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of important dynamics. In this paper, we revisit the
original paper on evolutionary graph theory in light
of these extensions to consider these developments
in an integrated way. In particular, we find general
criteria for when an evolutionary graph with general
weights satisfies the Moran probability for the set of
six common evolutionary dynamics.

1. Introduction

When modelling population evolution, we are concerned
with the spread of heritable characteristics in successive
generations. The type of model that is used depends
upon whether the population size is assumed to be finite
or infinite. The majority of classical evolutionary models
(e.g. [1,2]) use infinite populations, although finite
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population models are also well established, the most important models being those in [3,4].
These models are stochastic and are solved using classical Markov chain methodology [5-7]. See
also [8,9] for an extension to evolutionary games in finite populations.

The populations in the models described above, however, were ‘well-mixed’, i.e. every
individual was equally likely to encounter every other individual. Real populations of course
contain structural elements, such as geographical location or social relationship, which mean that
some pairs individuals are more likely to interact than others. In such circumstances, we need to
be able to identify distinct individuals (or at least distinct classes of individuals), and considering
finite populations is perhaps more natural than infinite ones (although finite structures each
containing an infinite number of individuals, the so-called ‘island models’, were considered
in [10]). In [11], the modelling ideas of [3] were extended to consider such structured populations
based upon graphs, known as evolutionary graph theory. This has proved very successful,
spawning a large number of papers (e.g. [12-19]). For informative reviews, see [20,21].

In an evolving population, we need to consider the mechanism of how the population changes,
called the dynamics. Informally, the dynamics specify the way in which heritable characteristics
are passed on from one generation to the next. For infinite populations, the classical replicator
equation [22] is often used (although there are a number of alternatives), and in the stochastic
model of [3] there is a natural replacement dynamics built in. For structured populations, this
issue is actually considerably more complex, and the order of births and deaths, and where
selection acts, is of vital importance [23,24]. We shall consider a set of dynamics that are commonly
used in evolutionary graph theory models. The relationship between dynamics and structure is
of key interest because the spread of heritable characteristics is directly dependent upon it. While
having essentially no effect on populations with no structure, for constant fitness this relationship
potentially yields very different results on graphs. For non-constant fitness, the results will vary
for different dynamics even in well-mixed populations [25].

Under some circumstances, it is, however, possible for the dynamics and structure to interact
in such a way that the spread of heritable characteristics behaves just as if the population was
homogeneous. This was a central theme of the classic paper [11], where two important results,
the circulation theorem and the isothermal theorem, were developed that addressed this question
(see also [26] for related work). In this paper, we generalize the work of [11] to obtain a complete
classification of when the combination of a population structure and dynamics can be regarded
as equivalent to a homogeneous population in a precisely defined way, for the six most common
evolutionary dynamics and graphs with general weights.

2. The model

We shall first describe the population model of [11], which generalizes the model of [3] by
incorporating a replacement structure. The notation used in this paper is summarized in table 1.
The population has a constant size N € Z, N > 2, consisting of individuals Iy, . . ., In. Every individual is
either of type A or B.

This implies that there are 2N different states of the population given by the combination of
type A and B individuals. We represent each state by a set S such that n € S if an individual I, is
of type A. We can easily revert to using the number of type A individuals, |S|, if the population is
homogeneous. The states # and A" = {1,2,..., N} have only type B and A individuals, respectively.

Individuals have a constant fitness that may depend upon their type.

The fitness of individuals in state S is thus given by the vector F(S) = (F,(S));=1,2,..,N, Where

1 nes,

Ful8) = re(0,00) neS

is the fitness of I,,. Here the fitness r of a type A individual is given relative to the fitness of a type
B individual, assumed to be 1.
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Table 1. Summary of notation.

symbol definition description
N eZ*t\ {0,1} population size

D =(,E) replacement digraph with vertices / where | V| = N and
directed edges £

Wi € [0, 00) edge weight such that w; > Oifand only if (i, ) € £

w = (w) replacement matrix: N x N weighted adjacency matrix of
tuple (D, w)

T = L] Wy out temperature: sum of all outgoing edge weights of vertex
nel

T, = ZL Win in temperature: sum of all incoming edge weights of vertex
nel

b; e [0,1] probability /; chosen for birth

dj €[0,1] probability a copy of /; replaces J; given /; was chosen for
birth, i.e. replacement by death

a €[0,1] probability /; chosen for death

by e [0,1] probability a copy of /; replaces J; given /; is chosen for death,
i.e. replacement by birth

T €[0,1] probability a copy of /; replaces J;

Psg e[0,1] state transition probability

) = (Pss') state transition matrix

Emy stochastic process with state transition matrix S such that %
dynamics are used on graph W and type A individuals
have fitness r

M, replacement matrices for which &£, is p-equivalent to a
Moran process when : dynamics are used
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During a stochastic replacement event (that happens in an instant), an exact copy of an individual I;
replaces an individual I;.

The replacement events may be restricted in the sense that not all individuals can replace one
another. To enforce such restrictions, Lieberman ef al. [11] imposed a replacement structure using
a weighted directed graph given by the tuple (D, w), where D =(V, E) is a directed graph, with
sets V of vertices and E of directed edges, and w is a map that assigns a weight to each edge such
that w:V x V — [0, 00): (i, j) = wj;. Bach vertex n € V represents I, therefore V ={1,2,...,N} so
[V]=N. We assume that (i, /) € E if and only if w;; > 0, which indicates that I; can replace I;. Note
that we allow w;; > 0 and therefore I; can replace itself. All the information contained within the
weighted digraph (D, w) is conveniently summarized by the N x N weighted adjacency matrix
W = (wjj) and therefore we will refer to (D, w) using W, which we call the replacement matrix.

The replacement events are stochastic which means that there is a probability t;; = t;;(F(S), W)
associated with (a copy of) I; replacing I;. There are several potential evolutionary dynamics on
graphs that govern how the probability is determined. There are three main types of dynamics
that are summarized below, see also [21]. We use the convention that J; is chosen for birth and [;
is chosen for death.

(i) Birth—death (BD). I; is chosen first then I;. We have that i € V is chosen with probability b;

and then (i, j) € E; is chosen with probability d;;, where E; are all edges starting in vertex
i djj is used to signify that there is ‘replacement by death’. Finally, v;; = b;d;;.

(ii) Death-birth (DB). I; is chosen first then I;. We have that j € V is chosen with probability d;
and then (i,j) € E; is chosen with probability b;j, where E; are all edges ending in vertex j.
bj; is used to signify that there is ‘replacement by birth’. Finally, v;; = d;b;;.

(iii) Link (L). I; and I; are chosen simultaneously. In this case, (i, /) € E is simply chosen with
probability t;;.

For each type of these dynamics, the natural selection can, through the fitness parameter, influence
either the choice at birth (resulting in adding ‘B’) or at death (adding ‘D’). It yields six kinds of
evolutionary dynamics on graphs summarized in table 2. These dynamics have been extensively
studied, in particular, see [29] for a detailed comparison of them. Of these, the BDB and LB
dynamics were used in [11].

(a) The fixation probability

The fixation probability, ,o? = ,og\(*, W, r), is the probability that the population with initial state S
is absorbed in N\, where * is the dynamics being used.

Given that the replacement events are random, the transitions between the states of the
population are described by a stochastic process, which we denote £. The properties of £ can be
investigated once the state transition probabilities of moving from state S to S', Pss = Psg (x, W, 1),
are calculated using the replacement probabilities as follows:

Z vj(F(S), W) if S§'=5\{j} forsomejeS,
i¢S
Z vi(E(S),W)  if & =S U {j} forsomej ¢S,
Pss = 1ics

> wi(F(S), W) ifS'=S.
ijeS
Vi,jgS

The transition probabilities, Psg, satisfy the Markov property because they only depend upon
the state S, that is, the probability of transitioning from the present state to another state is
independent of any past and future state of the population. The stochastic process &, w, with
state transition matrix S = S(x, W, r) = (Pss')s,5'c{1,2,..,N} is therefore a Markov chain. The Markov
chain &, w , is part of the class of evolutionary Markov chains described in [34].

YEC0SL07 “LL ¥ 205 Y 20l BioBuiysiigndAaposieforeds; H


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on October 1, 2015

rspa.royalsocietypublishing.org Proc. R. Soc. A 471: 20150334

MmN\ M=
o n{HEMD 2\ (MmN (Pom) 2f) = 2m S
(von{Em}b), TS U (2m\ (Oom), 1) = °om m
(Mo n{EMD) I\ (2M N\ (PM) 2F) = m
(Vo n{HMD) TS U (Pm\ (M) 1) =m s lem |2
IMN\PM =
ﬁzoimk?m\f\su VAT P
"L = 88qyy | 108y = 88Qyy | 080y Q08 | 808y (U Ty Aq USAID SI “pash Bulaq saiweuAp paepuels ay) Jo ssajpiebal Aﬁ%hﬁ%wﬂmmu % - ‘M o
$53201d URIO} B 03 JU3[eAINb3-0/ S 2 313YM ‘41 JO UonIIRd Y] "UWN0? ISB| Y Ul SIIWRUAP 3Y3 Jo Ypea Joj paaybijydiy (Non ?B:W\ UM =i m
ale *Jy dn ayew 1eyp 41 suonied 3y A 40 M “ T " Uy M suonned Jo uoniuyap 3y sanib 3] ay1 uo A3y ay) )/ J0 uoensn||1 10} A3y
....................................................... T
ﬁﬂ e eu eu snoaueynwis E =0 [ ai
................................................... OIS MAME=CW A
M= CM)—p= upp ¥
ﬁﬂ ; eu eu snoaueynWis E =N [8Z°sL'LL] 971
................................................... OM2 MM =TU e
M N ), Y= (5)!4"m " N
= _ Oy, T=h fuawp ) lgp=a [e6-1€'22'91] 990
e O (M S WY = e D
5)4/1"X
— I — ! If ligin — i 107/
—— =1 —7 5 =P ‘Tusyr’y qgp="a log'87’eL’aL] ada
(5)4/1
— 0 N — 1 If ] lintn — i
=P e q ‘Tuayy’y Pg="a [67] aad

fruau [87'[T'6L'9L'PL'EL'1L] 909

*J/ 40 Uoneasn]|i *I/J0 uonuLap (pu03s uasoyp) (351 u3soy) uasoyp Japio (y severdas f) 1 ss»oid

“*J J0 UONIUYP 113U Ylm Jay1aB0) WA Jo 1517 7 BjqeL


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on October 1, 2015

The absorbing states of &, w » are ¥, N, which means that if the population is in either one of
these states then it remains there indefinitely. This property of £, w , can be used to measure the
success of a type A individual by calculating the probability that it fixates, that is, everyone in the
population is of type A. The fixation probability is then given by solving

Pl = Z Psg pé (2.1)
sc(12,..N)

with boundary conditions pf; =0and ,of\‘, =1.

As demonstrated in [29], LB and LD dynamics may differ in time scale but they yield the
same fixation probabilities when fitness is constant (which is our case). Thus, for our purposes
the dynamics are the same and we will thus consider them together and denote them by L.

We note that the fixation probability is not the only measure for evolutionary success and we
can look at the fixation time [35,36] as well.

(b) The Moran process

The Moran process [3], a stochastic BD process on a finite fixed homogeneous population, can be
reconstructed as Egpp,wy,,,» for a constant replacement matrix

Wh = <i]>z] 2.2)

For any re(0,00) and any SC{l,...,N}, the fixation probability for this process, or Moran
probability, is given by

1— 18I
A ﬁ ifr?él,
=7 s

We are interested in characterizing graphs (and evolutionary dynamics) that yield the same
fixation probabilities as the homogeneous matrix Wy given in (2.2). We note that for this matrix
all of the transition probabilities t;; take the same value independent of 7, or the dynamics, and
consequently the fixation probability under each of the dynamics is the same.

(c) Classes of graphs/matrices

The set of all admissible replacement matrices is defined as follows:
W ={W: for every i,j, there is | such that (Wl)i,]- > 0}.

This definition means that W is strongly connected as for any pair of vertices i and j, there is a path
(of length I) going from i to j. Unless specified otherwise, we will consider admissible replacement
matrices only.

As in [11], for any W (admissible or not) we define the in temperature of I, T, , and the out
temperature of I,, T, , by

N N
T, = Z wj, and Th = Z Wy;.
j=1 j=1

W is called a circulation if T, =T, , for all n € V and it is called isothermal if Ti+ = T]._, for all

i,j € V. W is called right stochastic if T,V =1, for all n € V and it is called left stochastic if T, =1,
for all n € V. The sets of all circulations, isothermal matrices, right stochastic matrices, and left
stochastic matrices, respectively, are denoted by W¢, Wi, Wg and Wy, respectively.

The set Cy denotes the set of matrices representing cycles of length N, more specifically,
for (wjj) e Cy we have wy; =1/2fori=1,2,... N, Wjj, =+ - = Wjj, ., =+ = Wiy_yiy = Wiy = % for
some permutation i1, iy, . . ., iy of the sequence 1,2,...,N, and w;j =0 otherwise.
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We also define the maps fr : W — WR, f1,: W — Wy, and f : W — W, respectively, by

)= (i) Al = (i) and faop= (k)
/ Zn Win )’ v Zn Whj J Zn,k Wk
Note that fr preserves right stochastic matrices and f, preserves left stochastic matrices. Moreover,
RW)=fL(W) for all WeWy. Also, as f’ simply involves multiplying W by the constant
1/ 3, k Wk, it implies that W € We < /(W) € We.

When the dynamics *, matrices W1 and W3, and fitness r are given, we say that an evolutionary
Markov chain &, w, r is p-equivalent to &, w, r if for every S C {1,...,N}, pé‘(*, Wi, 1) = pé(*, Wy, 1),
in which case we write Wy ~, , Wj.

We are specifically interested in finding matrices equivalent to the Moran process. For a
dynamics %, we define

M, ={W:W~, W for all r > 0}.

3. Results

The map fr preserves the equivalence classes of BDB and BDD dynamics, fi, preserves the
equivalence classes of DBB and DBD dynamics and f” preserves the equivalence classes for link
dynamics. Specifically, as one can see from the proofs in appendix A, for any W and any r > 0

W ~ppB,r frR(W),
W ~gpp,r fR(W),
W ~ppp,r fL(W), (3.1)
W ~ppgr fL(W),
W~L, f(W).

We thus obtain the following results, which completely specify the graphs which are equivalent
to the homogeneous matrix Wy for each of our evolutionary dynamics.

Proposition 3.1 (Link). My, = Wc. More precisely, the following statements are equivalent:
(a) W is a circulation.

(b) Forallr >0, W~ , WH.
(c) Thereis r > 0 such that W ~1, , Wq.

We note that Wc=f""1(Wc)={W:f(W)eWc} and thus, similar to proposition 3.2,
proposition 3.1 can be written as M, =f’ _1(WC).
Proposition 3.2 (BDB and DBD). Mppp =f; 1(Wc) and Mpgp =f{ 1(WC). More precisely, the

following statements are equivalent:

(@) fR(W) is a circulation.
(b) Forall v >0, W ~gpp, WH.
(c) There is v > 0 such that W ~gpg, WH.
The equivalent conditions for DBD are similar to the above for BDB but fR is replaced by fi..
Proposition 3.3 (BDD and DBB). Mgpp =f1{1({WH} U Cy) and Mpgp :f{l({WH} U Cn). More

precisely, the following statements are equivalent:

(@) fR(W) =Wn or fR(W) € Cn.
(b) Forall r >0, W ~gpp, WH.

The equivalent conditions for DBB are similar to the above for BDD but fR is replaced by f..
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In particular, Mgpp C Mppg and Mppp C Mpgp. The sets M, are illustrated in table 2.

Note that unlike in propositions 3.1 and 3.2, proposition 3.3 does not contain ‘any r implies
all 7. In fact, when r =1, there is no selection and thus the dynamics BDB and BDD are the same
(and also the dynamics DBB and DBD are the same). Consequently, by proposition 3.2,

W~ppp1 WH ¢ fR(W)eWc < W e Mppg,
W~pp1 WH & fL(W)eWc & WeMppp.

(@) Our results in the context of known results

For the LB dynamics, proposition 3.1 was stated and proved in [11] as the Circulation theorem.
For the LD dynamics, proposition 3.1 follows from the Circulation theorem and the result of [29]
that the fixation probabilities for LB and LD are the same.

As shown in appendix Aa, BDB is the same as the LB dynamics for right stochastic matrices
(in particular, for BDB dynamics, proposition 3.2 can be seen as the Isothermal theorem from
[11]). Proposition 3.2 thus follows from proposition 3.1 thanks to (3.1). The natural symmetries
between fr and fi, and BDB and DBD dynamics allow us to extend the Isothermal theorem to
DBD dynamics as well (see also [37]).

Overall, propositions 3.1 and 3.2 and the occurrence of Wc within them are consistent with
the claim made in [11] that the circulation criterion completely classifies all replacement matrices
where &, w  is p-equivalent to a Moran process.

Our most important new result is proposition 3.3. It shows that the BDD and DBB dynamics
require very strict conditions to yield the Moran process. Either the population structure is
homogeneous, or it is a directed cycle. This latter structure is an interesting theoretical example,
but is unlikely to apply to real populations, meaning that the homogeneous population is
practically the only way to get the Moran process for a realistic population.

(b) Theimportance of self-loops in BDD and DBB dynamics

Proposition 3.3 by definition requires that w; >0 Vi=1,2,...,N. Without such self-loops,
EBDD,W,» £DBB,W,r cannot ever be p-equivalent to the Moran process. The ability of an individual
to replace itself therefore plays an important role in the replacement structure of the population
and cannot be discounted. For BD dynamics, when increasing the diagonal weights of W, the
fixation probability decreases for BDB and increases for BDD. For DB dynamics, the increase in
fixation probability DBB is greater than that for DBD. For LB dynamics, the fixation probability
remains the same.

With BDD and DBB evolutionary dynamics on graphs, one may encounter the following
problems if there are no self-loops. For DBB dynamics, a type A individual with almost infinite
fitness still has a fixation probability bounded away from 1 because even type A individuals
can be randomly picked for death and replaced by type B individuals [38, p. 245]. With self-
loops, however, a type A individual will almost always be replaced by itself (or another type A
individual) and therefore has a fixation probability approaching 1. Similarly, for BDD dynamics,
a type A individual with almost zero fitness does not have near probability 0 of fixating as
type A individuals can be randomly picked for birth and replace type B individuals [38, p. 245].
With self-loops, such an individual will almost always pick itself (or another type A) to replace
and therefore its fixation probability is near 0. Thus, the inclusion of self-loops removes some
problematic features of the BDD and DBB dynamics, and makes them more attractive dynamics
to use in models.

4. Discussion

In this paper, we have considered an evolutionary graph theory model of a population
involving general weights and a variety of evolutionary dynamics based upon the work
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of Lieberman et al. [11], which was a development of the classical population model of
Moran [3]. In such populations, the population size is fixed at all times and at successive
discrete time points one replacement event occurs. Like the aforementioned papers, we
consider two types of individuals, where fitness depends upon type but no other factors
(i.e. there are no game-theoretic interactions). In particular, the single most important property
of such a process is the fixation probability, the probability that a randomly placed mutant
individual of the second type will eventually completely replace the population of the
first type.

This fixation probability depends upon the fitnesses of the two types of individuals, but
can also be heavily influenced by the population structure as given by the weights, and by
the evolutionary dynamics used. These effects are commonly observed, although in some
circumstances evolution proceeds as if as on a well-mixed population as from the original work
of Moran [3], dependent only upon the fitnesses of the two types, and some important results in
this regard were already given in [11]. The aim of this paper was to provide a generalized set of
conditions for when this would be the case.

By defining what is meant by fixation-equivalence to the Moran process, we provided a general
result which, independent of the specific dynamics used, helps identify graphs that do not affect
the fixation probability. With respect to each of the standard dynamics, we then classified sets of
evolutionary graphs that have the same fixation probability as the Moran process (or well-mixed
population). These sets include graphs that are circulations and therefore generalizes the work of
Lieberman et al. [11].

An important new result shows that the set of weights for which we obtain fixation equivalence
to the Moran process for the BDD and DBB dynamics is very restricted, and so that for most
populations with any structure this equivalence will not hold for these dynamics. We note also
that the inclusion of non-zero self weights w;; eliminates some problematic features of these two
dynamics (i.e. that individuals with 0 fitness could fixate or those with infinite fitness could be
eliminated) and so improves the applicability of these dynamics.

Presenting evolutionary dynamics on graphs, in the way that we have, allows one to
incorporate a variety of dynamics in their analysis, both of standard type and other definitions.
This will improve our understanding of dynamics on graphs in general. We note that the list
of dynamics in table 2 is not exhaustive. For example, Ohtsuki & Nowak [27] used imitation
dynamics, which is a class of DBB dynamics with an additional requirement w;; >0 Vi, and
Zukewich et al. [39] consolidates the BDB and DBD dynamics such that one is chosen with a
given probability.

In general, the inclusion of non-zero self-weights, in contrast to many earlier evolutionary
graph theory works, allows for a greater flexibility of modelling. We note that this is consistent
with the original work of Moran [3], which allowed self-replacement as an integral part of
the process. For well-mixed populations, it does not matter much whether this possibility is
included or not (at least for sufficiently large populations with intermediate fitness values), and
it is likely that it has often been excluded for reasons of convenience because of this without
the ramifications being fully considered in many later works. It is thus important to consider
whether to include such self weights when modelling spatial structure using evolutionary
graph theory.
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Appendix A. Proofs

(a) BDBis the same as LB for right stochastic matrices
For BDB dynamics, we have v = b,-dl-j. By definition Zi]- bid,-j =1, we can therefore write this as
o diiFi/Y w1 Fun _dyF
’ Zn,k(dnan/Zln\izl Fi) Zn,k dukFn

If W is right stochastic, i.e. ZnNzl wj, =1 for all i=1,2,...N, for BDB dynamics we have that
dij = wij/ 22’:1 Wiy = wjj giving vj; = w;;F;/ Z”/k wyFy which is the LB dynamics as required. We
also have that DBD is the same as LD for left stochastic matrices. The explanation follows the
same procedure as above.

(b) Lemma A.1(Forward Bias)

The key lemma A.1 stated below is used in the proofs of all propositions, and it relies heavily
on the notion of forward bias of state S which is then given by the ratio of the probabilities of a
forward transition to a backward transition from S. A forward and backward transitions from S
occurs when the number of type A individuals increase and decrease by one, respectively, which
happen with probability

P;r = ZPS,SU{H} and Pg = ZPS,S\{H}'
n¢s nes

Lemma A.1 (Constant Forward Bias). Let £ be an evolutionary process on states S C {1,2,...,N}
with transition probabilities Ps s that satisfy

(1) Ps,s > 0 only if S and S’ differ in at most one element,
(2) for every S#9,{1,...,N}, there are ST and S~ such that |ST| =S|+ 1 and |S™| =S| — 1 and
Ps,g+ > 0,Pgs- > 0.

Then, the following are equivalent:

(a) There is a constant ¢ > 0 such that for all S C {1,2,...,N}

1—c s
A_|Toen FeFL
s

N ifc=1,

(b) & has constant forward bias, that is, there is a constant d such that for all S C {1,2,...,N}

R
PS
Moreover, if either (a) or (b) hold, then c =d.

Note that a similar result is given in [11,20] where the forward bias is explicitly defined as

"D aes Zhgs Wab

2aes Zb¢s Wpa
which is what one gets when using Link dynamics, or BDB dynamics if W € Wgr. Note that in
lemma A.1 the forward bias is defined independent of the dynamics and therefore applies to all
dynamics that satisfy the assumptions.
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Proof. ‘(a) = (b)": Take any S C {1,2,...,N}. It is known that

pd = Z Ps 504 = Ps 504 + Z(PS,SU{n}pé‘U{n}) + Z(PS,S\{n}P?\{n})
S n¢s nes

and using Pg s =1— P¢ — P gives

0= (Ps 50 (P50 — PE) + Y _(Ps5\in) (04 () — £E))- (A1)
n¢s nes

For c #1, equation (A 1) simplifies to

I e o e B B e
o 1—cN 5 1—c¢N 5

e e

Py BBl 11 €
For ¢ =1, equation (A 1) simplifies to
P+
— + - S _
0=(8I+1-ISHPS +(SI =1 ISPP5 = = =1.
S

‘(b) <= (a)”: The state transition matrix S = (Ps ¢) can be scaled to give §' = (P5 5) such that Pg ¢ =
0 and P’S,S, =Psgs /(1 —Pss)=Psg /(P;‘ + Pg) where S is a non-absorbing state. The fixation
probability pg‘ will be the same whether S’ or S is used. This is because equation (2.1) can be
rearranged as follows:

p§‘=ZPss',09 = pf =Psgpl + Z Psgpd =

s S':5'#£8
Pss
0154(1 — Pss) = Z PSS’P? = P? = Z ﬁpé
§:5'4£S §:5'£5 S s

Let {Sp, S1, ..., SN} be a partition of the states S such that S € S; if |S| =i. The probability P;i(S) of
transitioning from state S € S; to lumped state S; with respect to S is

0 jEit1,
1.

Pii(S=1771 j=i=1, fori=1,2,...,N—1. (A2)
d . .
ir1 /=

This can be easily verified, for example, take j =i — 1 then

Ps,s Pg 1
Pi,i—l(s): Z Pfg g = Z T = y — =
Ses ses PS+Ps Pg+P; 1+d

since the forward bias is equal to d. Equation (A 2) satisfies the necessary and sufficient condition
for the Markov chain with state transition matrix S’ to be lumpable with respect to the partition
{So0,S1,...,5N} (Theorem 6.3.2, p. 124, [40]). Let S= (P;;) be the state transition matrix for this
lumped Markov chain then the probability P;; of transitioning from lumped states S; to &; is
given by

Pij=P;;(S).

The state transition matrix S describes a random walk with absorbing barriers and therefore the
probability plA of type A individuals fixating when the population starts in lumped state S; is

YEC0SL07 “LL ¥ 205 Y 20l BioBuiysiigndAaposieforeds;


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on October 1, 2015

calculated using the methods in [5] to give

o 1 ey (P /Piirn)
P = — : .
1+ Z]-I\ill [Ty (Prje—1/Pris1)

In this case,

1—di
— T d#1,
1—dN
=1
1
=1
N

as Pry—1/Pxj+1 =1/rfork=1,2,...,N — 1. By definition, pg‘ = pf‘ where i =S| as required. W

(c) Proposition 3.1 (Link)

The following statements are equivalent:

(a) W is a circulation.
(b) Forallr >0, W~ , Wq.
(c) There is r > 0 such that W~ , Wq.

(d) Forallr>0and forall S {1,2,...,N}, the forward bias of & w,, is 7, i.e.
P+
ks,
PS

(e) There is r > 0 such that for all a € {1,2,..., N}, the forward bias of the one element set
S=/{a}isr, ie.

2 ta Pla oy _
Pa,@

Proof. For LB dynamics, the forward bias is given by

PS Yaes Lvgs@avFa/ 2o WnkFn) 1Y pcs Ypgs Wab

Py Yaes 2obgs@raFo/ Yk WikFn)  Yaes Dbgs Wha

For LD dynamics, the forward bias is given by

g _ > aes 2bgs@ab/Fp/ > k Wak/Fr) _ T2 aes Dbgs Wab
PE ZaeS Zh¢5(wba/Fﬂ/Zn,k w"k/Fk) Z”ES ZMS Wba

‘(a) = (d)’: Wis a circulation i.e. T;) =T, forallne({l1,...,N} and thus

PIPIIED B] DIIED R =Z(Tﬂ+_zwﬂk R

aes b¢S aesS n keS aes keS

S w=Y | To =D wia | =Y D wna =D wia | =

aeS b¢S aes keS aes n keS
PIDBLTEDIPBLE
aes b¢S aes b¢S

Note that 3 _,c5 > p¢s Wab # 0 because W is admissible and represents a strongly connected graph.
Thus, the forward bias for both LB and LD is equal to r.
‘(d)=(e)’ is trivial as (d) is much stronger than (e).
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‘(e)=>(a)’ Let a and r be fixed. By above calculations of the forward bias, we have

N N N N
Z Wah = Z Wpg = —Waa + Zwai = —Waq + Zwiu = Zwaizzwm
b¢S={a) b¢S={a) i=1 i=1 i=1 i=1
therefore W is a circulation.
‘(d)=(b)’ follows from lemma A.1.
‘(b)=(c)’ is trivial.
‘(c)=(e)’ follows from lemma A.1. |

(d) Proposition 3.1(BDB and DBD)

More precisely, the following statements are equivalent:

(a) frR(W) is a circulation.

(b) For all r > 0, \4Y ~BDB,r WH.

(c) There is r > 0 such that W ~gpp , WH.

(d) Forallr>0and forall SC{1,2,...,N}, the forward bias of Egppw  is 7, i.e.

+

P
Py

(e) There is r > 0 such that for all a € ({1,2,...,N}, the forward bias of Egppw of the one

element set S ={a} is r, i.e.
> bta Playfa by

P a,¥

Proof. Let U = (uj) = fR(W) = (wjj/ ), win) then for BDB dynamics the forward bias of Egpp w,-
is given by
g _ ZaeS ZbgéS(Fﬂ/Zn Fﬂ)(wab/Zn Wan) _r ZaeS ZbgﬁS Uab
Py Ypes 2bgs(Fo/ 2 Fn)@pa/ 3y Whn) — Ybgs Dges Uba
and therefore the forward bias of Egpp,w - is the same as forward bias of Egpg y ;-
Similarly, with almost identical working as above, when V =f; (W), the forward bias of
EpBD,W, is the same as forward bias of Eppp v » and is given by

P; _ Zaes ZbiS(Fljl/Zn Fgl)(wﬂb/Zn wnb) _ ZueS Zb¢5 Vah

PS_ B Zaes Zb$S(F;1/Zn Fgl)(wbu/zn Wha) a 1/ Zues Zbgés Uba .
and the proof of the proposition for DBD closely follows the one for BDB given below with U and
fr appropriately replaced by V and f;..
‘(@)= (d): If U=fr(W) € Wc, i.e. if U is doubly stochastic, then the forward bias (for S # @, \V)
is equal to

PS_ a ZueS(Zn(unﬂ) - Zkes(ukﬂ)) a ISI = Zues Zkes Ug
‘(d)=(e)’ is trivial as (d) is stronger than (e).
‘(€)= (a)’ Let a and r be fixed. By above calculations of the forward bias, we have

S =Y Y

aes bgS aesS bgS

PS+ _ Y aes (O (Wan) — D ges(Uak)) _ (S| = X aes Dkes Uak) —

Consider the states S = {1} in which there is only one individual of type A then

N N N
Zuab=2ulm = —Ug + Zuaiz—uaa + Zuiﬂ =1 :Z”iﬂ
i=1 i=1 i=1

bes bes
is true foralla=1,2,...,N and therefore U is doubly stochastic and thus fr(W) is a circulation.
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‘(d)=(b)’ follows from lemma A.1.
‘(b)=(c)’ is trivial.
‘(c)=(e)” follows from lemma A.1. [ |

(e) Proposition 3.3 (BDD and DBB)

The following statements are equivalent:

(a) fR(W) = WH OI‘fR(W) € CN.
(b) Forall » >0, W ~gpp, WH.

Proof. The replacement probabilities v;(F(S),W) for BDD dynamics can be rewritten
as v;(F(S),U), where U= (u;)=fR(W)=(w;j/ ) ,win) by multiplying the numerator and
denominator with )", w;, as follows:

1 wii/Fi(S) 1 wii/(Fi(S) X, win)

) W) = S o En(®) ~ N S w30/ (FaS) S i)
#/Fi(S
S =S,

and therefore we have that W ~gpp , U, for all > 0. The forward bias using U for state S is given
by
P{ _ Yves Xpgs(U/N)apFy " /3, tanFr ) _ Youes 2obgs(an/ Yoy TP
P Yaes Logs(U/NVunaFa ' /X tnFu ') (1/7) Yaes Ypgstbal Lo tonF )
Similarly, let V = (v;;) = fL(W) = (wjj/ }_,, wyj)- Then for DBB dynamics we have
b CiFi WP/ Y vk
v Zn wnan Zn wnan/ Zn wnj Zn UnjFYl
and therefore the forward bias when using V is given by
E _ D aes Zb¢s(1/N)(UabFa/Zn Vb Fn) _r D aes Zb¢s(vab/2n UnpFn)
P; Zaes Zb¢s(1/N)(vban/zn VnaFn) ZaeS Zb¢5(vba/zn VnaFn)

The proof of the proposition for DBB closely follows the one for BDD given below with U and fr
appropriately replaced by V and f1..

(A3)

(i) IfU € Cy, then U ~ppp, WH

If U € Cy then there are only two non-zero elements in each row. In particular, in row i of U we
have that u;;, ujy, = % for some k; # i. In the numerator of equation (A 3) forae S, b¢ Sand k; #a
we have that for all S
0 if b#k,,

Ugp _ Ugp _
> tan/Fu(S)  taa/Fa(S) +uar, /Fe,(S) | Y2 ey
1/2r+1/2

Similarly, in the denominator of equation (A 3) forae S, b ¢ S and k; # b we have that for all S

0 ifaky,

Upg _ Upg —

S ton/Fn(S) — upp/Fo(S) + upe, /Fi,(S) | /2 4, k.
1/2+1/2r

This means that equation (A 3) for all S can be written as

(x/2)/(1/2r+1/2)  rx

A/n(w/2)/1/2+1/2r) y’
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where x(y) is the number of non-zero u,, (up,) terms in the numerator (denominator). If we
partition the vertices of the digraph of U into any two sets V1,V then the number of edges
e(i,j) and e(j, i) for i € V1 and j € V; are by definition the same because it is a cycle. This means
that fora € S and b ¢ S the number of non-zero i, Uy, terms in the numerator and denominator,
respectively are the same hence x =y and rx/y =r as required. As per lemma A.1, Egpp,u,r is
p-equivalent to the Moran process.

(ii) If U ~ppp, Wy forallr > 0,then U =Wy orU € (y
By lemma A.1, the forward bias (A 3) is equal to 7 for all S C {1, ..., N} giving

ZZ Znuﬂ“/ n ZZ Zn”bn/Fn -

aes b¢S aes b¢Ss
(A4)
D _bgs Uab 2_ges Uba

% Y thaj + 1/ Yieg thai bgéZS Djgs Uy + (/1) Yjes tpi

Note that if =1, (A 4) holds for all U € W¢. From now, we will consider r # 1 only. For clarity,
the remainder of this section of the proof is broken down into the following six steps.

Step 1. Derivation of general state-dependent row-sum equation.

Let U(a,S) =) ;cq tai,ie. 1 —U(a,S) = nggs ugj. Equation (A 4) thus becomes

1—U(a,S) _ ue,S)
Z 1—U(a,S)+ U@a,S)/r % 1—U(,S)+ U,S)/r

aes
N (A5)
1 _ Un,S)
; 14 Ua,S)(1/r — 1) _; 14+ U, S)(1/r—1)
The above equation can be written as a Taylor series as follows:
ZZ( 1) <7 - 1) [U(a, S)I¥ Zum S)Z (—1)k (7 - 1) U, S =
ae$S k=0 n=1
(A6)
o0 1 k oo N 1 k
>3 (1-7) wesi =Y > (1) ot
k=0 ac$ k=0n=1

For equation (A 6) to hold for all r the coefficients of (1 — 1 /r)¢ should be same, that is, for all k

N

> UG, $)IF = U, ) (A7)

aes n=1

Step 2. The diagonal of U consists of non-zero elements.
Consider the state S = {a} then equation (A 7) gives

iy Z it (A8)

n=1

If uza =0 or 1, then (A 8) implies that all off-diagonal terms in column 7 are zero which is a
contradiction with W (and thus also U = fr(W)) being strongly connected, which means that
O<uy <1,
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Step 3. The nth column of U contains 11, non-zero elements, all equal to 1/m1,,.
Since 0 < uzr < 1, we can divide equation (A 8) by u’;ﬂ giving

N u k
1= tng (ﬂ) ) (A9)
n=1

Ugq

We have that
o0 Upg > Ugq,

lim (unu )k 1

i — | = =

koo \ 2o Upg = Ugg,
0 Upg < Ugg,

and therefore (A 9) implies that 0 < 1, < 14,. There must be n # a such that u;,; = 14, as otherwise,

by (A 9), we would have 1, = 1. Let C; = {i : t4; = t1gq}. (A 9) becomes

k1 1
ia ia
1= Zuaa + Z L]lk = |Cqlttga + Z Ztk . (A 10)
i€C, j¢C, a4 j¢Ca

As k — oo, (A 10) implies that g, = 1/|C4|. Thus, again by (A 10), uj; =0 for all j ¢ C,. This means
that in column # of U there should be m;, = |C,| with 2 <mj; <N non-zero elements, including
Uy, that are all equal to 1/m,.

Step 4. my, is the same for all 7.

Considering state S = {i, j} and using 1z, = 1/m,, (A 7) can be written as follows:

1 1 11\

y )k 3 Ak o4

(uii +ul]) +(ujz +u]]) —am;ﬁ_l +,3m;<+1 +v (mi + ) ’ (A11)
where «, B, y are the number of rows where 1/m; is adjacent to 0, 0 is adjacent to 1/m;, and 1/m;
is adjacent to 1/m; in columns i and j, respectively. More precisely, o is the cardinality of the set
K;] ={n:u,;=1/m;, unj“: 03, B is the cardinality of the set Kéj ={n:up;=0,upj=1/m;} and y is the
cardinality of the set KZ ={n:uy; =1/mj, upj=1/mj}.

As Ci = K;} U KZ and C; = K{] U KZ, we have that m; =« +y and m; =g + y. Since K;J,K{],KZ
are disjoint, we have o + g + y < N. Now, consider the different possibilities we can have on the

left-hand side of equation (A 11).
Case 1: u;; =1/m;, u;;=0in row i and u;; =1/m;, ujy=1/m; in row j. Thus &,y > 1 and therefore
equation (A 11) gives

k k+1
1 mi-l—mj o« ﬁ mi-l—m]-
b Ty ) T +m}‘“ TV g -
1 ( a+B+2y )"_ « B ( a+p+2y )"“
@+ yF \@+nB+n) @t T \a+ B+

BAY @+ p+20) _alBt )™+ Blat ) 4yt p2p)
@+ y)B+ VI (@ + y)(B+ )T
aw+yﬁﬂ+ﬁw+yﬁﬂ+yw+ﬂ+zm“1:
(@ +y)B+vy)
aB+y) | Bla+ ) | (ay + By + 2y (e + B +2p)

B+ +@+p+2p)f=

B+ +@+p+2y)=

a+y B+vy af +ay + By +v?
v(B+7) _Blaty) (P —aB)e+p+2y)
a+y B+y af+ay + By +y?2

Ask—>oo,weget(ﬂ+y)k7é(a+y)k:i:(a+ﬁ+2y)ksincea—i—,B—}—Zy>/3+)/, a + y hence we
want y2 = af to get rid off (« 4 B + 2y)~. This implies that f + y =a +y = a == a=f=y
giving m; = m;.
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Case 2: uj; =1/m;, wj=1/m; in row i and uj; =0, u;; =1/m; in row j. This case is symmetrical to
Case 1 and therefore we get that @ = 8 = y giving m; = m;.

Case 3: wjj =1/m;, wjj=1/m;in row i and uj; =1/m;, ujj =1/m; in row j. Thus y > 2 and therefore
equation (A 11) gives

k k+1
5 m; + mi\ o« n B n m; + m; N
mim]- - m’f'H m;.(‘H v m,'mj

1

( ot B+2y >": B+ 1)+ e+ )T vt pray)tt
(@+y)B+y) [+ ¥)(B + y)IFH!
a(B+ )+ Bl + y) 1+ y (e + B+ 2y) 1 N
(a+y)B+vy)
aB+y)  Bla+y) | (ay + By +2y2)(a + B +2y)

20+ B +2y)k:

20+ B +2y)k:

a+y B+vy af +ay + By +v?
Qap +ay +py)a+p+27) _aB+y)  paty)
af +ay + By + y? a+y B+y

Ask—>oo,weget(ot+,3—|—2y)k7é(ﬁ+)/)k+(a+y)k sincea + B +2y > B+ y, a + y hence we
want 2ef + ay + By =0= «, B =0 giving m; =m;.

Case 4: uj;=1/m;, u;;=0 in row i and u;; =0, uj;=1/m; in row j. Thus o, >1 and therefore
equation (A 11) gives

k+1
LI I B i =
ooy % v
mi‘ m;‘ k1

k+1 M
m; m] (1]

1 1 o B y+B+2y \*!
@t 7F T BrF @t By ((a+y)(ﬂ+y)> 7
B+y)+ @+ aB+y) T+ B+ y) T+ y(a+ B +2y)FF] N

le+y)B+y)IF (e 4+ ¥)(B + )]+
a(B+y) 4+ Bla+ y)H + y (e + B+ 2y)FH! N

(@ +y)B+vy)

a(f+y)k L B+ E | yla+ B 42yt

a+y B+y  aptay+By+y?

B+y)+@+y)f=

B+y)+@+y)f=

Ask— oo, we get 0 # (a + 8 + 2y) since «, B > 1 hence we require that y =0 to get an equality.

Conclusion from all the cases above
We see that m; # m; is potentially possible only in Case 4. However, U is strongly connected. If
one connects i and j by a path i =iy, i1, 1,...,i, =J, then one has m; =m;_ asir and i1 must fall
into Case 1, Case 2 or Case 3. Thus m; = ;. This implies that every column of U has 2<m <N
non-zero elements, including u;,, that are all equal to 1/m. This is also true for every row of U
because it is right stochastic by definition.

Step 5. There exists state S such that C; =Cy for alla,a’ € S.

We can define the state Ry = {1 : 11y, = tixy} then, by definition, x € Ry and |Ry| = m since there
are mm non-zero elements in row x of U. Consider the state S =Ry \ {y} for y € Ry \ {x}. For this S
(as well as any other state), we have that

if n € S then min(m, |S|)

=UnS) =

S F-

ifn ¢S then
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We can therefore write equation (A 7) in the form

min(m,|S|) ik min(m,|S]) i\ k1
l; As(i)(%) - g Ag(i)<a> (A12)

where As(i) is the number of U(n, S) terms equal to i/m for n € S and 1(f) is the number of U(x, S)
terms equal to i/m for n € N/, which means that A5(i) > A5(i) for i # 0. The ratio of the left- and
right-hand sides of equation (A 12) should always be equal to one. Therefore, as k — oo, we
require that
. e Imax
As(imax) = As(lmax)Tf
where imax is the largest i such that A5(7) > 0.

We have that imax =m — 1 in equation (A 12) because |S| =m — 1 so U(x, S) = (m — 1)/m. This
means that for state S, as k — oo, we require that

hs(m — 1) = Ay(m — 1)”17_1.

As As(m — 1) is an integer, Ag(m — 1) has to be a multiple of m and the only possible value that
satisfies this criteria is )Js(m —1)=mhence Ag(m —1)=m — 1.

As A’S(m — 1) =m there exist m rows j1,j, ..., jm such that U(j,, S) = (m — 1)/m, that is, Uj,a =
1/m Va € S. This means that C; = {j1, 2, . .., jm} Va € S hence C; =Cy for alla,a’ € S.

Step6.m=2o0rm=N.

By contradiction, assume that 2 < m < N. We can consider another state S’ = Ry \ {z} such that
z € Ry \ {x,y}. We then have that imax = m — 1 in equation (A 12) because |S'| =m — 1so U(x, ') =
(m — 1)/m. As before, this means that C;, =C, for all a,a’ €S’. Since x€ S,S’ and Ry=SUS" we
have that C; =Cy foralla,a’ € Ry. For 2 < m < N this implies that vertices i € Ry are disconnected
from j € N\ Ry and we therefore have disconnected graph, a contradiction. [ |
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