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ABSTRACT
There are well-established survival analysis methodologies for data
sets that are complete, with accurate information on censoring. But
what if they are not complete? In this article we consider how to
analyze cases where “hidden censoring” occurs, where individuals
have effectively left the study but the hospital is unaware of this.
We develop a new Markov chain-based methodology for generating
survival curves and hazard functions, and demonstrate this using a
breast cancer data set from the Kurdistan region of Iraq.
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1. Introduction

The modeling of survival has a long history, and there are well-established methodologies
for estimating survival probabilities for individuals with a given medical condition (Cox
and Oakes 1984; Crowder 2012; Crowder et al. 1991; Lawless 2003). Essentially identical
methods are also used for modeling the failure of items, such as components in machines
(see, e.g., Barlow and Proschan 1975; Bedford and Cook 2009). The most fundamental
functions used in survival analysis are the survivor function, which is the probability that
an individual survives beyond time t, and the hazard function, which is the risk of death
(per unit time). Thus, if our individual has lifetime distribution T, following standard
terminology (see, e.g., Chap. 2 of Cox and Oakes 1984), the survivor function is

SðtÞ ¼ P½T > t� (1)

and the hazard function is

hðtÞ ¼ �
d
dtSðtÞ
SðtÞ : (2)

Expressing the relationship in Eq. (2) the other way round, we obtain

SðtÞ ¼ e��t0hðuÞdu: (3)

These fundamental properties can be estimated directly from data in a number of ways,
but perhaps the simplest and most robust is the Kaplan–Meier estimator, which estimates
the hazard function, using the discrete hazard function
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hj ¼
dj
nj
; (4)

where dj is the number of observed deaths within a particular (unit) interval, and nj is the
number of individuals at risk at the start of that period. The survivor function is then
estimated by

ŜðtÞ ¼
Yt
j¼1

ð1� hjÞ: (5)

This method automatically takes into account any data censoring, where an individual is
known to leave the study at a particular time, by reducing the number at risk nj by the
number of censored individuals cj. Thus, we update the number at risk as follows:

njþ1 ¼ nj � dj � cj: (6)

A great advantage of this method is that reliable estimates can be obtained without
making assumptions about the underlying distribution T. The only information that we
need to apply this methodology is, for all times where we take measurements, knowledge
of the values of the total number of individuals at risk at the start of the time period and
the total number of deaths within the time period, that is, all vallues of nj and dj. This
then enables robust comparisons between survival curves from different studies, perhaps
between different types of treatment, different times, or different countries, and helps
clinicians to assess the effectiveness of different approaches. Significant censoring can be
factored in as already described without problems, provided that records are sufficiently
good to know when contact with patients has been lost. The focus of this article is how
to tackle problems when you do not have this knowledge, and significant “hidden”
censoring occurs unknown to the researchers, using a real example as a case study. In
section 3 we present two models, one without and one with censoring, that address this
problem. In fact, our models, in particular the second model, do make parametric
assumptions, based as they are on an underlying Markov-chain model. Nevertheless,
the models, in particular the simpler first model, are robust to (at least certain types of)
deviation from them.

2. A Kurdish breast cancer data set

Breast cancer is the most common cancer in the West, affecting a large number of
women (and men) at some point in their lives (World Health Organization [WHO]
2008). There are various risk factors, such as obesity, age, and hormone replacement
therapy during menopause (Lan et al. 2013; Robb et al. 2007; Rudat et al. 2013). Breast
cancer has been well studied, and treatments are becoming more sophisticated and
successful (De Santis et al. 2014). The American Cancer Society reports that around
250,000 breast cancer cases are diagnosed in the United States per year, and of these,
almost 10% affect women under the age of 45 years. While this percentage may sound
relatively insignificant in comparison to the total number of women diagnosed
annually, it is a noteworthy ratio, particularly when compared to other cancers. In
women under 40, breast cancer is the leading cause of cancer deaths (Ries et al. 2007).
The United Kingdom currently has the 11th highest breast cancer rate, with 89.1 of
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every 100,000 women every year expected to develop breast cancer (NHS Choices
2011). Breast cancer is also becoming a more common disease in the developing world
(Ozmen 2006). In particular, we are interested in the incidence of breast cancer in the
Kurdistan Region of Iraq. This has not received a lot of detailed attention; examples
include Majid et al. (2009), Othman et al. (2011), Majid et al. (2012), and Shabila et al.
(2012) (for other work on breast cancer in the Kurdistan region see also, e.g., Alwan
et al. 2000; Hughson 2012; Hussaion 2009; for work on the incidence of breast cancer
elswhere in the wider region see Al Tamimi et al. 2010; Dey et al. 2010; Rennert 2006;
Sughayer et al. 2006). These papers addressed various important questions, especially
related to the incidence of breast cancer, but so far no detailed survival analysis has
been carried out for the Kurdish region of Iraq.

We consider a data set of breast cancer patients from Nanakaly Hospital. Nanakaly
Hospital is a public-sector hospital in Erbil, the capital of the Kurdistan region of Iraq,
was established in 2004, and is funded by the Kurdistan government. It is a center
concerned with all types of cancer. The hospital registry department collects data
regarding the type of cancer and the age of the patients, the time of diagnosis, and (if
appropriate) the time of death, as well as personal details, and these are registered on the
statistical database. We have access to the most recent data on breast cancer, minus the
personal information.

Detailed times of death were provided, with censoring only at the end of the study
period on June 1, 2014; see Figure 1 for an illustration. Analyzing this data set using
SPSS provided the Kaplan–Meier survival curve in Figure 2. The function flattens out
to effectively a horizontal line, indicating a hazard rate tending to zero. This is clearly
not a realistic survival curve. For comparison, a survival curve for a set of breast
cancer data from Schumacher et al. (1994) is shown in Figure 3. The problem with the
survival curve from Figure 2 is that we calculated it on the assumption that all
individuals other than those who died (or were censored by reaching the end of the
study period) were still active in the study, but in fact individuals often did not return

Figure 1. Illustrative plot of survival times including end of period censoring (C), recorded death (D),
and hidden censoring, individuals unknowingly lost to the study (L), for the Kurdish data from Nanakaly
Hospital.
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to the hospital after initial treatment, and there are no clear records of when the
deaths of these individuals occur, or of which individuals these are. Thus, there is
some secret censoring that we do not have knowledge about. We can think of this to
mean that while the values of dj are accurate, the values of nj are not, and we are (after
some time, greatly) overestimating them.

This article presents two related methods for overcoming this problem and obtaining a
realistic survival curve for the Nanakaly data. The data will be analyzed more fully in a
separate paper.

Figure 2. The original survival curve for the Kurdish data from Nanakaly Hospital.

Figure 3. Survival curve for the German data from Schmoor et al. (1996) and Schumacher et al. (1994).
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3. Markov models

3.1. A Markov model without censoring

We first introduce a continuous-time Markov model without overt censoring (Cox and
Miller 1965; Grimmett and Stirzaker 2001). In our data the only observed censoring was
caused by the end of the study period, although as patients were being recruited all the
time during the period, the censoring time could be small, and such censoring could occur
for any time less than 2602 days, the time from the earliest record considered to the end of
the study period. Thus, all of the individuals censored and removed from the number at
risk in the standard way following Eq. (6) (see Eq. (15)) was censoring of this type.

Consider a population of individuals in three categories: either at risk (I), died (D), or
who have left the study (without our knowledge), which we call “lost” (L). Individuals
simply move from state I to the other two states at constant rates l to L and p to D. We
thus have a population as described by Figure 4. We denote the proportion of individuals
in states I, L, and D at time t by PIðtÞ, PLðtÞ, and PDðtÞ, respectively. State I cannot be
entered, and is left at constant rate per individual lþ p; thus, we obtain the differential
equation (see, e.g., Chap. 8 of Haigh 2002):

d
dt

PIðtÞ ¼ �ðl þ pÞPIðtÞ: (7)

Since at time 0 every individual is in the “at risk” category, so that PIð0Þ ¼ 1; we obtain

PIðtÞ ¼ e�ðlþpÞt: (8)

Since state D is entered at rate pPIðtÞ; we also have

d
dt

PDðtÞ ¼ pPIðtÞ; (9)

which using Eq. (8) and the fact that PDð0Þ ¼ 0 yields

PDðtÞ ¼ p
lþ p

1� e�ðlþpÞt
� �

: (10)

Since PL ¼ 1� PI � PD, we obtain

PLðtÞ ¼ l
l þ p

1� e�ðlþpÞt
� �

: (11)

Suppose that, as in the original survival plot, we consider the data without realising that
the category L exists. We can see from Eqs. (10) and (11), that

Figure 4. The Markov survival model without censoring.
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PLðtÞ
PDðtÞ ¼

l
p
: (12)

Let us denote the ratio l/p by α, which is the number of “lost” individuals per death. As t !
1 there are no more observed deaths, as all individuals who have not already died have in
fact been “lost.” We can obtain an estimate of α by the ratio of the number of individuals
apparently still in the study n1 and the number who have been observed to die D1; yielding

α̂ ¼ n1
D1

: (13)

Thus, an easy way to construct a survival curve from the data is to adjust the number at
risk, instead of using the formula from Eq. (6), and instead use

n̂jþ1 ¼ n̂j � dj � α̂dj � cj; (14)

which implies that

n̂jþ1 ¼ n̂j � D1 þ n1
D1

dj � cj: (15)

We can see that using this updating method, α̂ from Eq. (13) is the appropriate estimate to
use, by observing that after all observed deaths have been accounted for, using Eq. (15) an
extra n1 individuals will have been removed from the at-risk category. This is precisely
the number of individuals that we noted had been “lost.”

The survivor function is then just calculated using Eq. (5), with hj calculated using

hj ¼
dj
n̂j
: (16)

This method will work well even if the underlying death rate and the rate of loss of
individuals vary in time, as long as they vary in proportion with each other. If this is not
the case, there would be a bias in the estimates of the hazard function hj that we obtain. To
tackle this problem we would need to have some more specific information about the way
in which the loss of individuals into the L category differed from the rate of deaths, and
this is likely to be problem specific, for example, depending upon hospital procedures, so
we do not discuss any specific methodological ideas in this paper.

As mentioned in section 2, there is overt censoring in this population caused by the end
of the study period. This creates a potentially significant problem, because even the “lost”
individuals are censored in this way, so without adjustment the number of individuals at
risk can be underestimated due to double counting (effectively, the same individual being
lost and then censored can be removed twice). This in turn leads to a lower estimate of α
than would otherwise be the case. In the alternative model that follows, we show a
different, higher, estimate of α, and there is some discrepancy between the estimated
survival curves of the two methods as a result, since the preceding errors cause an
overestimate of the survival curve for the first model. We discuss this issue later (see
Figures 6 and 7).
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3.2. A Markov model with censoring

More generally, we would like to allow for observed censoring as well as hidden censoring
within our model. Observed censoring occurs either when an individual is still alive at the
end of the study period, or where the person leaves the study before the end but the
hospital is aware of it. Hidden censoring occurs when the person leaves the study but the
hospital is not aware of it. Thus, we now add an extra “censored” category C to our model,
where individuals move from I to C at rate q. Importantly, individuals also move from the
lost category L to C at the same rate q. This is clearly appropriate for our data set, since the
only overt censoring is due to the end of the study, and thus any individual will reach this
at the same time, whether in category I or L. We thus now have a population as described
by Figure 5. We note that for individuals censored because we know that they have
dropped out of the study prior to the end time, it would seem reasonable to assume that
these and the “lost” individuals would be entirely separate, so that the transition rate q
from state L to state C would be absent.

Following the transitions in Figure 5, there is a constant rate of departure per individual
from state I, so that we have

d
dt

PIðtÞ ¼ �ðlþ pþ qÞPIðtÞ; (17)

and similarly to before, we obtain

PIðtÞ ¼ e�ðlþpþqÞt: (18)

We also still have

d
dt

PDðtÞ ¼ pPIðtÞ; (19)

which using Eq. (18) and the fact that PDð0Þ ¼ 0 yields

PDðtÞ ¼ p
lþ pþ q

ð1� e�ðlþpþqÞtÞ: (20)

For the lost category L, we have entry to the state at rate lPI(t) and departure from the
state at rate qPL(t), giving

Figure 5. The Markov survival model with censoring.
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d
dt

PLðtÞ ¼ lPIðtÞ � qPLðtÞ: (21)

Using standard methods (see, e.g., Chap. 8 of Haigh 2002), together with the fact that
PLðtÞ ¼ 0, yields

PLðtÞ ¼ e�qt l
l þ p

1� e�ðlþpÞt
� �

: (22)

Finally, since PC ¼ 1� PI � PD � PL; we obtain

PCðtÞ ¼ lþ q
lþ pþ q

1� e�ðlþpþqÞt
� �

� e�qt l
lþ p

1� e�ðlþpÞt
� �

: (23)

It is clear that the death rate for individuals in the at risk category I, that is, the correct
hazard function, is simply

hcðtÞ ¼ p: (24)

Using Eq. (3), the true survivor function for our model is thus simply

ScðtÞ ¼ e�pt: (25)

Since we perceive individuals from class L as being in category I too, we observe an
apparent hazard function of

haðtÞ ¼ PI
PI þ PL

p: (26)

Substituting the appropriate terms from Eqs. (18) and (22) and rearranging gives

haðtÞ ¼ pðl þ pÞ
pþ leðlþpÞt : (27)

Following Eq. (3), the apparent survivor function is thus

SaðtÞ ¼ e��t0haðuÞdu; (28)

which rearranges to

SaðtÞ ¼ lþ pe�ðlþpÞt

l þ p
¼ αþ ðe�ptÞ1þα

1þ α
: (29)

Thus, we can express Sc(t) in terms of Sa(t) as follows:

ScðtÞ ¼ ðð1þ αÞSaðtÞ � αÞ1=ð1þαÞ: (30)

The apparent survival curve Sa(t) from Eq. (29) flattens out to a limiting value
α=ð1þ αÞ: We can thus estimate α by equating this theoretical limit with the observed
limiting value of the survival curve from the data which we shall denote by s1, giving

~α ¼ s1
1� s1

: (31)

This yields the conversion formula from the apparent to the corrected survival curve as
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ScðtÞ ¼ 1
1� s1

SaðtÞ � s1
1� s1

� �1�s1
: (32)

We note that our final solutions for the survivor function and the hazard function do
not contain q at all. In fact, this means that these solutions are unaffected if q is replaced
by a time-dependent function q(t). This is important, as the censoring time is in reality
directly related to the rate of recruitment into the study, which may be influenced by
nonrandom factors. It also means that we can apply this method to cases without
censoring as in the previous method of section 3.1. We also note the discrepency between
our two estimates of α: In general when overt censoring occurs, α̂ will be smaller than ~α,
because the first model neglects the influence of censoring in the estimation procedure.

4. Applying our models to the Kurdish data

From the Kurdish data we obtained the following values: n1 ¼ 232, D1 ¼ 240, and s1 ¼
0:5969; which gives the two alternative estimates of α̂ ¼ 0:9667 and ~α ¼ 1:4807 lost
individuals per death. Applying our method from section 3.1 gives the adjusted survival
curve from Figure 6. Using the alternative method from section 3.2 gives the adjusted
survival curve from Figure 7.

We can see that the two alternative survival curves generated by our methods now
resemble the survival curve from the German data from Figure 3. The curves in our case
are clearly lower than that of the German data, indicating poorer survival rates among the
Kurdish patients. There are a number of reasons for this, including later diagnosis, less
efficient treatment regimes, and different patient demographics, which we will consider in
a later paper. Comparing the two curves from Figures 6 and 7, we see that initially the two
curves are roughly the same, but for later times, the curve in Figure 6 is clearly above that
in Figure 7. We should also note that our methods are likely not to be very accurate near

Figure 6. An adjusted survival curve for the Nanakaly data using the method without censoring from
section 3.1.
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the end of the curves, that is, when the last of the recorded deaths occur. Thus, in the case
of the Nanakaly data, the curves beyond about 700 days are likely to be inaccurate.

We should also note that the preceding methodology can be applied to any survival
curve, so that if we have a survival curve from a subset of the data, or for patients with
particular properties, then the method of adjusting the original survival curve is comple-
tely unchanged.

5. Simulations

In this section we consider simulations to investigate the validity of our modelling proce-
dure. We consider the example German data from Figure 3, as we have an accurate survival
function for this. For each simulation, we chose a distribution and simulated each individual
from the German data being “lost” following this distribution. Thus, if death happens before
the individual is lost, we observe the death, but if the individual is lost first we assume that
they are still in the study, and we do not observe their death, if it occurs. This thus replicates
what happens in the Nanakaly data, and the situation that we are modeling.

The models that we have considered are Markov with constant rate, which would yield
an exponentially distributed time of loss. We considered various values of this distribu-
tion. One set of simulations considered a mean loss time of 2000 days. Given the length of
the German study, this accounted for quite a significant loss of data. One example run of
this is shown in Figure 8, where the apparent survival probability after 2000 days has only
fallen to approximately 0.8 instead of the true value of just over 0.6 as a result. The
survival curves generated for our two models are shown in Figures 9 and 10, respectively.
We can see that in both cases, the models significantly correct the survival function from
the apparent survival function shown in Figure 8. The first model gives a somewhat
conservative correction, which is higher than the true survival function in Figure 3. As

Figure 7. An adjusted survival curve for the Nanakaly data using the method with censoring from
section 3.2.
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explained in the final paragraph of section 3.1, this is because of the double counting of
lost and censored individuals. The estimate of the second model is clearly better, with a
closely comparable survival curve. These curves are typical of different simulations with
the same mean loss time.

Exponential distributions with higher means yield even better results, as the level of loss
is diminished, so the amount of adjustment that needs to be carried out through our
procedure is reduced. For exponential distributions with lower means (in particular below

Figure 8. The survival curve for a sample simulation of loss from the German data, where loss of
individuals occurs following an exponential time with mean 2000 days.

Figure 9. An adjusted survival curve for the German data with simulated loss following an exponential
distribution with mean 2000 days, using the method without censoring from section 3.1.

JOURNAL OF STATISTICAL THEORY AND PRACTICE 385

D
ow

nl
oa

de
d 

by
 [

L
ib

ra
ry

 S
er

vi
ce

s 
C

ity
 U

ni
ve

rs
ity

 L
on

do
n]

 a
t 0

2:
00

 0
5 

A
ug

us
t 2

01
6 



500 days), and thus very large data loss, figures became increasingly less accurate, as a
larger proportion of deaths was missed, and this led to overestimates of survival rates.

We also considered nonexponential distributions, for example, Gammað2; θÞ, for
patient loss. When this led to a large number of lost individuals (for sufficiently high
means this did not, and thus as earlier the corrections were not large and were accurate),
we would expect our model to perform worse in such circumstances, as this would
indicate that the underlying Markov assumption was not correct. This was indeed the
case, although the models still corrected the false apparent curves to a significant effect,
and as for exponential distributions with small means, the effect was generally to produce
slightly conservative survival functions, which overestimated the true survival curve.

Thus, we see that our models perform well in many circumstances, and even when less
accurate they are always an improvement on considering the apparent survival curves
from the unadjusted data.

6. Discussion

In this article we have developed a new method for performing a survival analysis on a set
of data where there are important unknown factors, namely, secret censoring of the data,
so that the number of individuals apparently at risk is greater than those actually at risk. In
particular, we have shown how to adjust a Kaplan–Meier analysis to find a survival curve
in such circumstances, and also shown how to estimate a true hazard (survivor) function
to the biased one obtained directly from the data.

A limitation of our methodology is that it is based upon a Markov chain, so transition
rates are assumed constant over time. In fact, some relaxation of these assumptions, such as
making the censoring rate q time dependent, does not affect the model accuracy. Similarly,
allowing the parameters l and p to be time dependent does not affect the model, provided

Figure 10. An adjusted survival curve for the German data with simulated loss following an exponential
distribution with mean 2000 using the method with censoring from section 3.2.
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that they vary with α ¼ l=p constant. This, however, is not always reasonable, and it is
possible to envisage some situations where this is far from being the case. In such
circumstances our predictions would not be reliable. Similarly, if different groups of
individuals have different rates with different l/p ratios, this might also affect the results.
We claim, however, that in circumstances where the problems outlined occur, our model is
a good first step, and a considerable improvement on making no adjustment. This is
demonstrated in section 5, where we simulated the loss of individuals from the German
data set and compared the resulting survival curves from our models with those from the
original data.

This leads to the question, how prevalent will the problems that we have described be?
With sufficiently accurate records and follow-up of individuals they will not occur, and of
course a better solution than applying our methods is to have these processes in place.
Nevertheless, in reality they often will not be in place. This is particularly the case in
regions with a history of upheaval and developing medical services. It can be argued that
these are precisely the regions that most need accurate survival models, so the application
of our methods can be of significant value.
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