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Abstract

The classical models of evolution have been developed to incorporate structured
populations using evolutionary graph theory and, more recently, a new frame-
work has been developed to allow for more flexible population structures which
potentially change through time and can accommodate multiplayer games with
variable group sizes. In this paper we extend this work in three key ways.
Firstly by developing a complete set of evolutionary dynamics so that the range
of dynamic processes used in classical evolutionary graph theory can be applied.
Secondly, by building upon previous models to allow for a general subpopulation
structure, where all subpopulation members have a common movement distri-
bution. Subpopulations can have varying levels of stability, represented by the
proportion of interactions occurring between subpopulation members; in our
representation of the population all subpopulation members are represented by
a single vertex. In conjunction with this we extend the important concept of
temperature (the temperature of a vertex is the sum of all the weights coming
into that vertex; generally, the higher the temperature, the higher the rate of
turnover of individuals at a vertex). Finally, we have used these new develop-
ments to consider the evolution of cooperation in a class of populations which
possess this subpopulation structure using a multiplayer public goods game. We
show that cooperation can evolve providing that subpopulations are sufficiently
stable, with the smaller the subpopulations the easier it is for cooperation to
evolve. We introduce a new concept of temperature, namely “subgroup temper-
ature”, which can be used to explain our results.

1. Introduction1

Evolutionary game theory has proved to be a very successful way of mod-2

elling the evolution of, and behaviour within, populations. The classical models3
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Preprint submitted to Elsevier June 16, 2017



mainly focused on well-mixed populations playing two player games [31, 30], or4

alternatively playing games against the entire population [30]. Simple models5

such as the Hawk-Dove game [29] and the sex ratio game [20] have been used6

to explain important biological phenomena.7

These models were developed to consider finite populations explicitly [34,8

Chapters 6-9] (although see [32, 33] for important earlier non-game theoretic9

work) and structured populations using the now widespread methodology of10

evolutionary graph theory originated in [26] (see also [3, 9, 52, 27], and [1, 44]11

for reviews). Such population structures can have a profound effect on the result12

of the evolutionary process even when individuals have a fixed fitness [26, 28, 40].13

Further, even for a given structure, the rules of the evolutionary dynamics have14

a significant effect on the evolution of the population.15

Previous work has investigated a number of important questions, the most16

widely considered being how cooperation can evolve. The evolution of cooper-17

ation, where individuals make sacrifices to help others, can seem paradoxical18

within the context of natural selection, especially amongst unrelated individu-19

als. There are a number of ways that mathematical modelling has demonstrated20

that cooperation can occur [35]; one key way is through the presence of popula-21

tion structure, which can mean that cooperative individuals are more likely to22

interact with other cooperators, which makes them resistant to exploitation by23

defectors [36, 42]. In particular, this is true for structures where individuals are24

heterogeneous [43] allowing hubs or clusters of cooperators to form. The dynam-25

ics that one uses are also important; for example [36] showed that death-birth or26

birth-death dynamics with selection on the second event promotes cooperation27

but not when selection happens in the first event.28

One limitation of evolutionary graph theory is that it naturally lends itself29

to pairwise games, whereas real populations can often involve the simultaneous30

interaction of many individuals [45, 15]. Multiplayer games, whilst more com-31

mon in economic modelling [21, 6], have become used in increasing frequency32

within evolutionary games starting with [38, 7] (see also [14, 18]) and it is im-33

portant to incorporate these too into the modelling of structured populations.34

A multiplayer public goods game [4, 5, 19, 54], (and this type of game is central35

to our paper too, see Section 2.2) has been used in evolutionary graph theory36

[25, 51, 24, 41, 56], but this typically involves forming an individual and all of37

its neighbours into a group and allowing them to play a game. Although this is38

convenient, it is not really natural because there is no mechanism for deciding39

how individuals spend their time, and so how they share that time with others,40

either singly or in groups.41

More recently a general framework has been developed [10, 13, 8, 11] which42

considers the interaction of populations in a more flexible way, where groups of43

any size can form, with different propensity potentially depending upon a num-44

ber of factors, including the history of the process. Crucially, the key elements45

of evolutionary graph theory of population structure, game and evolutionary46

dynamics occur for this new framework too; this makes it capable of analysing47

different spatial structures whilst providing the flexibility for different multi-48

player interactions. Prior to the current paper, the actual applications of the49
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Figure 1: The fully independent model from [10]. There are N individuals who are distributed
over M places such that In visits place Pm with probability pnm. Individuals interact with
one another when they meet, for example, I1 and I2 can interact with one another when they
meet in P1.

above framework have been limited. In particular only a single evolutionary50

dynamics (the BDB dynamics from the current paper) has been used, and only51

relatively simple populations, which resembled those in evolutionary graph the-52

ory (the population consisting of individuals each resident at a unique graph53

vertex) have been considered.54

In this paper we further develop the general theory of the framework orig-55

inated in [10]. We first show how to represent subpopulations using a reduced56

graphical representation within our structure, which will then allow us to po-57

tentially consider larger populations with a richer structure than previously. We58

then demonstrate how to apply a standard set of evolutionary dynamics to con-59

sider a range of evolutionary processes. This is vital since, as mentioned above,60

dynamics can have a big effect on the outcome of evolution within other models,61

including evolutionary graph theory, and as we will see, this is certainly also62

true for our work. Finally we use these new tools to consider the evolution of63

cooperation using a multiplayer public goods game [51, 48, 49, 4] and show that64

cooperation can occur when both the structure and evolutionary dynamics act65

together in favour of the cooperators.66

The paper is structured as follows: in Section 2 the model framework is67

described, including how to incorporate subpopulations. In Section 3 a standard68

set of evolutionary dynamics to be used with our model are defined. In Section69

4 we introduce and discuss the important concepts of fixation probability and70

temperature. In Section 5 we study the evolution of cooperation in our model71

with subpopulations. Section 6 is then a general discussion.72

2. A framework for modelling evolution in structured populations73

A framework for modelling the movement of individuals was presented in74

[10]. This is a very general and flexible methodology, the details of which are not75

necessary for the current paper. Below we describe the fully independent version76

of this framework in which individuals move independently of each other and77
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Table of Notation
Notation Definition Description
N ∈ Z+ \ {0} Population size.
M ∈ Z+ \ {0} Number of places.
In Individual n.
Pm Place m.
G ⊂ {1, 2, . . . , N} Group of individuals.
pnm ∈ [0, 1] Probability that In is in Pm.
χ(m,G) ∈ [0, 1] Probability of group G forming in place Pm.
Fn ∈ (0,∞) Fitness of individual In.
Rn,m,G ∈ [0,∞] Payoff to In in G present in Pm.
h ∈ (0,∞) Home fidelity.
d ∈ Z+ \ {0} Number of neighbours.
r, v ∈ (0,∞) Background fitness, reward.
C,D Cooperator, Defector.
RCc,d ∈ [0,∞) Payoff to cooperator in a group (including it-

self) of c cooperators and d defectors.
Rn,G ∈ [0,∞) Payoff to In in group G.
S = {n : In is cooperator } State of the population.
N = {1, 2, . . . , N} State in which all individuals are cooperators.
PSS′ ∈ [0, 1] State transition probability.
ρCS ∈ [0, 1] Probability of fixating in N when initial state

is S.
ρC ∈ [0, 1] Mean fixation probability of a cooperator.
W = (wij) wij ∈ (0,∞) Weighted adjacency matrix that represents an

evolutionary graph.
vn Vertex n of an evolutionary graph.
bi ∈ [0, 1] Probability Ii is selected for birth.
dij ∈ [0, 1] Probability Ii replaces Ij given Ii is selected

for birth.
di ∈ [0, 1] Probability Ii is selected for death.
bij ∈ [0, 1] Probability Ii replaces Ij given Ij is selected

for death.
rij ∈ [0, 1] Probability Ii replaces Ij .
T+
i =

∑
j wij Out temperature of Ii.

T−i =
∑
j wji In temperature of Ij .

Qm ⊂ {1, 2, . . . , N} Subpopulation of individuals.
TQm

=
∑
i∈N\Qm

∑
j∈Qm

wij Strict subpopulation temperature.

Table 1: Notation used in the paper.

independently of the population’s history (any past movements), and a version78

of the fully independent model called the territorial raider model as introduced79

in [10] and further developed in [8]. We then develop a generalization of this80

model, which then forms the basis of much of the work in this paper, although81
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we note that Section 3 in particular is more general. Important terms used in82

the current paper are given in Table 1.83

2.1. The population structure84

We begin by introducing the fully independent model. Consider a population85

made up of N individuals I1, . . . , IN who can move around M places P1, . . . , PM .86

The probability of individual In being at place Pm is denoted by pnm; see Figure87

1 for a visual representation using a bi-partite graph. When individuals move88

around they form groups. Let G denote any group of individuals, then the89

probability χ(m,G) that group G forms in place Pm is given by90

χ(m,G) =
∏
i∈G

pim
∏
j /∈G

(1− pjm). (2.1)91

92

We can show from equation (2.1) that93

1 =
∑
m

∑
G
n∈G

χ(m,G) ∀n. (2.2)94

95

This follows intuitively from the fact that individual In has to be present in some96

place Pm in some group G at any given time. The mean size of an individual’s97

group (see also [13]) is given by98

Ḡ =
∑
m

∑
G

χ(m,G)|G|2∑
m

∑
G χ(m,G)|G|

=
∑
m

∑
G

χ(m,G)|G|2

N
(2.3)99

100

where the simplification of the denominator follows from equation (2.2).101

When a group of individuals is formed they will then interact with one102

another. In particular, individual In will receive a payoff that depends upon103

the group G it is present in and the place Pm occupied by this group. This104

is denoted as Rn,m,G and was referred to in [10] as a direct group interaction105

payoff because individual In only interacts with other individuals with whom106

it is directly present ([10] allowed for a more general class of payoff but this107

is the only type we will consider, and hence will just refer to it as the payoff).108

Individual In’s fitness is then calculated by averaging its payoffs over all possible109

groups and places that these groups can form as follows:110

Fn =
∑
m

∑
G
n∈G

χ(m,G)Rn,m,G . (2.4)111

We now move on to consider the territorial raider model. In the territorial112

raider model, each individual In has its own place Pn with no unoccupied places113

and, therefore, there is a one-to-one correspondence between individuals and114

places. A graph is used to represent the structure of the population where115

each vertex represents an individual and its corresponding home such that two116

connected individuals can raid each other’s home places (see Figure 2). The117
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Figure 2: The territorial raider model of [10, 8]. (a) Population structure represented using a
graph where vertices represent individuals and places. Individual In lives in place Pn and can
visit any neighbouring places. For example, the home place of I1 is place P1 but it can visit
places P2, P3 and P4. (b) An alternative visualization on a bi-partite graph where individuals
and places are clearly separated.

probability of raiding another’s home place is governed by a common movement118

parameter called home fidelity, h, that measures an individuals’ preference for119

their home place. In particular, an individual with d neighbours would stay on120

their home place with probability h/(h + d) or raid any one of its neighbours’121

home places with an equal probability of 1/(h+ d) (see Figure 2).122

I1, I2 I3, I4 I5

(a)

I1 I2 I3 I4 I5

P1 P2 P3

(b)

Figure 3: The generalized territorial raider model. (a) Individuals that are members of sub-
population Qm live in place Pm but can visit neighbouring places. The territory of subpop-
ulation {I1, I2} consists of places P1 and P2, the territory of subpopulation {I3, I4} consists
of places P1, P2 and P3, the territory of subpopulation {I5} consists of P2 and P3. (b) An
alternative visualization as multiplayer interactions on a bi-partite graph where individuals
and places are clearly separated.

We now generalise the territorial raider model to include subpopulations,123

based upon their movement distributions. We will see that individuals within a124

given subpopulation are more likely to interact with each other than with mem-125

bers of other subpopulations, and this will affect the success of their strategies.126

Consider the fully independent model. We define a subpopulation of individ-127

uals as a division of individuals from the main population that is well-mixed [10],128

which simply means that all of these individuals have an identical distribution129

over the places. In particular, for a subpopulation Q we have that pim = pjm130

∀ i, j ∈ Q and m = 1, . . . ,M . This can be visualised in terms of a bipartite131

graph as in Figure 1 where the vertices are now occupied by subpopulations132
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rather than individuals. This subpopulation structure is thus a special case of133

the fully independent model.134

For simplicity we will assume that individuals move as they do in the terri-135

torial raider model; thus our model is a generalization of the territorial raider136

model. A population of N individuals is divided into M non-overlapping sub-137

populations Q1, . . . ,QM where |Qm| ≥ 0 such that N =
∑
m |Qm|. We will138

assume that individuals in subpopulation Qm treat place Pm as their home139

place, so that there is a one-to-one correspondence between subpopulations and140

places. However, because we allow subpopulations to be empty, we can have141

places in which no individuals reside. As before, the movement probabilities of142

the individuals is governed by the home fidelity h. In particular, a subpopula-143

tion Qm that can visit d neighbouring places will stay in home place Pm with144

probability h/(h+d) or move to one of its neighbouring places with probability145

1/(h+d). Note that when there is one individual in each subpopulation, that is146

|Qm| = 1 ∀m, we recover the original territorial raider model. This information147

can be visually represented in two different ways as shown in Figure 3, which148

includes a graph whose vertices represent both subpopulations and places. This149

generalized territorial raider model will be the basis of our detailed investigation150

of the evolution of cooperation in Section 5.151

2.2. A multiplayer public goods game152

A multiplayer Hawk-Dove game [46] and a public goods game were con-153

sidered in [8], though there are other games that can be considered like the154

multiplayer stag hunt game [37].155

In this paper we focus only on the multiplayer public goods game based on156

the game defined by [51], where an individual’s payoff is an average of two player157

public goods games (just a version of the standard prisoner’s dilemma) played158

with each of its group mates. Players can either cooperate (C) or defect (D).159

A cooperator always pays a cost 1 so that the other player receives a reward160

v and a defector pays no cost but only receives a reward when present with a161

cooperator. Note that the cost is set to 1 because scaling all the payoffs by162

some other cost value does not affect the outcome of the game and, therefore,163

the reward v is a multiple of the cost. The payoff matrix is thus given by164

C D
C v − 1 −1
D v 0

. (2.5)165

166

In [51] and most models involving public goods games, individuals are never167

alone, and so what happens in the case they are alone is not considered. How-168

ever, in our case it is possible for an individual to be alone, for example, an169

individual could remain on its home place and not be raided. As in [8], we will170

assume that a lone cooperator still pays a cost but does not receive a reward171

and lone defectors receive nothing. There are other ways that we can allocate172

rewards to lone individuals; for example, in [22] there is a specific strategy, the173

loner strategy, where cooperators choose to be alone and not pay a cost. Our174
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Dynamics

BDB bi =
Fi∑
n Fn

, dij =
wij∑
n win

BDD bi =
1

N
, dij =

wijF
−1
j∑

n winF
−1
n

DBD dj =
F−1j∑
n F
−1
n

, bij =
wij∑
n wnj

DBB dj =
1

N
, bij =

wijFi∑
n wnjFn

LB rij =
wijFi∑
n,k wnkFn

LD rij =
wijF

−1
j∑

n,k wnkF
−1
k

Table 2: Dynamics defined using the replacement weight as in [40]. In each case, B (D) is
appended to the name of the dynamics if selection happens in the birth (death) event.

choice seems a natural generalisation of the prisoners dilemma model [51], where175

individuals pay a cost but do not benefit from their own contributions. We note176

that our version makes cooperation harder to evolve than the alternatives. Thus177

if cooperators thrive in a population using our model, this can be thought of as178

strong support for the evolution of cooperation.179

In the multiplayer public goods game, the payoffs to cooperators and defec-180

tors playing within a group of c cooperators and d defectors (including them-181

selves) is then respectively given by182

RCc,d =

{
r − 1, c = 1

r − 1 + c−1
c+d−1v, c > 1

and RDc,d =

{
r, c = 0

r + c
c+d−1v, c > 0

(2.6)183

184

where r is a background payoff, which is also a multiple of the cost, that every185

individual receives, representing the contribution from activities that are not186

related to the games. Generally, the effect of selection is weaker the larger187

the value of r (for example, see [12], Chapter 2). The payoff is then given by188

Rn,m,G ≡ RCc,d (≡ RDc,d) when In is a cooperator (defector) and |G| = c+d, which189

can then be substituted into Equation 2.4 to find the individual’s fitness. Note190

that here the payoffs do not depend upon the place occupied by the individuals,191

that is, Rn,m,G ≡ Rn,G .192

3. Evolutionary dynamics193

In this section we revisit the standard dynamics of evolutionary graph theory,194

before demonstrating how we can adapt each of them to our framework. For195

the current work there will actually only be two distinct dynamics, but for more196

general cases each will be distinct, and so it is important to consider them all.197

We start by recalling the dynamics from evolutionary graph theory.198

3.1. Evolutionary dynamics in evolutionary graph theory199

An evolutionary graph [26, 40] is a graph represented by a weighted adja-200

cency matrix W = (wij) where wij ∈ [0,∞) is referred to as the replacement201
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weight. Each vertex vn of the evolutionary graph is occupied by one individual202

and if wij > 0 then the individual on vi can place a copy of itself in vj by203

replacing the individual there. It is assumed that the weights are chosen so that204

the evolutionary graph is strongly connected, which means that there is a route205

of finite length between any pair of vertices vi and vj . The weighted adjacency206

matrix W is therefore said to define the replacement structure.207

Assuming that there is only one replacement per update event, there are208

several different ways to calculate the probability of a replacement event rij209

where a copy of the individual on vi replaces the individual on vj . In particular,210

we can broadly classify these in terms of the order in which vi and vj are211

picked. For birth-death dynamics (BD) the birth event happens first where212

the individual on vi is chosen for birth with probability bi. The individual on213

vj is then chosen for death conditional on the individual on vi giving birth214

with probability dij , thus we have the replacement probability rij = bidij . For215

death-birth dynamics (DB) the death event happens first where the individual216

on vj is chosen for death with probability di. The individual on vi is then217

chosen for birth conditional on the death of individual on vj with probability218

bij , thus rij = dibij . For link dynamics (L) both birth and death events happen219

simultaneously and therefore rij cannot be decomposed.220

For each of these dynamics, natural selection can influence the birth (‘B’ ap-221

pended to name) or death (‘D’ appended to name) event. We use the definitions222

of [28] who extensively studied a set of each of these dynamics. In terms of the223

exact formulae of the transition probabilities, we use those of [40] as summarised224

in Table 2. In these definitions, the dynamics are a function of the replacement225

structure W and the fitnesses of the individuals such that the individual on226

vertex vn has fitness Fn.227

3.2. Evolutionary dynamics in our framework228

In [8] a birth-death dynamics was defined to be used with the territorial229

raider model. In this section we shall develop a consistent set of dynamics230

for our framework. In particular, we will show that we can adapt the above231

dynamics widely used in evolutionary graph theory.232

To consider the evolution of the population it is useful to think of the in-233

dividuals in the population in an abstract way. In particular, individuals in234

the population change through time and, therefore, it is better to think of Ii235

as a position that an individual can occupy. These positions are referred to236

as I-vertices in [8] and have a particular relationship to the places, although237

as the population evolves the actual individual, and in particular the type of238

individual, occupying the position may change. We will generally simply refer239

to these I-vertices as “individuals” but make the distinction where necessary.240

This leads to a natural way to create evolutionary dynamics for our frame-241

work; namely, by mapping each individual Ii to vertex vi, we can incorporate242

the replacement weights of different interaction methods straight into the for-243

mulae from Table 2. All that remains is to choose the replacement weights244

appropriately.245
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The replacement weights used here are based on the assumption that an246

offspring of individual Ii is likely to replace another individual Ij proportional247

to the time Ii and Ij spend together. The offspring of Ii can also replace Ii248

itself and it does this proportional to the time Ii spends alone. Therefore, when249

i 6= j, the probability that Ii and Ij meet is given by summing χ(m,G) over all250

m such that i, j ∈ G. When they meet, we assume that Ii will spend an equal251

amount of time with each other individual in group G and, therefore, weight252

χ(m,G) with 1/(|G|− 1) since there are |G|− 1 other individuals (an alternative253

weighting could be 1/|G| that allows interaction within groups larger than one254

to contribute to the probability of Ii’s offspring replacing itself). Note that this255

is consistent with the payoffs from our public goods game, where each pairwise256

payoff equally contributes to the total payoff an individual receives. On the257

other hand, when i = j, we sum χ(m,G) over all m such that G = {i}. Here258

there is no need to weight χ(m,G) because Ii is alone.259

The replacement weights are therefore calculated as follows260

wij =


∑
m

∑
G

i,j∈G

χ(m,G)

|G| − 1
i 6= j,

∑
m

χ(m, {i}) i = j.

(3.1)261

262

Thus we have a new set of evolutionary dynamics which can be applied to263

our framework in a wide variety of situations (including those that we consider264

later in this paper). Note that the dynamics used in [8] is the BDB dynamics265

defined from the above process.266

By our definition W is symmetric, that is wij = wji ∀i, j, because the267

probability of Ii meeting Ij within any given group is clearly the same as that268

of Ij meeting Ii. We also have that W is doubly stochastic, that is 1 =
∑
j wij =269 ∑

i wij for all i, j, because wij is the proportion of time Ii spends with Ij (with270

wii the proportion of time it spends alone), and it is always in precisely one of271

these N categories. In this case, W is referred to as being isothermal [26, 40].272

We note that the results above hold because of the particular weights wij that273

we have chosen. Although these are natural, they are not the only possibility.274

In particular we could have alternative weights where wij and wji are not in275

general equal and/or where W is not isothermal.276

4. Fixation probability and the temperature277

4.1. The fixation probability278

The (mean) fixation probability ρC (ρD) is the probability that the offspring279

of a randomly placed mutant cooperator (defector) eventually replaces the entire280

population. This can be uniformly at random as in [26]; alternatively, one can281

use the mutant appearance distribution as described in [2]. [8] used a version of282

this where they weighted the fixation probabilities using the mean temperature.283

For this current work we use the arithmetic mean, as the difference between284
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these two approaches is negligible here, with the arithmetic mean being greater285

than or equal to the weighted mean [2]. For more details on how the fixation286

probability is calculated, see the Appendix.287

As in [50], we will use the neutral fixation probability 1/N as a benchmark288

when comparing cooperators and defectors using their fixation probabilities. In289

particular, [50] say that selection opposes D replacing C when ρC < 1/N and290

selection favours C replacing D when 1/N < ρC . It is said that type C evolves291

if both these conditions hold, i.e. if292

ρD < 1/N < ρC . (4.1)293
294

4.2. Concepts of temperature295

In [26] the in temperature (or just the temperature) of a vertex of an evo-296

lutionary graph was introduced to measure how likely an individual occupying297

a particular vertex is to be replaced by another individual’s offspring. [28]298

extended this definition and introduced the out temperature of a vertex of an299

evolutionary graph to measure how likely the offpsring of the individual occupy-300

ing that vertex will replace another individual. These definitions of the in and301

out temperatures of individual In for an evolutionary graph W are respectively302

defined as follows303

T−n =
∑
i

win and T+
n =

∑
i

wni. (4.2)304

305

In general, the in and out temperatures can be different. However, in our306

case, W is doubly stochastic and symmetric and, therefore, the in and out307

temperatures are identical. We therefore work with the definition of only in308

temperature and simply refer to it as the temperature.309

An alternative version of the definition of temperature (used in [8]) is the310

strict temperature that measures how often an individual is likely to be replaced311

by other individuals excluding itself. Since W is doubly stochastic, the strict312

temperature of individual In for an evolutionary graph W is given by313

Tn =
∑
i6=n

win = 1− wnn. (4.3)314

315

The definition of strict temperature can be extended to subpopulations to316

give the strict subpopulation temperature. This measures how likely an in-317

dividual in subpopulation Qm is to be replaced by an individual in another318

subpopulation. Clearly all individuals in a subpopulation have the same tem-319

perature (for any of our temperature definitions), since they all have the same320

movement distribution. The strict subpopulation temperature is calculated by321

summing all weights wij such that Ii is not part of subpopulation Qm and Ij is322

part of subpopulation Qm giving323

TQm
=

∑
i∈N\Qm

∑
j∈Qm

wij . (4.4)324

325

11



6

6
0

6
0
0

6
0
0
0

6
0
0
0
0

6
0
0
0
0
0

3
3

3
3
0

3
3
0
0

3
3
0
0
0

3
3
0
0
0
0

2
2
2

2
2
2
0

2
2
2
0
0

2
2
2
0
0
0

1
1
1
1
1
1

Structures

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20
A

v
e
ra

g
e
 F

ix
a
ti

o
n
 P

ro
b
a
b
ili

ty
 ρ

ρC  (Cooperator) ρD  (Defector) 1/N

(a)
6

6
0

6
0
0

6
0
0
0

6
0
0
0
0

6
0
0
0
0
0

3
3

3
3
0

3
3
0
0

3
3
0
0
0

3
3
0
0
0
0

2
2
2

2
2
2
0

2
2
2
0
0

2
2
2
0
0
0

1
1
1
1
1
1

Structures

0.14

0.16

0.18

0.20

A
v
e
ra

g
e
 F

ix
a
ti

o
n
 P

ro
b
a
b
ili

ty
 ρ

ρC  (Cooperator) ρD  (Defector) 1/N

(b)

Figure 4: Comparing average fixation probability for different complete structures where fig-
ure (a) uses DBD dynamics and figure (b) uses DBB dynamics. Each number indicates a
subpopulation of a certain density. For example 60 is a complete structure with 2 subpopu-
lations of size 6 and 0 respectively; 2220 has three subpopulations of size 2 and one of size 0.
In each case the public goods game parameters are r = 30, v = 10 and movement parameter
is h = 30. We see that in figure (a) for the DBD dynamics, cooperators perform poorly in all
cases. In figure (b), cooperators do better for small groups (greater than one). Increasing the
number of empty places is beneficial for defectors.

This means that if there is only one subpopulation then its strict subpopulation326

temperature is 0 by definition, that is, TQm
= 0 if Qm = N .327

We note that a strategy introduced in one subpopulation can spread through-328

out the population because W is strongly connected. This implies that if there329

is more that one non-empty subpopulation then the strict subpopulation tem-330

perature is non-zero for all non-empty subpopulations, that is, TQm
> 0 if331

|Qm| > 0. To measure the connectedness of the subpopulations, that is how332

often the different subpopulations interact with one another, we use the mean333

strict subpopulation temperature that is defined as follows334

〈TQm〉 =
1

N

M∑
m=1

|Qm|TQm . (4.5)335

336

5. Cooperation in generalized territorial raider models337

In this section we study the effect that different model parameters have338

on the evolution of cooperation. For models investigating the evolution of co-339

operation using evolutionary graph theory, both the evolution and interaction340
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Figure 5: Comparing average fixation
probability for different δ that is the
size (or density) of each subpopula-
tion in a complete graph with 4 sub-
populations. The public goods game
parameters are set to r = 30, v = 11,
the movement parameters are set to
h = 30 and dynamics used are DBB.
As in Figure 4, cooperators evolve
better in small groups (larger than 1),
namely groups of size two and three,
with a small advantage for groups of
size four.

of individuals are dictated by a fixed structure, following games with a fixed341

number of players (almost always two). In our model the replacement struc-342

ture emerges from the interactions between individuals, involving games with a343

varying number of players, and therefore give us a different perspective on the344

evolution of cooperation.345

We note that no simulations were run to calculate the fixation probabilities346

in this paper, rather, all the states of the population were explicitly calculated347

following the procedure described in the Appendix.348

5.1. The effect of the dynamics349

As we mentioned in Section 1, for evolutionary graph theory models, coop-350

eration is favoured when using DBB or BDD dynamics, but not DBD or BDB351

dynamics, if the structure allows a cluster of cooperators to form (also see [36]).352

This is consistent with [8] where we studied the effect of the BDB dynamics353

on the public goods game and cooperators generally performed poorly. It was354

shown that defectors dominate regardless of the structure of the population and355

the game parameters. We are now in a position to revisit the public goods356

game with more flexibility both in terms of the dynamics and the structure of357

the population. In terms of the dynamics, the results for BDB and DBD are358

identical (as are those for BDD and DBB), because the replacement structure359

W is symmetric and doubly stochastic, so whether birth or death occurs first360

(but not whether selection occurs in the first or second position) is irrelevant,361

see Table 2. Furthermore, the LB and LD dynamics are equivalent to the BDB362

and DBD dynamics, respectively, because W is isothermal. This can be shown363

for LB dynamics (and similarly for LD dynamics) as follows364

rLBij =
Fiwij∑
n,k Fnwnk

=
Fiwij∑

n Fn (
∑
k wnk)

=
Fi∑
n Fn

wij = rBDB
ij .365

366
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Thus in what follows, we only mention one dynamics from each pair, in each367

case the DB dynamics.368

For DBD dynamics, the defectors do better than cooperators regardless of369

the population structure. However, for DBB dynamics, cooperators are favoured370

over defectors for certain population structures. In particular, these structures371

that favour cooperators contain small subpopulations, ideally of two individuals.372

We can see this in Figure 4, where the fixation probability is plotted against373

different complete population structures for the DBD (Figure 4a) and DBB374

(Figure 4b) dynamics (as explained in the caption, for each population, each375

number in its representation corresponds to a subpopulation of that size). For376

example, for the complete structure 222 where there are 3 subpopulations of377

size 2, the cooperators outperform defectors by a large amount.378

To understand why this is the case, consider a population of two individuals379

where one individual is a cooperator and the other a defector. Within such a380

population, the cooperator will be less fit than the defector. For DBD dynamics,381

the least fit individual is most likely to be chosen for death and the fixation382

probability is proportional to the fitness of the individual. This means that383

a cooperator has a low fixation probability compared to a defector. However,384

when using DBB dynamics, one of the two individuals in randomly chosen for385

death and immediately replaced by the offspring of the other individual. This386

means that regardless of the fitness of the individual, each type will fixate with387

probability 1/2. For sufficiently high home fidelity parameter h, individuals388

primarily interact with their members of their own subpopulation. Therefore,389

in such a population where there exists a subpopulation of two individuals, a390

cluster of two cooperators is more likely to form when using DBB dynamics.391

This cluster of cooperators has a fitness larger than that of a cluster of defectors,392

provided that v > 1, thereby establishing a stronghold against defectors. In fact,393

a subpopulation of sufficiently small size (but greater than one) can establish a394

stronghold against defectors as shown in Figure 5. Here the fixation probability395

is plotted against a complete structure with four subpopulations that each have396

size ranging from 1 to 6. Subpopulations of size two are best for cooperation,397

with their advantage over defectors declining as the size of the subpopulation398

increases. Given the parameters used, subpopulations of two to four cooperators399

can successfully resist invasion, but larger subpopulations cannot.400

5.2. The effect of the temperature401

In [8] the strict temperature and mean group size were both shown to be402

strongly correlated with the fixation probability, with the effect of the former403

shown to be stronger. We therefore focus on the temperature, namely the strict404

subpopulation temperature. Note that in [8] there is one-to-one correspondence405

between individuals and places, which implies that the strict temperature and406

strict subpopulation temperature are identical, but this is not the case here.407

The individual temperature is a measure of how often an individual interacts408

with other individuals including those who are part of the same subpopulation;409

thus an individual may have a high temperature but that does not mean it is410

interacting with individuals from other subpopulations. In particular whenever411
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Figure 6: Figure (a) plots the mean subpopulation temperature against the home fidelity h
for a complete population structure with 3 subpopulations of size 2 each. Figure (b) then
plots the fixation probabilities against these values of the mean subpopulation temperature
where r = 30 and v = 10 for the public goods game, and the dynamics used are DBB. In
particular, we notice that the fixation probability of the cooperators is decreasing with the
mean subpopulation temperature.
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Figure 7: Comparing different popu-
lation structures for the public goods
game with various complete graphs
for a population size of 12 where
(1,12) means there is 1 subpopulation
with 12 individuals, (2,6) means there
are 2 subpopulations with 6 individ-
uals and so on. We have set r = 30
and v = 10, home fidelity h = 30 and
the dynamics used is DBB.
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individuals are not alone very often, this temperature does not vary so much412

between different individuals, and so is not a useful concept when there are non-413

trivial subgroups. The strict subpopulation temperature, on the other hand,414

considers interactions with individuals only from other subpopulations, and thus415

can be very variable. We shall see that this temperature is a good predictor of416

important population properties.417

The mean strict subpopulation temperature decreases when home fidelity418

increases as shown in Figure 6a. This is because the individuals are more likely419

to remain on their home place than visit another place as home fidelity increases,420

therefore reducing interactions with other subpopulations, and in particular the421

probability that a member of one subpopulation replaces a member of another422

at any given time.423

In [8] it was shown that for BDB dynamics for structures where each sub-424

population is of size one, there was a linear relationship between the strict425

(subpopulation) temperature and the fixation probability, with the higher the426

temperature, the stronger the effect of selection. We investigated this for DBB427

dynamics, and found an opposite linear effect, which is consistent with [28] who428

showed that the DBB dynamics suppresses the effect of selection the most for429

the complete graph. We note that this relationship only holds for relatively430

weak selection, and we can reverse the relationship (and make it non-linear) by431

increasing the value of the reward.432

To promote cooperation we need a structure involving a subpopulation of433

size at least two. However, whether these structures promote cooperation or434

not also depends upon the base fitness and reward, and so we assume that the435

base fitness and reward are sufficiently large for this to be the case, see Section436

5.4. In this case, decreasing the temperature by increasing the home fidelity437

promotes cooperation. In particular, the relationship between the mean fixa-438

tion probability of cooperators and the mean strict subpopulation temperature439

is negative and nonlinear as shown in Figure 6b. The nonlinearity arises not440

only from the nonlinear payoff function of the public good game, but also from441

the fact that there exists a subpopulation that has size at least two. For co-442

operators, the mean fixation probability is negatively correlated with the mean443

strict subpopulation temperature because the mean strict subpopulation tem-444

perature is highest when home fidelity is lowest, i.e. when cooperators cannot445

separate themselves from the population and form clusters, consequently defec-446

tion evolves. On the other hand, for low mean strict subpopulation temperature,447

and so high home fidelity, it is easier to form clusters of cooperators that allows448

cooperation to evolve. This kind of behaviour is also evident in Figures 4 and449

7.450

5.3. The effect of the number of places451

In [8] each individual had their home place and there were no empty places452

(non home places) that individuals could visit. In our case, individuals can453

visit non home places and we therefore investigate what effect this has on the454

evolution of cooperation.455
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Figure 8: Figure (a) shows the effect of compensating for empty places by increasing the home
fidelity such that the probability of staying in their home place, pnn, remains the same. We
start at h = 30 for the 33 and 222 structures. As an empty place is added, h is increased
so that pnn = 30/31 for the 330,. . . ,330000 structures and pnn = 30/32 for 2220,. . . ,222000
structures. In all cases r = 30 and v = 10. We can see that after compensating for the above
effect, the influence of introducing empty places is both reversed and weakened. Figure (b)
shows the mean strict subpopulation temperature dropping off when we compensate for the
empty places by increasing the home fidelity such that pnn remains the same.

As seen in Figure 4, increasing the number of empty places that subpopu-456

lations can visit, whilst keeping all other parameters constant, makes it more457

difficult for cooperation to evolve. In particular, this effect is prominent for458

structures where cooperators were initially doing well. For example, for the459

structure 222 where the cooperators do best, increasing the number of places460

significantly reduces their fixation probability whilst increasing that of the de-461

fectors. Here increasing the number of places acts in the same way as decreasing462

the home fidelity, i.e. as decreasing the amount of time an individual spends in463

its home place with members of its subpopulation. Thus the amount of time464

an individual spends alone or with individuals not from its subpopulation in-465

creases, so that the overall fitness of a cooperative subpopulation will decrease466

(they still pay a cost but do not receive a benefit when alone). In terms of467

the dynamics, spending more time alone would increase the effect of selection468

in DBB dynamics because an individual with higher fitness that is randomly469

chosen for death is more likely to be replaced by its own offspring, which affects470

the cooperators adversely. A cooperative subpopulation will also have lower471

fitness because its members are more likely to interact with individuals from472

other subpopulations, therefore exposing them to defectors. The increased in-473

teraction between individuals will also increase the effect of selection in DBB474

dynamics because an individual with higher fitness that is randomly chosen for475

death is less likely to be replaced by an individual with lower fitness in the same476

subpopulation.477
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The increase in the number of places can be compensated for by increasing478

the home fidelity, so that individuals stay in their home place with the same479

probability. This has the effect of decreasing the mean strict subpopulation480

temperature as individuals are more likely to spend time with members of their481

subpopulation. This is shown in Figure 8, where we can see that the effect of482

adding empty places is now reversed, although the strength of this reverse effect483

is weak.484

5.4. The effect of a large home fidelity485

Consider a well-mixed population of M subpopulations each containing L486

individuals, so that N = ML, as described in Section 2.1, where h is very487

large. Consequently from equation (3.1), χ(m,G) is approximately 1 if G = Qm,488

and is approximately 0 otherwise. Thus the fitness of an individual can be489

evaluated assuming that we have a group containing precisely all individuals490

from its subpopulation with probability 1. Due to the symmetric nature of our491

population, the weights for any two individuals in the same subpopulation will492

be the same, as will the weights for any two members of different subpopulations.493

Denoting the latter as wO, which will be small, we have wij = wO when Ii and494

Ij are not in the same subpopulation, and wij = wI ≈ [1−(M−1)LwO]/(L−1)495

otherwise, with the probability of self-replacement negligible.496

It follows that only replacements within subpopulations will happen, except497

very rarely. Thus we can assume that the battle within any mixed subpopulation498

of cooperator (C) and defector (D) individuals will be resolved with fixation of499

one type or the other before any new mixed subpopulation appears.500

We thus consider a two stage process. Firstly, a new mixed group appears.501

This occurs rarely, through the invasion of a cooperator into a defector subpop-502

ulation, or a defector into a cooperator subpopulation. Assuming that there are503

currently MC(MD = M −MC) cooperator (defector) subpopulations, such a504

transition happens with probability505

pCI =
MD

M

MCLwOFL(C)

(L− 1)wIFL(D) +O(wO)
(5.1)506

of a cooperator into a defector subpopulation, or507

pDI =
MC

M

MDLwOFL(D)

(L− 1)wIFL(C) +O(wO)
(5.2)508

of a defector into a cooperator subpopulation. The terms FL(C) and FL(D) are509

the fitnesses of cooperator and defector individuals within their own subpopu-510

lations, and are obtained directly from equations (2.4) and (2.6), and the terms511

O(wO) are of the order of wO, and very small. Further denoting x = v/[r(L−1)]512

we obtain that the ratio of the two expressions in equations (5.1) and (5.2), and513

thus the relative frequency that the new invasions happen, is thus514

pCI
pDI

≈
(
FL(C)

FL(D)

)2

=

(
1 +

v − 1

r

)2

≈ (1 + (L− 1)x)2 (5.3)515
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for large v and r.516

The second process considers fixation within a well-mixed group of size L.517

Following [23] we obtain the formula518

xi =
1 +

∑i−1
j=1

∏j
k=1

δk
βk

1 +
∑L−1
j=1

∏j
k=1

δk
βk

, (5.4)519

for the fixation probability of i cooperators within a population of size L. Here520

βk (δk) is the probability that the next event is the replacement of a defector521

(cooperator) by a cooperator (defector), when the number of cooperators is k.522

We have here523

δk =
k(L− k)

L

r + kv
L−1

(L− 1)r + ((L− k)k + (k − 1)2) v
L−1 − (k − 1)

, (5.5)524

525

βk =
k(L− k)

L

r + (k−1)v
L−1 − 1

(L− 1)r + ((L− k − 1)k + k(k − 1)) v
L−1 − k

. (5.6)526

For sufficiently large r, we obtain527

δk
βk
≈ 1 + kx

1 + (k − 1)x
fk(x), (5.7)528

where529

fk(x) =
L− 1 + (L− 2)kx

L− 1 + ((L− 2)k + 1)x
< 1. (5.8)530

The fixation probability of a single cooperator in a group of defectors is given531

by ρC,L = x1, and the fixation probability of a single defector in a group of532

cooperators is ρD,L = 1− xL−1. We thus have533

ρD,L
ρC,L

=

L−1∏
k=1

δk
βk

=

L−1∏
k=1

1 + kx

1 + (k − 1)x
fk(x) = (1 + (L− 1)x)

L−1∏
k=1

fk(x). (5.9)534

535

This implies that536

pCI
pDI

>
ρD,L
ρC,L

. (5.10)537

Following our assumptions, the population evolves following a succession of538

invasions of subpopulations either of cooperators by defectors or of defectors by539

cooperators. The probability that the next such event will be the invasion of a540

subpopulation of defectors by a cooperator is simply541

pCIρC,L
pCIρC,L + pDIρD,L

=
rS

1 + rS
, (5.11)542

where rS = pCIρC,L/pDIρD,L is the forward bias [40] of cooperative groups543

within our population. For a cooperator to fixate in the population it must first544
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fixate within its group with probability ρC,L, after which, there is a competition545

between groups proceeding precisely as in a Moran process, so that we have546

ρC = ρC,L
1− 1/rS

1− (1/rS)M
, (5.12)547

with the equivalent expression for ρD,548

ρD = ρD,L
rS − 1

rMS − 1
. (5.13)549

It is clear from equation (5.10) that rS > 1, so that ρC is greater than ρC,L(1−550

1/rS) for any M . Letting M become large means that 1/N = 1/ML will be less551

than ρC , but larger than ρD, so that inequality (4.1) holds. This means that552

for sufficiently large h, r and v, we have that cooperation evolves for any given553

subpopulation size L. Thus cooperation can potentially evolve for arbitrarily554

large subpopulations, although as we have seen previously, it is easier for smaller555

subpopulations.556

6. Discussion557

In [10] a new framework for the flexible modelling of structured populations558

using multiplayer interactions was introduced, see also [8, 13, 11]. This work559

built on classical evolutionary graph theory, but was limited in terms of the560

dynamics used. In this paper we have developed this framework further. Most561

importantly we have developed a full range of dynamics to apply in the frame-562

work, which will allow us to consider many different evolutionary scenarios. In563

particular these can be applied for the fully independent model in general, not564

just the examples considered here, enabling us to use a fuller range of the pos-565

sibilities that our flexible framework allows. Thus this paper can be thought to566

complete the basic development phase of our work.567

We have then developed the fully independent model to incorporate subpop-568

ulations and in particular consider a generalized version of the territorial raider569

model introduced in [8]. This is beneficial because previously the fully inde-570

pendent model, represented in the bipartite graph in Figure 1, would require571

a vertex for every individual as well as an additional vertex for every available572

place. Now we just need a vertex per subpopulation, potentially allowing a small573

number of very large subpopulations to be considered, which would not have574

been possible previously. Thus this generalization allows us to look at much575

larger populations, which most real populations are, but still be able to use576

some analytical methods. The fact that larger populations can be considered577

without increasing complexity in turn allows us to incorporate other features578

that will enable our model to be applied more widely, as discussed below relating579

to mobile populations.580

This type of structure has been considered in a slightly different context,581

for example, the island- or community-structured populations of [53]. In this582

model interactions occur at multiple levels, interactions between community583
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members being more common than those with non-community members where584

interaction occurs at multiple levels. Members of one community first play a585

public goods game and then join the members of another community and play a586

public goods game such that, at the highest level, the entire population plays a587

public goods game. This is in contrast to our case, where individuals only play588

a game if they are present in the same place at the same time. They showed589

that cooperation can evolve when DBB dynamics are used and selection is weak590

within communities, which is consistent with our results.591

We note that the framework of [8] is capable of modelling far wider be-592

haviour than that developed here, in particular it is able to consider dynamic593

populations whose distributions continuously change due to their history, and594

the interactions that they have. Thus it can incorporate the type of situations595

with mobile populations modelled in [55, 47]. In particular, movement can596

follow a stochastic process in which the individuals move depending upon their597

current state as in [16]. This is an important step in the development of realistic598

population models, for example related to territorial behaviour where animals599

can cover long distances, or movement behaviour varies throughout the year as600

seen in, for example, African wild dogs that live in packs [17]. In a recently601

submitted paper [39] we have developed a Markov chain version of our model,602

and again consider a combination of theoretical developments and the specific603

application of the evolution of cooperation. This is our first step in the type of604

history-dependent analysis described above.605

We then applied our new methodology to an example, considering the evolu-606

tion of cooperation within a population involving subpopulations. We saw as in607

evolutionary graph theory that the choice of dynamics is crucial, and that DBD608

(and BDB) dynamics would not allow cooperation to evolve, but that DBB (and609

BDD) would, which is consistent with [36]. Further, using the latter dynamics,610

the size and the level of isolation of the subpopulations is important, with the611

smaller the subpopulations and the greater the isolation, the greater the chance612

for cooperation to evolve. Unsurprisingly, the larger the level of reward v, the613

better the cooperators do. In particular, the larger the subpopulations, the614

larger the reward v required for cooperation to evolve; note that this is similar615

to the requirement that the benefit-to-cost ratio exceeds the average number of616

neighbours an individual has from [36].617

We see from Figure 6 that our new idea of strict subgroup temperature618

is important in explaining the level of cooperation that evolves. Low (high)619

temperature helps promote the invasion of cooperators (defectors). In particu-620

lar, higher temperatures allow cooperators to cluster more strongly and benefit621

more from cooperating with one another. We note that this raises a more gen-622

eral question about temperature. Within subpopulation temperature includes623

replacement weights between pairs of individuals from different subpopulations,624

but excludes weights between pairs from within the same subpopulation. What625

if two individuals have very similar, but not identical, movement distributions626

(and thus whilst formally not within the same subpopulation, for practical pur-627

poses they might as well be)? Under the current definition no distinction is made628

between this and two individuals whose distributions are completely different.629
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We will investigate this question in later work.630
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Appendix A.783

A state of the population gives the type of each individual in the population.784

Let S be a state of the population such that n ∈ S if and only if In is a785

cooperator. There are then 2N different states of which N (∅) is the state in786

which there are all cooperators (defectors). Using any dynamics, the probability787

of transitioning from state S to S ′ is defined as follows788

PSS′ =
∑
i∈S

rij for S ′ = S ∪ {j}, or
∑
i/∈S

rij for S ′ = S \ {j}, or
∑
i,j∈S
i,j /∈S

rij for S ′ = S,

(A.1)

789

790

or 0 otherwise.791

Cooperators (defectors) is said to fixate from state S in the population when,792

starting from state S, every defector (cooperator) is replaced by a cooperator793

(defector), that is the population reaches state N (∅). At this point no further794

changes are possible, since one type is extinct, and so the population remains795

in this state. Let ρCS be the probability that cooperators fixate from any initial796

state S, then this is obtained by solving the following system of equations797

ρCS =
∑
S′

PSS′ρCS′ (A.2)798

799

with boundary conditions800

ρC∅ =0 and ρDN = 1 (A.3)801
802

where PSS′ is the probability of transitioning from state S to S ′. The probability803

ρBS that defectors fixate from any initial state S is obtained in the same way804

with the boundary conditions reversed.805

The mean fixation probability of cooperators (defectors) is a, potentially,806

weighted average of the probabilities ρCS (ρDS ), over S when there is only one807

cooperator (defector) in the population, that is |S| = 1 (|S| = N−1). There are808

two common weightings used; uniformly weighted (as we use here) or weighted809

in proportion to the mutant appearance distribution as defined in [2].810

The evolution of the population is essentially described by an absorbing811

Markov chain. The mean fixation probability is therefore calculated by com-812

puting the state transition probabilities that are then used to construct the state813

transition matrix of the Markov chain. The state transition matrix is then used814

to calculate the fixation probability see, for example, [23] for explanation of how815

this is done.816
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