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Summary 
 

Predicting the impact of natural disasters such as hurricanes on the transmission dynamics of infectious 

diseases poses significant challenges.   In this paper, we put forward a simple modelling framework to 

investigate the impact of heavy rainfall events (HRE) on mosquito-borne disease transmission in temperate 

areas of the world such as the southern coastal areas of the United States. In particular, we explore the impact 

of the timing of HREs relative to the transmission season via analyses that test the sensitivity of HRE-induced 

epidemics to variation in the effects of rainfall on the dynamics of mosquito breeding capacity, and the 

intensity and temporal profile of human population displacement patterns. The recent Hurricane Harvey in 

Texas motivates the simulations reported. Overall, we find that the impact of vector-borne disease 

transmission is likely to be greater the earlier the HREs occur in the transmission season. Simulations based on 

data for Hurricane Harvey suggest that the limited impact it had on vector-borne disease transmission was in 

part because of when it occurred (late August) relative to the local transmission season, and in part because of 

the mitigating effect of the displacement of people.  We also highlight key data gaps related to models of 

vector-borne disease transmission in the context of natural disasters. 
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It is now well understood that human-induced global warming is associated with an increasing risk of 

extreme weather events [1]. Higher air temperatures have two main effects on extreme weather events. Since 

warmer air contains more water, extreme weather events increasingly involve high rain rates. At the same 

time, higher air temperatures have led to atmospheric circulation changes that include a decline in the 

translation speed of storms—by 10% over the period 1940-2016 [2].  Together, these two effects increase the 

frequency and intensity of heavy rainfall events (HREs). Although we expect the flooding associated with 

HREs to have consequences for disease, the short- and long-term effects of these events on the risk of 

infectious disease epidemics driven by insect distribution patterns remain understudied [3]. 

 

In the United States, the frequency of HREs have increased with average temperatures across the country 

during the last 3-5 decades—especially in the Northeast, Midwest, and Great Plains [4]. Several factors make 

the United States vulnerable to disasters stemming from HREs [5]. The most important of these is the fact that 

a large and growing population segment (currently about 60 million people) live in coastal cities, many of 

which are at high-risk from hurricanes. Hurricanes Katrina, Sandy, Harvey and Irma all impacted high 

population density coasts leaving many without access to basic services like electricity and water. The 

resulting flooding led to the displacement and death of many individuals. 

 

Extreme weather events are recognized to pose special health hazards [6], including the threat of infectious 

water-related (e.g. cholera, leptospirosis)[7], soil-transmitted (e.g, helminth infections) [8] and vector-borne 

infectious diseases (e.g., dengue, chikungunya, and Zika)[7]. In Southeastern Texas and South Florida local 

climatological conditions promote low-to-moderate abundance of the mosquito Aedes aegypti  and Aedes 

albopictus – the main vectors for a number of arboviruses including dengue, chikungunya, and Zika [9]. 

Stagnant water left over from HREs leads to increased abundance of mosquitoes in affected regions, while 

changes in public and private health regimes increase the likelihood that people are infected. In the immediate 

aftermath of a disaster, individuals within the disaster zone may be at increased risk of infection due to the 

breakdown of private and public preventive measures, the disruption of healthcare delivery, and increased 

mosquito densities.  
 

While forecasting the extent and impact of HRE-induced epidemics is challenging, well designed and 

parameterized mathematical models can be used to simulate the potential trajectory and severity of outbreaks, 

as well as the impact of control interventions. In this paper, we employ a rainfall-driven mathematical 

epidemic model to illustrate the potential impact of vector-borne diseases based on the timing of the HREs 

(e.g., hurricanes) relative to the transmission season, short-term dynamics of mosquito breeding capacity in 

response to rainfall, and the mitigating effect of population displacement. The recent Hurricane Harvey in 

Texas motivates our transmission scenarios. We highlight key data gaps related to models of vector-borne 

disease transmission in the context of natural disasters. 

 



 

 

The HRE-induced epidemic model  
 

The model allows us to explore the potential impact of HREs on vector-borne disease spread by incorporating 

key ingredients of vector-borne disease transmission, human displacement patterns, interventions, dynamic 

mosquito carrying capacity in response to rainfall, case importation rates, and the timing of HREs relative to 

the transmission season. A key element in a model of HRE-induced infectious disease transmission is the 

change in population mobility and displacement during and after the event [10].  Here we model the temporal 

profile of the human population in an affected area, i, as a function of the baseline population, denoted 

, and the proportion of the population displaced out of area  as a result of the HRE, denoted .  

Population displacement affects mosquito-borne epidemics in different ways. First, displacement means that 

routine habitat control (e.g. emptying water containers) is neglected, which increases the mosquito carrying 

capacity of the local environment, and hence the risk of being bitten.  Second, by reducing the size of the 

human population, displacement reduces both the number of local infections, and the number of external case 

importations. External case importations into the area rate in the absence of an HRE is denoted , and with 

an HRE as the product .  Although the external importation rate would be expected to vary 

over the year, we take it to be constant over the interval of the event.  As a first approximation we also assume 

that it is the same across the a rea impacted by the HRE. 
 

Population mixing patterns vary depending on the severity, spatial extent, and duration of the event, as well 

as on behaviour changes prompted by the evolving characteristics of the event and any evacuation orders. In 

the immediate aftermath of a disaster, individuals within the disaster zone may be at increased risk of 

infection due to the breakdown of private and public preventive measures, the disruption of healthcare 

delivery, and increased mosquito densities.  

 

Short-term dynamics of mosquito breeding capacity 

A number of studies have found a significant link between local climatological factors and the risk of vector-

borne disease outbreaks (e.g. refs. [11, 12]). For example, an increase in dengue outbreak risk has been 

associated with increasing minimum temperatures (e.g., [13, 14]) and excess rainfall occurring 1-2 months 

earlier [13]. Following an HRE, initial flooding and high winds may negatively affect existing mosquito 

breeding sites [7]. However, as the surface runoff and flooding recedes, the number of water-holding 

containers increases, which directly amplifies mosquito-breeding capacity. After the storm, laid eggs hatch, 

larvae mature, and pupae develop into adult mosquitoes (approximately 2 weeks later). Following a case 

importation, new cases of the disease may then occur after a generation interval of the disease of about 2-3 

weeks [15]. While a number of studies have shed light on the effects of temperature on the development, 



survival, reproduction, and disease-transmitting capacity of mosquitos [11], the complex mechanisms through 

which temperature and rainfall affect the risk of mosquito-borne epidemic outbreaks remain poorly studied.  

Here, the rainfall-dependent rate of change in the mosquito carrying capacity in location  is given by ) 

and bounded by a maximum mosquito-host ratio denoted by . The corresponding rate of change 

equation is given by: 

 

 

  
  

where denotes the human population residing in area  and  denotes the time-dependent rainfall in 

location . Because the effects of rainfall on mosquito breeding capacity is not instantaneous but depends on 

how quickly surface runoff and flooding recede [7], parameter  models the delayed impact of rainfall on the 

generation of new mosquito breeding grounds. Further, parameter  quantifies the per capita rate for 

production of new breeding sites from rainfall, whereas quantifies the rate at which mosquito 

breeding sites are destroyed (e.g., emptying water containers around the household), which depends on the 

proportion of the displaced population in a given area . 

 

 

Vector-borne infectious disease transmission dynamics 

 

We expanded the baseline compartmental SEIR-type model of arboviral transmission dynamics introduced in 

[16]. In this model, the authors linked the effects of temperature on mosquito reproduction, development, 

survival, and transmission capacity [11]. Local temperature strongly modulates the reproduction, 

development, and disease transmitting capacity of the mosquitos. While temperature-dependent risk does not 

fluctuate substantially in the Tropics where temperature cycles are weak, in temperate areas of the world, 

including the southern coastal areas of the US, with well-defined temperature cycles and an Atlantic hurricane 

season running from June 1st to November 30th, mosquito-borne disease transmission is expected to depend on 

the timing of the HRE. For example, in the context of a well-defined temperature cycle (Figure 1), we can 

expect a higher epidemic risk following a hurricane that occurs near the peak temperature cycle; whereas a 

lower epidemic risk may be expected for hurricanes that make landfall near the end of the hurricane season.  

For illustration, Figure 1A shows hypothetical scenarios for six different 4-day North Atlantic hurricanes 

characterized by sustained rainfall at 50 cm per day relative to a seasonal temperature cycle, which is 

consistent with that of southeast Texas. 

 



We adapted the Huber model in several ways:  

 

First, the population was divided into spatial areas (e.g., counties) to account for spatial heterogeneities in 

human population size ( ), mosquito population size ( (t)), temperature ( ), precipitation (

), profile of population displacement relative to the HRE ( ), and external disease importation rates (  ) 

but we assumed this parameter constant across areas in our simulations. Moreover, the human population in a 

given area  was classified into five epidemiological states: Susceptible ( ), exposed ( ), infectious (

), recovered ( ), and the cumulative number of infectious individuals ( ) while the mosquito 

population is classified into three states: susceptible ( ), exposed ( ), and infectious ( ).  

Second, local susceptible mosquitoes were assumed to be infected from local infectious individuals in area  

and to a lesser extent from the influence of infectious individuals visiting from other areas. For simplicity, we 

assumed that the rate of transmission from area  into area  decays exponentially with the Euclidean 

distance between their respective county centroids denoted by . Hence, the spatial contact matrix was 

scaled by  where parameter  quantifies the extent of local spatial transmission. That is, small values of 

lead to broad spatial transmission influence whereas large values of  emphasize local spread. More 

elaborate forms of the contact matrix are discussed in [17].  

Third, the dynamic adult mosquito carrying capacity, , was taken to respond to the rainfall dynamics as 

described earlier.  

 

Fourth, because a displaced population resulting from the HRE affects the local mosquito reproduction rate, 

we also scaled the number of eggs laid per female per day ( ) and the local force of infection for 

mosquitoes by the proportion of the population remaining in area , which is given by ( ).  

 

Finally, we accounted for an external disease importation rate given by  where is the baseline 

disease importation rate in the absence of an HRE. 

 

The temperature-dependent functional responses of Aedes aegypti and Aedes albopictus and dengue 

transmission traits are driven by empirical data, which were directly informed by prior work (Table 1 in [16]).  

Briefly, these parameters are as follows: the biting rate ( ), the number of eggs laid per female per day (

), the probability of mosquito-egg-to-adult survival ( ), the mosquito egg-to-adult 

development rate ( ), the adult mosquito lifespan ( ), the probability of mosquito 



infectiousness ( ), the probability of mosquito infection ( ), and the virus extrinsic incubation 

rate ( ).   

 

The full spatial model of vector-borne disease transmission dynamics is given by the following system of 

ordinary differential equations: 

  

 

 

Mobility analysis for Hurricane Harvey based on Tweet data 

 

A critical component of the adapted model is the proportion of the population displaced by the disaster.  

There are no direct measures of displacement. Indirect measures include the proportion of the population in 

evacuation zones together with the existence of evacuation orders, or observations on the number of houses 

damaged or destroyed. While the first of these could be used to estimate an upper bound on displacement, it 

is less useful when evacuation is optional or when there is only partial compliance with mandatory evacuation 

orders. Similarly, while property damage could be used to estimate the number of people forced out of their 

homes, this is not the same as being forced out of the area. One option that might capture physical 

displacement is the number of geo-referenced contributions to social media. To calibrate this element of model 

we acquired a large tweet dataset from GNIP [18].  In addition to the text content of the tweets, the data set 



provided metadata including the time of the tweet, the ID and the screen name of the user account, as well as 

location information. Location was provided in the form of point coordinates (specified in latitude and 

longitude) and/or “place” information encoded in the form of a place name and a bounding box. Per Twitter 

specifications, the “place” information encoded in the tweet does not necessarily correspond to where the 

tweet originated from, but may instead represent the spatial context of the content of the tweet, so we 

dropped all tweets that did not contain precise point coordinates.  The data, which were originally formatted 

as a JSON file, were stored and indexed in MongoDB and queried using Python. To identify tweets originating 

from a given county, we used the county-level bounding boxes. 

 

For the mobility analysis, we used R [19] and the following packages: tigirs [20], leaflet [21], and raster [22]. In 

order to analyse the mobility of people tweeting within the mandatory evacuation counties, we analysed all 

tweets (26 million) generated during the period: 2017-01-01 to 2017-10-15 from users geo located in the 

following states: Texas, Oklahoma, Alabama, Mississippi, Arkansas, Louisiana, Georgia, South Carolina, 

North Carolina, Florida, and Tennessee. While Twitter users in the dataset have specified that their location is 

in the previously mentioned states, only 1,985,401 tweets contain the actual geo location where the tweet was 

originated. We then focused our study period from 2017-07-17 (one month before the first Harvey-related alert 

was issued) to 2017-10-15, which includes 16,764 geo referenced tweets within the mandatory evacuation 

counties in Texas (Arkansas, Brazoria, Calhoun, Jackson, Matagorda, Refugio, San Patricio and Victoria) 

(Figure S1) [23]. 

 

To estimate the number of Twitter users that mobilized out of the evacuated counties, we first identified users 

that lived in those counties based on their tweeting activity during the pre-hurricane period: 2017-07-17 to 

2017-08-20. We restricted each user to have at least two tweets within those counties to adjudicate their place 

of residence [24]. We then analysed their tweeting activity during the hurricane period: 2017-08-21 and 2017-

09-03 (last day of Hurricane warnings [25] in order to analyse any tweeting activity within the evacuation 

counties and in any of the US states included in our database. Finally, based on tweeting activity we also 

estimated the number of users that had returned to their residence in the evacuation counties by 2017-10-15 

(end of the dataset). 

 

Three response curves (low, moderate, high) for  describing the proportion of the displaced population 

in a given area  relative to the timing and duration of the HRE. We chose to model  using two logistic 

functions: 1) the proportion of the displaced population rapidly increases until a maximum displacement level 

( ) is reached one day later and 2) the proportion displaced gradually declines from  until baseline 

pre-disaster levels return 100 days later. The values of  were informed by our tweet-based analyses 

(Figure 2). 

 

 



Baseline parameter values and initial conditions 

 

Simulations start on 15-May and end on 15-December of the same year. The initial mosquito carrying capacity 

in an area prior to the HRE event (parameter ) is given by the product of the pre-HRE ratio of mosquitos 

per person (denoted by ) and the human population size, . Further, the initial adult mosquito 

population is assumed to be at carrying capacity and entirely susceptible. Because we focus on short-term 

epidemic dynamics following HREs, we assume a constant and initially completely susceptible host 

population before 5 initial infectious individuals are introduced in the county of Aransas, Texas. This is 

consistent with the fact that only small autochthonous outbreaks of dengue and Zika have been documented 

in the region [26]. The average intrinsic incubation period ( ) and the average host infectious period (  

) were fixed at 5.9 days and 5 days, respectively, as in [16]. Other model parameter values and their 

uncertainty ranges are given in Table 1. 

 

Simulations for model testing, verification, and assessing the impact of the timing of the HRE on the 

epidemic attack rate 

 

We simulated outbreaks for four different hypothetical 4-day hurricane scenarios characterized by sustained 

rainfall at 50 cm per day occurring on June 1st, July 1st, August 1st, or September 1st   and a baseline (non-

hurricane) rainfall per day at 0.5 cm together with a temperature cycle that is consistent with that of the 

evacuation counties in Texas during Hurricane Harvey (Figure 1A). For these simulations, we modelled a 

single population of 100,000 people.  

 

Baseline simulations of no-HREs were obtained by assuming a constant rainfall level at 0.5 cm per day and 

assuming no population displacement (i.e., ) . 

 

Simulations specifically tailored for Hurricane Harvey in Texas  

 

The model was parameterized on data from Hurricane Harvey, Texas, 2017. This affected the Greater Houston 

Area in Southeast Texas with a population of around 2.3 million [27]. The population includes many people of 

low socio-economic status, known to be at high risk of arboviral diseases (e.g., West Nile Virus, dengue, 

chikungunya, and Zika) transmitted by Ae. aegypti and Ae. albopictus mosquitoes [27, 28]. The hurricane, the 

most severe extreme rainfall event in US history, crossed the coast of Texas on 24 August 2017 as a category-4 

hurricane, bringing torrential rains above 127 cm on parts of the greater Houston area over the course of four 

days, and leading to flood damage estimated at $125 billion [25]. We focus our study on the geographic area in 

Texas comprised by the counties with a mandatory evacuation order: Arkansas, Brazoria, Calhoun, Jackson, 

Matagorda, Refugio, San Patricio and Victoria [23]. 



 

Annual population size estimates in mid-year as well as daily mean temperature and precipitation across 

counties from 2015 to 2017 were obtained from United States Census Bureau [29] and the PRISM Climate 

Group [30], respectively. We retrieved county-level latitude and longitude coordinates [31] to estimate inter-

county Euclidean distances. The county-level population size, mean temperature, total precipitation are 

shown in Figure S2. Daily temperature and rainfall time series for the evacuation counties in Texas for 

Hurricane Harvey simulation scenarios are shown in Figure 1B.  

 

Baseline simulations of no-HREs were obtained by limiting the daily rainfall level to 4 cm and assuming no 

population displacement (i.e., ) . 

 

 

Uncertainty and sensitivity analyses 

 

We conducted uncertainty and sensitivity analyses to assess the effects of 6 uncertain parameters: , , , 

, , and on the total number of cases occurring during our study period (Table 1). For this purpose, 

we generated 1000 samples of the parameters using a uniform Latin hypercube sampling design (parameter 

ranges given in Table 1) and holding other parameters fixed to their baseline values. For each set of parameter 

values and different timing of the HRE, we simulated incidence curves and recorded the total number of 

infectious individuals during our study period. We ranked the sensitivity of the parameters based on their 

effect on the cumulative number of cases according to their partial rank correlation coefficients (PRCC) [32]. 

Model simulations were generated using the ode45 function in Matlab (The Mathworks). 

 

 

Results 
 

We found that the primary drivers of the impact of HRE events on mosquito-borne infectious disease include 

the timing of those events relative to the transmission season, and the proportion of the population displaced 

during an HRE event. The risk of outbreaks is highest if an HRE occurs early in the transmission season, and 

lowest if it occurs late in the season.  Since the net effect of population displacement on disease risk is 

negative—the more people displaced the lower the risk to those who remain—risk is decreasing in the 

displacement rate.  The relation between the timing of an HRE event and the displacement rate is shown in 

Figure 3.  Low displacement during events that occur early in the transmission season are associated with the 

highest number of cases (Figure 3). 

 



For the parameterization associated with Hurricane Harvey we found that our baseline simulations (no-HRE 

events) did not yield sustained outbreaks. This is consistent with the historic evidence of only small, 

autochthonous outbreaks of dengue and Zika in Texas [26].  Nor did the addition of an HRE event 

parameterized on the temperature and rainfall conditions brought by Hurricane Harvey change this.  While 

the event increased the carrying capacity of the local system for Aedes species, population displacement 

reduced the number of imported cases (Figure S3). Given temperature and other conditions associated with 

the timing of the event—Hurricane Harvey crossed the coast of Texas on 24 August 2017—the net effect 

involved no increase in the risk of an outbreak.  

 

Four different time snapshots of tweeting activity before, during and after Hurricane Harvey are shown in 

Figure 4 while the corresponding total number of tweets is shown in Figure 5. From our mobility analysis, we 

identified 103 unique users living in the evacuation counties during the pre-hurricane period and estimated 

that 82 of those users had left the evacuation counties as they did not have any tweeting activity within those 

counties during the hurricane period. Moreover, out of those 82 users, 39 users tweeted at least once outside 

the evacuation counties. Hence, this suggests that the proportion of the displaced population during 

Hurricane Harvey ranged from 38% (39/103) to 80% (82/103). In addition, we found that only 12 of the 83 

users (12%) had returned to their residence in evacuation counties by 2017-10-15.  

 

To identify the conditions that would have yielded an epidemic, we conducted sensitivity analyses around six 

parameters ( , , , , , and , Table 1). We found that a number of these parameters significantly 

influence the epidemic size (P values<0.05), albeit in different ways as shown in Figure S4A. Parameters , 

 , relating to the creation and removal dynamics of the mosquito carrying capacity, had the most influence 

on cumulative cases. As expected, parameter has a positive impact on the epidemic size whereas parameter 

has a negative impact. The case importation rate ( ) also had substantial positive impact on epidemic size, 

and the corresponding PRCC increased slightly with later timing of the HRE (Figure S4A). Further, parameter 

negatively influenced epidemic size, which increased slightly with a later timing of the HRE while the initial 

vector-host ratio ( ) played a more significant role on epidemic size (PRCC=0.38-0.49) than the maximum 

vector-host ratio (PRCC=0.06-0.13). Our findings from sensitivity analyses confirm that there is a 

substantial decline in the median epidemic size, the later the HRE occurs (Figure S4B).   

 

 

  



Discussion 
 

It is widely recognized that natural weather disasters, including HREs, have the potential to increase mosquito 

borne disease transmission by changing the availability of breeding sites.  Depending on the species of 

mosquito involved and its breeding site preferences, HREs can have a larger or smaller impact on mosquito 

abundance. This effect can be amplified by disruption of vector control operations.  At the same time, damage 

to housing (including protective measures such as mosquito screens) and public health infrastructure can 

increase exposure. The most important risk factors are, however, related to population displacement, and in 

particular to the conditions in which displaced people find themselves [33].  One of the most extreme 

examples of the impact of a natural disaster on vector borne infectious disease is the malaria epidemic that 

followed the 1991 earthquake in Costa Rica.  The April 1991 earthquake was followed by flooding in August 

of the same year. The result was a 4,700% increase in incidence of malaria in the worst affected canton over the 

average monthly rate for the pre-earthquake period. While mosquito habitat changes due to landslides, river 

damming, and river rerouting were a factor, other important drivers were the disruption of vector control 

activities and local population displacement that led to increased exposure to mosquitoes [34]. The evidence 

from flood events elsewhere underlines the importance of the combination of conditions faced by the 

displaced population.  Infectious disease risks depend on an ‘epidemiologic triad’: changes in the conditions 

of displaced people, changes in the ecosystem of pathogens, and changes in the biophysical environment. 

Risks are highest where displaced people and refugees face overcrowded shelters, poor water and sanitation, 

poor nutrition and hygiene, and disrupted healthcare [35].   

 

In this paper we model the potential impact of HREs on mosquito-borne disease transmission in temperate 

areas of the world such as the southern coastal areas of the United States. We test the disease-risk implications 

of variation in: (a) the intensity and temporal profile of human population displacement away from the area 

immediately affected by the HRE, and (b) the effects of rainfall on mosquito abundance. Since human 

population displacement is not within the area affected by the HRE, and does not have implications for 

crowding, sanitation, nutrition or hygiene, it is risk-reducing. By contrast, changes in mosquito breeding 

habitat is risk-increasing, but this is also highly sensitive to when the event occurs in the transmission season. 

We find that the impact of vector-borne disease transmission is on average greater the earlier an HRE occurs 

in the transmission season, and the larger the case importation rate.  

 

Our sensitivity analyses underscore the need to improve understanding of the mechanisms connecting HREs 

and mosquito reproduction and development, and to enhance empirical data on vector control and disease 

importation after a disaster. The mechanisms connecting HREs and mosquito reproduction concern the link 

between rainfall and the growth of breeding sites. We have assumed a linear relation between rainfall and the 

growth of breeding sites, but this is an empirical question.  Monitoring the dynamics of flooding at fine 

spatial-temporal scales is crucial for appropriately modelling the spatial heterogeneity in mosquito breeding 

capacity as well as for the implementation of preventive and mitigation efforts. Open satellite imagery 



provides data at coarse spatial scales and is only useful to identify the most heavily affected regions, whereas 

high-resolution satellite mapping is not available to the public.  Restoration of vector control operations, and 

especially vector monitoring operations, as soon as possible after an emergency would help improve model 

projections, and hence the capacity to manage HRE-induced epidemics.  

 

Disease importation rates in the model are sensitive to the number of people displaced from the area. They fall 

with the number of people displaced from the area during an HRE event.  They rise with the number of 

people returning after the event, and by the number (and origin) of people moving into a disaster area offering 

emergency relief, or repair, rehabilitation and restoration work. We do not model the latter, but note that it is 

potentially extremely important.  Short-term changes in mobility patterns that are not explicitly taken into 

account (see also [10]) might be recovered from data obtained from social media platforms such as Twitter. 

Such platforms are already important tools for disaster management [36]. Data streams from these sources 

could be useful to quantify the level of public awareness during emergencies [37], and may provide a useful 

proxy of the temporal profile of population displacement patterns away from the affected areas.  

 

Social media data do pose several challenges. For instance, to obtain meaningful mobility patterns, existing 

studies (such as [38]) aggregate geo-coded tweet data for extended periods of time: this ensures that there is 

sufficient number of tweets that paint an overall picture of the mobility patterns within the given region. Since 

only a small portion of all tweets contains point coordinate information, using Twitter data to discover short-

term mobility patterns immediately before, during, and immediately after a hurricane may be problematic. In 

addition, there is no evidence that Twitter users are representative of the general population.  Indeed, in the 

U.S. Twitter users have been found to overrepresent the more densely populated regions of the country, and 

to represent a highly non-random sample of the distribution of the general population by gender and ethnicity 

[39]. Elsewhere they have been shown to be younger, and more educated than the general population [40]. If 

these characteristics are correlated with mobility, and if evacuations are voluntary, we would expect Twitter 

data to overestimate the displacement rate. There is currently no systematic collection of data on the 

demographics of disaster response.  Better data on both evacuees and emergency responders would help 

improve projections of disease risks.  

 

Finally, one limitation of the model developed here is that it is deterministic, capturing the average dynamics 

of HRE-induced epidemics.  Stochastic models would be useful for investigating questions relating to the 

probability of disease invasion and stochastic extinction [26, 41]. Future versions of the model could also be 

cast as a near real-time forecasting tool to guide the public health interventions based on real-time forecasts of 

temperature and rainfall during the HRE and scenarios for changes in population mobility and displacement 

patterns.  
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Tables 
 
Table 1: Baseline and uncertainty ranges for model parameters included in sensitivity analyses.   
 
 

Parameter Definition Baseline value Range 
 Average case 

importation rate (1/ 
day) 

1/14 days 0-1/7 

 Per capita rate or 
production of new 
breeding sites from 
rainfall 
(1/(person*rainfall)) 

0.02 0.01-0.2 

 Rate at which people 
destroy mosquito 
breeding sites (1/day) 

0.02 0.01-0.2 

 Delayed impact of 
rainfall on the 
generation of new 
mosquito breeding 
grounds (days) 

14 days 14-21 days 

 Initial mosquito-host 
ratio prior to the HRE 

0.2 0.1-1 

 Maximum mosquito-
host ratio 

8 6-10 

 

 



Figure captions 
Figure 1: A) Temperature and rainfall curves employed for assessing the impact of the timing of the HRE on 
the epidemic attack rate assumed six different 4-day North Atlantic hurricanes characterized by sustained 
rainfall at 50 cm per day occurring on June 1st, July 1st, August 1st, or September 1st   and a baseline (non-
hurricane) rainfall per day at 0.5 cm together with a temperature cycle that is consistent with that of the 
evacuation counties in Texas during Hurricane Harvey. B) Daily temperature and rainfall time series for the 
evacuation counties in Texas for Hurricane Harvey simulation scenarios. 
 
Figure 2:  Three response curves (low, moderate, high) for Hi(t) describing the proportion of the displaced 
population in a given area i relative to the timing and duration of the HRE which were modelled using logistic 
functions and parameterized according to our tweet-based mobility analysis results described in the main text. 
These displacement curves show an increasing proportion of the displaced population until a maximum 
displacement level (Hmax) is reached followed by a gradual decline until baseline pre-disaster levels return. 
 
Figure 3: The relation between the timing of an HRE event and the displacement rate on the cumulative 
number of cases for the four different hypothetical 4-day hurricane scenarios characterized by sustained 
rainfall at 50 cm per day occurring on June 1st, July 1st, August 1st, or September 1st  and a baseline (non-
hurricane) rainfall per day at 0.5 cm together with a temperature cycle that is consistent with that of the 
evacuation counties in Texas during Hurricane Harvey and a displacement profile curve with a maximum 
displacement of 60% of the population. Overall, the outbreak attack rate is significantly lower following 
hurricanes occurring during the later phase of the North Atlanta hurricane season, which ranges from June 1st 
to November 1st. 
 
Figure 4:  Four different time snapshots of tweeting activity before, during and after Hurricane Harvey. 
 
Figure 5:  Daily number of tweets before, during, and after Hurricane Harvey generated in the mandatory 
evacuation counties of Texas.  
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