factor for Method 2 under the invasion process (Equation (12)). However,295

the method can be applied to other update mechanisms, such as death-birth with selection on birth, by296

finding an appropriate scaling factor, which can be done by solving Equation (11) (either analytically or297

numerically) and comparing to the exact fixation probability on the complete graph. For example, see [12]298

for the exact fixation probability on a complete graph under the DB-B dynamics.299

3.3. A contact conditioning approximation model300

In Section 3.2 we restricted the conditioning so that we only require the marginal probabilities of the301

individual nodes. However, this removes a significant amount of information from the dynamics. In the302

evolutionary process, when considering a replacement event the two nodes of most interest are the node303

selected for birth and the node selected for death. Therefore, here we follow a similar method but retain304

conditioning on the states of these two key nodes. Since we restrict the conditioning to only the states of305

the relevant contact, when looking at the term χ(Ωt
j→i|Bt

{i}A
t
{j}X

t
V \{i,j}) in Equation (4) we condition only306

on the states of the nodes i and j and obtain307

χ(Ωt
j→i|Bt

{i}A
t
{j}X

t
V \{i,j}) ≈ χ(Ωt

j→i|Bt
{i}A

t
{j}).

Under the above condition, Equation (4) becomes308

dP (At
{i})

dt
≈

N∑
j=1

∑
XV \{i,j}

GijP (Bt
{i}A

t
{j}X

t
V \{i,j})χ(Ωt

j→i|Bt
{i}A

t
{j})

−
N∑
j=1

∑
XV \{i,j}

GijP (At
{i}B

t
{j}X

t
V \{i,j})χ(Ωt

j→i|At
{i}B

t
{j}). (13)

To see the effect of this assumption on the rates, consider χ(Ωt
j→i|Bt

{i}A
t
{j}). Here we condition only against309

node i being in state B and node j being in state A rather than against the entire system state. Consequently310

in the fitness equation (6) we have P (Bt
{i}) = 1 and P (At

{j}) = 1 giving311

f tj |Bt
{i}A

t
{j} = fback + w

bTij + a
∑
l 6=i

GjlP (At
{l}) + b

∑
l 6=i

GjlP (Bt
{l})

N∑
l=1

Gjl

.

In Equation (13), the chance of selecting node j is now independent of the state Xt
V \{i,j} of the remaining312

nodes which enables the equation to be reduced to313

dP (At
{i})

dt
≈

N∑
j=1

GijP (Bt
{i}A

t
{j})χ(Ωt

j→i|Bt
{i}A

t
{j})−

N∑
j=1

GijP (At
{i}B

t
{j})χ(Ωt

j→i|At
{i}B

t
{j}). (14)
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This gives an approximate equation for individuals in terms of pairs. We then need to build equations to314

describe pair-level probabilities. Similar methodologies have been followed to describe epidemics propagated315

on networks [33, 34].316

Applying the same conditioning to the exact pair level equation (9) we obtain317

dP (Bt
{i}A

t
{j})

dt
≈

N∑
k=1

GjkP (Bt
{i}B

t
{j}A

t
{k})χ(Ωt

k→j |Bt
{j}A

t
{k})−

N∑
k=1

GjkP (Bt
{i}A

t
{j}B

t
{k})χ(Ωt

k→j |At
{j}B

t
{k})

+

N∑
k=1

GikP (Bt
{k}A

t
{i}A

t
{j})χ(Ωt

k→i|Bt
{k}A

t
{i})−

N∑
k=1

GikP (At
{k}B

t
{i}A

t
{j})χ(Ωt

k→i|At
{k}B

t
{i}).

(15)

Similar formulae can be constructed for all possible pairs, writing pairs in terms of triples. In a sim-318

ilar way, triples can be written in terms of quads and so on, up to the full system size N which is319

then closed. Therefore, when using this method we obtain a hierarchy similar to the BBGKY (Bogoli-320

ubov–Born–Green–Kirkwood–Yvon) hierarchy [4, 16] in statistical physics. However, here the hierarchy321

only represents an approximation to the original dynamics. Solving this system exactly is no simpler than322

evaluating Equation (3) since evaluating the hierarchy in full is comparable in numerical complexity, so we323

wish to find approximation methods to reduce this.324

With this hierarchy, we can apply techniques developed in statistical physics to approximate higher-325

order terms as functions of lower-order terms. In particular we can close the system of equations (14)326

and (15) at the level of pairs by approximating all triples in Equation (15) in terms of pair-level and327

individual-level probabilities. Similar techniques have been applied for many stochastic processes including328

in epidemiology [14, 18, 33, 34] and evolutionary dynamics [10, 28, 37] leading to models which can be329

numerically evaluated.330

To close the system, we require a functional form that can approximate triple probabilities in terms of331

individual and pair probabilities. One method is to approximate a triple P (At
{i}B

t
{j}C

t
{k}) as the product of332

all possible pairs among these nodes divided by the product of all individuals, i.e.333

P (At
{i}B

t
{j}C

t
{k}) ≈

P (At
{i}B

t
{j})P (Bt

{j}C
t
{k})P (At

{i}C
t
{k})

P (At
{i})P (Bt

{j})P (Ct
{k})

. (16)

This closure is commonly attributed to Kirkwood [36] because it is derived from the Kirkwood superposition334

which approximates triples in terms of pairs in thermodynamics [15, 17]. This is often applied to nodes i, j, k335

that form a 3-cycle in the graph, which we call a ‘closed triple’, although it can be applied to any triplet336

of nodes. It has been shown that this closure maximises the entropy of these thermodynamic systems [36],337

and it also ensures that symmetry is preserved across the triplet. This closure has commonly been adapted338

to probabilistic systems, such as the BBGKY hierarchy [4, 16] and epidemic modelling [13, 33, 35]. How-339

ever, the Kirkwood closure for probabilities does not define a probability distribution since we can obtain340

P (Bt
{i}A

t
{j}) + P (Bt

{i}B
t
{j}) 6= P (Bt

{i}), which has been observed numerically [31]. In spite of this it has341

been shown to yield accurate approximations in these probabilistic systems [31, 33, 36].342

Another closure can be obtained by applying Bayes’ Theorem and assuming statistical independence343

across the triple given the state of the central node, in this case node j. By applying Bayes’ Theorem we344

have345

P (At
{i}B

t
{j}C

t
{k}) = P (At

{i}|B
t
{j}C

t
{k})P (Bt

{j}C
t
{k}),

which, when we assume statistical independence of nodes i and k given j, simplifies to346

P (At
{i}B

t
{j}C

t
{k}) ≈ P (At

{i}|B
t
{j})P (Bt

{j}C
t
{k}) =

P (At
{i}B

t
{j})P (Bt

{j}C
t
{k})

P (Bt
{j})

. (17)

Typically this closure is applied to nodes on a graph where nodes i and j are connected and nodes j and347

k are connected but where there is no connection between nodes i and k, which we call an ‘open triple’.348
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However, it could be applied to any triplet of nodes. This closure method is thought to be most accurate on349

trees [18, 31, 34], and has been shown to be exact for such graphs under the SIR epidemic model [19, 34, 35].350

We can adopt either closure to remove triples and close the system. For example, if we are using the351

Kirkwood closure to approximate all triples in Equation (15) we obtain the system of equations352

dP̄ (At
{i})

dt
=

N∑
j=1

GijP̄ (Bt
{i}A

t
{j})χ(Ωt

j→i|Bt
{i}A

t
{j})−

N∑
j=1

GijP̄ (At
{i}B

t
{j})χ(Ωt

j→i|At
{i}B

t
{j}).

dP̄ (Bt
{i}A

t
{j})

dt
=

N∑
k=1

Gjk

P̄ (Bt
{i}B

t
{j})P̄ (Bt

{j}A
t
{k})P̄ (Bt

{i}A
t
{k})

P̄ (Bt
{i})P̄ (Bt

{j})P̄ (At
{k})

χ(Ωt
k→j |Bt

{j}A
t
{k})

−
N∑

k=1

Gjk

P̄ (Bt
{i}A

t
{j})P̄ (At

{j}B
t
{k})P̄ (Bt

{i}B
t
{k})

P̄ (Bt
{i})P̄ (At

{j})P̄ (Bt
{k})

χ(Ωt
k→j |At

{j}B
t
{k})

+

N∑
k=1

Gik

P̄ (Bt
{k}A

t
{i})P̄ (At

{i}A
t
{j})P̄ (Bt

{k}A
t
{j})

P̄ (Bt
{k})P̄ (At

{i})P̄ (At
{j})

χ(Ωt
k→i|Bt

{k}A
t
{i})

−
N∑

k=1

Gik

P̄ (At
{k}B

t
{i})P̄ (Bt

{i}A
t
{j})P̄ (At

{k}A
t
{j})

P̄ (At
{k})P̄ (Bt

{i})P̄ (At
{j})

χ(Ωt
k→i|At

{k}B
t
{i}),

where P̄ represents the approximation to the probability distribution P . However, note that using this353

closure for all triples will eventually require equations for every pair of nodes in the system, whether they354

are connected or not.355

It is also useful to use a combination of the two methods whereby the Kirkwood closure (16) is used for356

closed triples, and (17) is used for open triples [13, 33]. In this work we shall use this combined approach357

to obtain a closed system. However, we find that unlike in epidemiology, this standard approach does not358

produce good results. We therefore also try using just the Kirkwood closure because this permits explicit359

correlations between nodes which are not linked, although as indicated above, this substantially increases360

computational complexity because the system of equations will scale with N2 rather than the number of361

connected individuals in the graph.362

With the contact conditioning model we define two different methods to approximate the evolutionary363

dynamics.364

• Method 3 (Open and closed triples) Solve Equation (14) together with equations for pairs by using365

two different closures for different types of triples. First consider a triple P (At
{i}B

t
{j}Z

t
{k}), Z ∈ {A,B},366

where there is no link between nodes i and k. We call this an open triple, and can approximate it as367

P (At
{i}B

t
{j}Z

t
{k}) ≈

P (At
{i}B

t
{j})P (Bt

{j}Z
t
{k})

P (Bt
{j})

.

If there exists a link between nodes i and k we call this a closed triple, and approximate this using the368

Kirkwood closure,369

P (At
{i}B

t
{j}Z

t
{k}) ≈

P (At
{i}B

t
{j})P (Bt

{j}Z
t
{k})P (At

{i}Z
t
{k})

P (At
{i})P (Bt

{j})P (Zt
{k})

.

Using this method it is only necessary to use pairs which have a link between them in the graph, and370

so it scales with Nd, where d is the average degree of the graph.371

• Method 4 (Kirkwood closure only) Solve Equation (14) together with equations for pairs by using372

the Kirkwood closure for all triples. That is, we approximate any triple P (At
{i}B

t
{j}Z

t
{k}), Z ∈ {A,B}373

as374

P (At
{i}B

t
{j}Z

t
{k}) ≈

P (At
{i}B

t
{j})P (Bt

{j}Z
t
{k})P (At

{i}Z
t
{k})

P (At
{i})P (Bt

{j})P (Zt
{k})

.

13



0 10 20 30 40 50 60 70 80

Time

0

0.2

0.4

0.6

0.8

1
P

ro
ba

bi
lit

y 
of

 b
ei

ng
 a

 m
ut

an
t

(a) Initial mutant on leaf node

0 10 20 30 40 50 60 70 80

Time

(b) Initial mutant on centre node

Figure 1: Comparison of the marginal probabilities for each node on the graph being a mutant A plotted against
time as given by Method 1 (solid lines) versus stochastic simulation of the discrete-time system (circles), when applied
to the invasion process on a 4-node star graph. We consider (a) dynamics initiated with a single A individual on a leaf
node and (b) dynamics initiated with a single A individual on the central node. Each line represents the marginal
probability of a certain node in the graph being occupied by an A individual, the corresponding colours between
solid lines and circles represent the same node on the graph. The stochastic process is simulated 10,000 times from
the same initial condition until fixation of either the mutant or resident strategy. The probabilities represent, for a
given node at a given time, the proportion of simulations for which that node is a mutant. Method 1 is numerically
integrated to approximate the probability of each node being a mutant at a given time. This is the constant fitness
case where A individuals have fitness 1.2 and B individuals have fitness 1.

This method requires the use of every pair of nodes in the system, not just those which are directly375

connected, and so scales with N2. (see supplementary code for the contant conditioning model solver)376

4. Results377

4.1. A comparison of the different methods: fixation probabilities for constant fitness378

Here we investigate the fixation probability of a single initial A individual placed in a given node on379

the graph under the dynamics of the invasion process. Figure 1 compares Method 1 (unconditioned fitness380

model) under the invasion process against stochastic simulation on a four-node star graph. On such small381

graphs, Method 1 appears to provide a reasonable approximation to the expected dynamics and to the382

fixation probability. However, for such small populations exact solutions are easy to obtain, and hence we383

want to test larger population sizes. When the population size is increased, this method fails to accurately384

predict the fixation probability, appearing to tend towards zero with increasing population size (for example,385

see Table 1, where it can be seen that increasing the size from 20 to 35 to 50 moves the solution closer to386

zero on random graphs). To account for this, we use Method 2 (scaled unconditioned fitness model).387

Method 2 represents a scaling of the approximation from Method 1 where the scaling is derived ana-388

lytically from the fixation probability for a complete graph. Consequently, it makes sense to only consider389

the approximation of the fixation probability rather than the whole time series. Predictions of the fixation390

probability of a single A individual when placed on various graphs using the different approximation methods391

are shown in Tables 1 and 2. We first observe that the accuracy of the method does not significantly differ392

for different population sizes, so this overcomes the issue with Method 1. For both the Erdős-Réyni [7]393

and scale-free random graphs, we start the process in three different initial conditions; a high-degree initial394

node, a low-degree initial node and an average degree initial node. This is because under the dynamics of395

the invasion process, a low degree node is known to act as an amplifier of selection and a high degree node396

is known to act as a suppressor [2, 32], and so we potentially expect different performance of the methods397

when initiated from nodes of different degree. In the k-regular random graph, since all nodes have equal398

degree, we only consider results for one initial node. In addition to the random graphs (Table 2), we also399

investigate a star graph, a square lattice and Zachary’s karate club [41], which is an example of a real-world400

network consisting of 34 individuals and average degree of 4.6. On these graphs we initiate the dynamics401
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Table 1: The fixation probability starting from a single mutant A individual placed on a specific node on single
realisations of random graphs. To evaluate the fixation probability using the approximate methods, we solved them
until a steady state was reached and calculated the average probability of a node being a mutant (the methods do
not always give exactly the same value for each node). We compare this to the fixation probability as calculated by
the proportion of 10,000 stochastic simulations in which the type A individuals fixated. Constant fitness is assumed,
where A individuals have fitness 1.2 and B individuals have fitness 1. All graphs were generated to have an average
degree of 5.

Graph Fixation probability
Method 1 Method 2 Method 3 Method 4 Simulation

20 node Erdős-Réyni - initial degree 10 0.0193 0.0604 1.0000 0.0654 0.0784
20 node Erdős-Réyni - initial degree 2 0.1055 0.3301 1.0000 0.2874 0.3098
20 node Erdős-Réyni - initial degree 5 0.0424 0.1326 1.0000 0.1343 0.1575
20 node scale-free - initial degree 10 0.0190 0.0594 1.0000 0.0681 0.0783
20 node scale-free - initial degree 2 0.0945 0.2956 1.0000 0.3004 0.3153
20 node scale-free - initial degree 5 0.0475 0.1486 1.0000 0.1490 0.1606
20 node k-regular 0.0547 0.1711 1.0000 0.1516 0.1722
35 node Erdős-Réyni - initial degree 10 0.0126 0.0671 1.0000 0.0782 0.0940
35 node Erdős-Réyni - initial degree 2 0.0628 0.3346 1.0000 0.3255 0.3191
35 node Erdős-Réyni - initial degree 5 0.0315 0.1679 1.0000 0.1572 0.1730
35 node scale-free - initial degree 10 0.0089 0.0474 1.0000 0.0844 0.0724
35 node scale-free - initial degree 2 0.0444 0.2366 1.0000 0.4743 0.2929
35 node scale-free - initial degree 5 0.0223 0.1188 1.0000 0.1950 0.1546
35 node k-regular 0.0313 0.1668 1.0000 0.1631 0.1750
50 node Erdős-Réyni - initial degree 10 0.0083 0.0630 1.0000 0.0787 0.0820
50 node Erdős-Réyni - initial degree 2 0.0332 0.2521 1.0000 0.4175 0.3060
50 node Erdős-Réyni - initial degree 5 0.0272 0.2065 1.0000 0.2275 0.2120
50 node scale-free - initial degree 10 0.0056 0.0425 1.0000 0.0872 0.0660
50 node scale-free - initial degree 2 0.0307 0.2331 1.0000 0.3912 0.2840
50 node scale-free - initial degree 5 0.0154 0.1169 1.0000 0.1868 0.1530
50 node k-regular 0.0219 0.1667 1.0000 0.1533 0.1640

from a high degree and low degree node. We observe that Method 2 performs best on the k-regular random402

graph and that generally it performs very well on any graph that does not strongly amplify or suppress the403

average fixation probability compared to the Moran probability, such as the Erdős-Réyni random graph and404

the square lattice. However on graphs which amplify (or suppress) average fixation probability, such as the405

scale-free random graph, the approximation becomes less accurate. On the star graph, which significantly406

amplifies the fixation probability, the approximation is very far from the true value. This is unsurprising407

because Method 2 is constructed to give the exact fixation probability on complete graphs. For Zachary’s408

karate club, Method 2 provides a reasonable approximation, but does not capture the strong amplifying409

effect of the low degree node.410

In order to improve upon the accuracy of Method 2 we developed the contact conditioning model to411

retain more information from the system. The contact conditioning model yields a hierarchy which offers no412

useful reduction in computational complexity, compared to the master equation (4). Therefore we developed413

Method 3 (open and closed triples approximation), analogous to closures used in epidemiology. However,414

through numerical evaluation we found that this only yields good approximations for simple graphs, such as415

line graphs and complete graphs for which we have exact analytic results in any case. On other graphs, the416

fixation probability approximation is equal to 1 (Tables 1 and 2) for an advantageous mutant of type A, and417

so this method is not particularly informative.418

While the specific reason for this convergence to 1 (or 0 if the mutant is disadvantageous) is unclear, it419

seems likely that it is associated with graph-wide correlations caused by having two absorbing states. To420

address this we developed Method 4 (Kirkwood closure only). Through testing multiple graphs we observe421

(Tables 1 and 2) that the best results are obtained on Erdős-Réyni and regular random graphs, with some422

accuracy lost on scale-free random graphs. We observe that on the 20 node star graph, inaccuracies result423
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Table 2: The fixation probability starting from a single mutant A individual placed on a specific node on the example
graphs. To evaluate the fixation probability using the approximate methods, we solved them until a steady state was
reached and calculated the average probability of a node being a mutant (the methods do not always give exactly
the same value for each node). We compare this to the fixation probability as calculated by the proportion of 10,000
stochastic simulations in which the type A individuals fixated. Constant fitness is assumed, where A individuals have
fitness 1.2 and B individuals have fitness 1.

Graph Fixation probability
Method 1 Method 2 Method 3 Method 4 Simulation

20 node star - initial degree 1 0.0574 0.1796 1.0000 0.3801 0.2895
20 node star - initial degree 19 0.0030 0.0094 1.0000 0.0217 0.0184
25 node square lattice - initial degree 2 0.0662 0.2546 1.0000 0.1532 0.2388
25 node square lattice - initial degree 4 0.0332 0.1277 1.0000 0.0780 0.1444
34 node Zachary’s karate club - initial degree 2 0.0482 0.2498 1.0000 0.4285 0.3160
34 node Zachary’s karate club - initial degree 16 0.0061 0.0314 1.0000 0.0461 0.0450
36 node star - initial degree 1 0.0322 0.1717 1.0000 1.0000 0.2971
36 node star - initial degree 35 0.0009 0.0051 1.0000 0.0209 0.0090
36 node square lattice - initial degree 2 0.0483 0.2646 1.0000 0.1363 0.2462
36 node square lattice - initial degree 4 0.0242 0.1326 1.0000 0.0689 0.1385
49 node star - initial degree 1 0.0224 0.1697 1.0000 1.0000 0.3070
49 node star - initial degree 48 0.0005 0.0035 1.0000 0.0260 0.0059
49 node square lattice - initial degree 2 0.0367 0.2734 1.0000 0.1241 0.2494
49 node square lattice - initial degree 4 0.0184 0.1369 1.0000 0.0609 0.1477

in a significantly amplified approximation when initiated on the low degree leaf nodes, and for the 35 and424

50 node star graphs the approximations initiated on the leaf node are close to 1. This is potentially due425

to the time to convergence on large stars being very long, which allows these inaccuracies to compound so426

that the system converges to this uninformative solution. This failure does not occur on these stars if we427

reduce the fitness advantage, suggesting that as the size of the star becomes very large the method will only428

work under weak selection. On random graphs, which do not significantly amplify fixation, this issue is also429

observed, but only when the fitness advantage of one type is sufficiently high. This issue starts when the430

fitness advantage is at about 50%, below which the solution converges to intermediate values on all random431

graphs tested. In addition to testing the star graph as an example of an extreme structure, we also tested432

a square lattice of various sizes, on which we find that Method 4 significantly underestimates the fixation433

probability. The square lattice is considered as an extreme scenario for this method because it contains434

many short cycles of order four, for which the correlations are not explicitly captured by the Kirkwood435

closure, which describes triples. Presenting the star graph and square lattice therefore illustrate the cases436

where this method is expected to perform least well. Testing Zachary’s karate club [41] illustrates how this437

method might perform on a real world network. On this graph we find that Method 4 provides a reasonable438

approximation to the fixation probabilities (Table 2).439

We also observed, as shown in Tables 1 and 2, that Method 4 performs most accurately when initiated on440

a node with average to high degree. In addition to approximating the fixation probability, Method 4 can be441

used to approximate the dynamics across the whole time series, and in particular provides a very accurate442

approximation to the initial dynamics for all graphs tested (see Figure 2 for results on two 20 node graphs443

as an illustration). This accuracy holds even for the large star graphs when initiated on the leaf node, for444

which the final approximation was close to 1.445

4.2. The Hawk-Dove game with the contact conditioning model446

So far, we have considered the constant fitness case. Here we briefly consider the effectiveness of Method447

4 when applied to the Hawk-Dove game under the dynamics of the invasion process. Method 2 relies on448

finding a suitable scaling factor, whilst Methods 1 and 3 were both observed in Section 4.1 to yield non449

informative results on the type of graphs we test here and so we do not investigate these methods in this450

context.451

The Hawk-Dove game [24, 23] represents a simple model of how animals compete over food, territory and452

other resources. Animals interact over a resource with either an aggressive or non-aggressive strategy, which453
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Figure 2: Comparison of the early dynamics of the marginal probabilities for each node on the graph being a
mutant A plotted against time as given by Method 4 (solid lines) versus stochastic simulation (dashed lines), when
applied to the invasion process on (a) an Erdős-Réyni random graph with 20 nodes and average degree of 4 and (b)
a scale-free graphwith 20 nodes and average degree 4, both initiated with a single A individual in a chosen node.
Each line represents the marginal probability of a certain node in the graph being occupied by an A individual,
the corresponding colours between the solid lines and dashed lines represent the same node on the graphs. The
discrete-time stochastic process was simulated 10,000 times from the same initial condition, from which we obtained
the probability for each node being a mutant at a given time as the proportion of simulations for which that node
is a mutant. Method 4 was numerically integrated to approximate the probability of each node being a mutant at
a given time. We use a dashed line with interpolation between integer time points for the discrete-time system to
enable easier comparison of the dynamics. The game considered is the constant fitness case where the A individuals
have fitness 1.2 and the B individuals have fitness 1.

we call the Hawk and Dove strategies, respectively. We let the resource yield a payoff V which both players454

try to obtain. When two Hawks interact, they fight over the resource with one taking the payoff V , and the455

other accruing a cost C from the fight, and therefore the average payoff received by a Hawk interacting with456

a Hawk is (V − C)/2. When a Hawk meets a Dove, the Dove retreats without a fight receiving a payoff 0,457

allowing the Hawk to take the whole resource, receiving payoff V . If two Doves meet, they either share the458

resource, or each takes the whole reward without a fight with probability 1/2, so that the average payoff459

received by a Dove from this interaction is V/2. Therefore, in this game the payoff matrix is given by460

H D( )
H (V − C)/2 V
D 0 V/2

.

Figure 3 illustrates results from this game on a scale-free graph, an Erdős-Réyni random graph, a k-regular461

random graph and a square lattice. We consider two cases; firstly where the fight cost is low using parameters462

fback = 2, w = 1, V = 1 and C = 1.5, and secondly where the fight cost is high using parameters fback = 2,463

w = 1, V = 1 and C = 4. In each case we compare the results of Method 4 to stochastic simulation, initiated464

with a population consisting of half Hawks and half Doves to minimise the chance of early extinction events.465

We observe that when the cost is low the approximation is reasonable, with all 3 random graphs providing a466

good approximation, and some accuracy lost on the square lattice. However, as we increase the cost, C, we467

observe that the approximation does not perform well. This is because the contact conditioning assumption468

seems to amplify the strength of the Hawk strategy, with the rate at which an individual becomes a Hawk469

under this assumption being greater than it will be in the exact case.470

5. Discussion471

Evolutionary graph theory [20] was introduced as a way of adding spatial structure to the stochastic472

evolutionary dynamics considered by Moran [25]. Analytic results on these stochastic dynamics focused473
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Figure 3: Comparison of the expected number of individuals playing the Hawk strategy in a Hawk-Dove game
plotted against time as given by Method 4 versus stochastic simulation, when played on (a) a scale-free graph (b) an
Erdős-Réyni graph (c) a k-regular random graph and (d) a 7 by 7 square lattice. Except for the square lattice, each
graph has 50 nodes and an average degree of approximately 4. The solid lines represent the solution of Method 4 and
the circles represent stochastic simulations of the discrete-time system, evaluated every 1000 time steps, in the case
where C = 1.5. The dashed lines represent the solution of Method 4 and the crosses represent stochastic simulations
of the discrete-time system, evaluated every 1000 time steps, in the case where C = 4. To generate the stochastic
simulation results the discrete-time stochastic process was simulated 10,000 times from the same well mixed initial
condition until fixation was reached. By taking the average number of Hawks at each time step we determined the
expected number of Hawks at a given time. Method 4 is numerically integrated to give the probability of each node
being a Hawk at a given time, from which we obtained the expected number of Hawks by summing over all nodes.
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on idealised cases of simple graphs [2, 5]. In order to study arbitrary graphs, methods usually follow474

certain restrictions, such as focusing on the evolutionary process under weak selection or infinitely large475

populations [1, 28, 43]. Alternatively, individual-based stochastic simulations give very accurate results but476

are limited by computational time [3, 21].477

The focus of this work has been the attempt to develop a general method that can approximate the478

stochastic dynamics on a wide range of graphs by adapting methods from statistical physics and epidemiology.479

In doing this, we have provided a derivation of existing (homogenised) pair-approximation models from the480

master equation [8, 10, 26, 30, 37] (Section 3.1). Additionally, we also derived an individual-level model481

which has the neutral drift model [32] as a special case (Section 3.2).482

We start with a representation of the stochastic evolutionary process using a master equation [11],483

from which we develop exact equations describing individual node probabilities. We then apply ideas for484

approximating the master equation based around developing hierarchies of moment equations. Such methods485

were originally developed in physics [4, 16] and later used in epidemiology and ecology [10, 13, 29, 34, 35].486

The key idea behind these techniques is to write deterministic differential equations to describe how the487

probabilities of the states of individuals and pairs change over time.488

We find that a major difference between evolutionary graph theory and other areas in which these489

methods have been applied is that here, event probabilities depend on the states of all individuals in the490

population. As a result, we do not obtain a precise BBGKY-like hierarchy, which relies on neighbouring491

particle-particle interactions. Another difference is that in evolutionary dynamics, we have two absorbing492

states, which potentially leads to system-wide correlations that cannot be captured on a local level. It is493

worth noting that some alternative nearest-neighbour interaction evolutionary models, which may yield such494

a hierarchy directly, have also been considered [39]; however, in this paper we have restricted our attention495

to the classic evolutionary graph theory dynamics.496

In spite of these differences, some progress could be made towards approximating evolutionary dynamics.497

The first step was to write down equations for the rate of change of the state probabilities for individual498

nodes (Theorem 2.1). This led to equations which required conditioning against the probability of the state499

of the entire system, and therefore required the development of methods to simplify this. Motivated by500

an objective of deriving homogenised pair-approximation models used in the literature, our first approach501

was to modify the replacement rate by removing the normalisation by the total fitness (Section 3.1). This502

has the effect of altering the speed at which events occur but does not alter the final fixation probability.503

The resulting system of equations describes individual and pair probabilities in terms of the probability of504

their entire neighbourhoods. This could provide a basis to accurately approximate the fixation probability505

by finding appropriate moment closures to express the neighbourhoods as functions of individual and pair506

probabilities. However, this is difficult to implement and the number of equations increases exponentially507

with the maximum degree of the graph, making it infeasible in general without further approximation. By508

making further assumptions about the graph such that all individuals and pairs of a given type are identical509

and interchangeable, we were able to derive the homogenised pair approximation models [8, 26], which have510

been shown to give interesting results for various evolutionary games.511

To obtain an approximation which is numerically feasible in general, we first ignored any conditioning,512

similar to a model in [37] which uses this assumption to construct a population level approximation. The513

resulting model (Equation (11)) was found to work well for small graphs and contains the exact neutral514

drift model [32] as a special case. However, as population size increases, the predictions for the fixation515

probability of a single mutant individual were observed to tend to zero. By solving this system for the516

fixation probability on a complete graph, we obtained a scaling factor which enabled this model to give a517

reasonable prediction of fixation probability from a given initial condition with a single mutant individual518

on any graph. Due to the construction of this method, it will perform best on graphs which yield average519

fixation probability close to the Moran probability.520

To generate a more accurate model and one which does not require an artificial scaling factor, we in-521

vestigated models with some level of conditioning (Section 3.3). Conditioning against a single node results522

in the same level of complexity as conditioning against pairs of nodes and so we elected to produce results523

for the latter. In this case, we conditioned against the pair of nodes directly involved in the replacement524

event. However, in order to use this model on large graphs, we require the use of moment closure approxi-525

mations. We found that the standard method used in other areas with different closures for open and closed526

triples [13, 33] was not effective here because while it provides very good results on simple structures, on527
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most graphs it predicts fixation probabilities of either zero or one. It seems likely that this is caused by528

neglecting important graph-wide correlations across open triples associated with the two absorbing states of529

the system.530

By using the Kirkwood closure method for all triples, including open ones, we obtained a method which531

provides informative predictions on the majority of graphs tested. We investigated square lattices and star-532

type graphs, as these are two extreme population structures which we use as worst case scenarios. The lattice533

is extreme as moment closure methods do not perform well on such graphs. The star is extreme because534

this type of graph significantly amplifies fixation probability, which seems to amplify the accumulated error535

in the approximation methods. For all three types of random graph considered, and Zachary’s karate club,536

this method provides a reasonable approximation to the fixation probability. When the degree of the initial537

mutant node is not low the approximation can be very accurate. However, if we initiate on a low degree538

node, the method performs less well, potentially due to such nodes amplifying the fixation probability in the539

invasion process, again leading to inaccuracies in the solution being amplified. Despite potential inaccuracies540

in the fixation probability approximation, we observe that this method is particularly accurate for the early-541

time behaviour of these systems for any graph, and therefore can give interesting insights into this behaviour.542

The method is computationally feasible for reasonably large N , however, the computational complexity scales543

with N2 rather than with N which is more typical for epidemic models. Nevertheless, this still represents a544

significant reduction over the master equation which scales with 2N .545

The novelty of this work is the adaption of well-established techniques from other fields to the study of546

evolutionary dynamics at the level of individual nodes. The contribution is two-fold. Firstly we have obtained547

insight into existing models by deriving them from the master equation. Secondly, the advantage of looking548

at node-level quantities rather than a homogenised model is that we gain the ability to compare dynamics549

from different initial conditions on the same graph, which is not present in many other approximation550

methods. Furthermore, the initial dynamics of Method 4 are very accurate (Figure 2), allowing us to see551

how the probability of each node being a mutant flows through the population. Although we chose to work552

in continuous time here and examples study the invasion process, similar methods could be followed directly553

in discrete-time and the methods are applicable to any Markovian update rule.554
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Appendices647

Appendix A Proof of Theorem 2.1648

Proof. By total probability rules we have that649

dP (At
{i})

dt
=

d

[ ∑
XV \{i}

P (At
{i}X

t
V \{i})

]
dt

=
∑

XV \{i}

dP (At
{i}X

t
V \{i})

dt
, (A.1)
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where XV \{i} is the state of the nodes in the system not including i.650

Consider a set state XV \{i} of the remaining nodes. The rate of change in the full system state probability651

P (At
{i}X

t
V \{i}) is given by652

dP (At
{i}X

t
V \{i})

dt
=
∑

YV \{i}

P (At
{i}Y

t
V \{i})χ(At

{i}Y
t
V \{i} → At

{i}X
t
V \{i})

+ P (Bt
{i}X

t
V \{i})χ(Bt

{i}X
t
V \{i} → At

{i}X
t
V \{i})

−
∑

YV \{i}

P (At
{i}X

t
V \{i})χ(At

{i}X
t
V \{i} → At

{i}Y
t
V \{i})

− P (At
{i}X

t
V \{i})χ(At

{i}X
t
V \{i} → Bt

{i}X
t
V \{i}), (A.2)

where χ(At
{i}X

t
V \{i} → Bt

{i}X
t
V \{i}) is the rate at which the system moves from state At

{i}X
t
V \{i} to state653

Bt
{i}X

t
V \{i}.654

Consider the terms which involve changing the state of the individual in node i in Equation (A.2), by655

expanding the rate into the sum of separate event rates we obtain656

P (Bt
{i}X

t
V \{i})χ(Bt

{i}X
t
V \{i} → At

{i}X
t
V \{i}) = P (Bt

{i}X
t
V \{i})

N∑
j=1

Gijχ(Ωt
j→i|Bt

{i}X
t
V \{i})1(At

{j}∈X
t
V \{i})

,

and657

P (At
{i}X

t
V \{i})χ(At

{i}X
t
V \{i} → Bt

{i}X
t
V \{i}) = P (At

{i}X
t
V \{i})

N∑
j=1

Gijχ(Ωt
j→i|At

{i}X
t
V \{i})1(Bt

{j}∈X
t
V \{i})

,

where 1(Bt
{j}∈X

t
V \{i})

is an indicator function on the event Bt
{j} being part the event Xt

V \{i}. That is, the658

state of node j in the state X is type B. The χ(Ωt
j→i|At

{i}X
t
V \{i}) term is the rate at which the individual659

in node j replaces the individual in node i, given that the system is in state At
{i}X

t
V \{i}, as defined in660

Definition 2.1. Rearranging these and substituting into Equation (A.2) gives661

dP (At
{i}X

t
V \{i})

dt
=

N∑
j=1

GijP (Bt
{i}X

t
V \{i})χ(Ωt

j→i|Bt
{i}X

t
V \{i})1(At

{j}∈X
t
V \{i})

−
N∑
j=1

GijP (At
{i}X

t
V \{i})χ(Ωt

j→i|At
{i}X

t
V \{i})1(Bt

{j}∈X
t
V \{i})

+
∑

YV \{i}

P (At
{i}Y

t
V \{i})χ(At

{i}Y
t
V \{i} → At

{i}X
t
V \{i})

−
∑

YV \{i}

P (At
{i}X

t
V \{i})χ(At

{i}X
t
V \{i} → At

{i}Y
t
V \{i})

By substituting this into Equation (A.1) we obtain662
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dP (At
{i})

dt
=
∑

XV \{i}

N∑
j=1

GijP (Bt
{i}X

t
V \{i})χ(Ωt

j→i|Bt
{i}X

t
V \{i})1(At

{j}∈X
t
V \{i})

−
∑

XV \{i}

N∑
j=1

GijP (At
{i}X

t
V \{i})χ(Ωt

j→i|At
{i}X

t
V \{i})1(Bt

{j}∈X
t
V \{i})

+
∑

XV \{i}

∑
YV \{i}

P (At
{i}Y

t
V \{i})χ(At

{i}Y
t
V \{i} → At

{i}X
t
V \{i})

−
∑

XV \{i}

∑
YV \{i}

P (At
{i}X

t
V \{i})χ(At

{i}X
t
V \{i} → At

{i}Y
t
V \{i}).

Clearly the last two sums cancel, so we can simplify this to663

dP (At
{i})

dt
=

N∑
j=1

∑
XV \{i,j}

GijP (Bt
{i}A

t
{j}X

t
V \{i,j})χ(Ωt

j→i|Bt
{i}A

t
{j}X

t
V \{i,j})

−
N∑
j=1

∑
XV \{i,j}

GijP (At
{i}B

t
{j}X

t
V \{i,j})χ(Ωt

j→i|At
{i}B

t
{j}X

t
V \{i,j}),

as required.664

Appendix B Derivation of the scaling factor (Equation 12)665

Proof. Consider a system with rate of change given by666

dP̄ (At
{i})

dt
=

N∑
j=1

GijP̄ (At
{j})χ(Ωt

j→i)−
N∑
j=1

GijP̄ (At
{i})χ(Ωt

j→i).

Since we are interested in the complete graph, we have that Gij = 1 for j 6= i, and Gi,i = 0. Let Ac denote667

the average probability that a node is of type A on the complete graph at time t. That is668

Ac(t) =
1

N

N∑
j=1

P̄ (At
{j}) =

S

N
.

Since we are considering constant fitness we have669

χ(Ωt
j→i) =

P̄ (At
{j})(r − 1) + 1

N∑
k=1

P̄ (At
{k})(r − 1) + 1

=
P̄ (At

{j})(r − 1) + 1

N + (r − 1)S
,

which gives us670

dS

dt
=

N∑
i=1

dP̄ (At
{i})

dt
=

N∑
i,j=1

(P̄ (At
{j})− P̄ (At

{i}))(P̄ (At
{j})(r − 1) + 1)

N + (r − 1)S
.

Writing G =
N∑

i,j=1

(P̄ (At
{j})− P̄ (At

{i}))P̄ (At
{j}), and H =

N∑
i,j=1

(P̄ (At
{j})− P̄ (At

{i})) we have671

dS

dt
=

(r − 1)G+H

N + (r − 1)S
.
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Clearly H = 0, so we obtain672

dS

dt
=

(r − 1)G

N + (r − 1)S
.

Note that
N∑

i,j=1

(P̄ (At
{j})− P̄ (At

{i}))
2 =

N∑
i,j=1

P̄ (At
{j})

2 + P̄ (At
{i})

2 − 2P̄ (At
{j})P̄ (At

{i}) = 2G, so that673

dG

dt
=

1

2

d

dt

( N∑
i,j=1

(P̄ (At
{j})− P̄ (At

{i}))
2
)

=

N∑
i,j=1

(P̄ (At
{j})− P̄ (At

{i}))
d(P̄ (At

{j})− P̄ (At
{i}))

dt
.

Considering the last term on the right hand side we have674

d(P̄ (At
{i})− P̄ (At

{j}))

dt
=

1

N + (r − 1)S

N∑
k=1

(
P̄ (At

{k})(P̄ (Ak)t − P̄ (At
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{k})(P̄ (At
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= −(P̄ (At
{i})− P̄ (At

{j})).

Thus,675

dG

dt
=

N∑
i,j=1

(P̄ (At
{j})− P̄ (At

{i}))
2 = −2G =⇒ G = Ae−2t = (N −m)me−2t,

since G(0) = (N −m)m. Therefore we have676
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⇒ NS +
r − 1

2
S2 = −1

2
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At t = 0 we have S =
∑
P̄ (At

{j}) = m, which gives677

C = Nm+
(r − 1

2

)
Nm = Nm

(r + 1

2

)
,

and so we can solve to obtain678

S =

(
−N ±

√
N2 + 4 r−1

2

(
Nm r+1

2 − (N −m)m r−1
2 e−2t

))
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.

Only the positive root makes sense, so we obtain679
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N
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Thus, we have lim
t→∞

Ac(t) = 1
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√
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N

)
.680
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