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Original Research Article 

The use of survival analysis modelling with incomplete data with application to breast 

cancer  

 

 

ABSTRACT: There are strong survival analysis methodologies for data sets which are 

complete, with accurate information on censoring. But what if they are not complete? In an 

earlier paper we built a methodology for estimating survival probabilities and hazard functions in 

a health setting, using breast cancer data from the Kurdistan region of Iraq, for censored and 

uncensored data when a substantial portion of individuals are lost to the study. In this paper we 

build on these models to consider further issues based upon the accuracy of the records of patient 

death, where deaths often occur beyond the hospital in family settings and patients ceasing 

treatment and contact with the hospital may or may not represent their death; thus the record of 

their time of death may not be accurate. We develop a new Markov chain-based methodology for 

generating survival curves and hazard functions, and demonstrate this using a different breast 

cancer dataset from the Kurdistan region of Iraq. 

Keyword: Survival Analysis, Markov Model, Breast Cancer, Censoring Data.  

 

1: Introduction 

Survival analysis is primarily concerned with modelling and analysing time-to-event data, with 

events generally referred to as “failures.” Some examples are time until an electrical component 

fails, time to first recurrence of a tumour (i.e., length of remission) after initial treatment 

(Tableman and Kim, 2004).  

It is possible that a “failure” time will not be observed due to deliberate design or random 

censoring. In this study this would occur if a patient is still alive at the end of a clinical trial 

period or has moved away (Majid. et.at., 2012, Compton. et. al., 2012). The primary reason for 

developing specialized models and procedures for failure time data is the necessity of obtaining 

methods of analysis that accommodate censoring. Survival analysis can then be thought of as a 

collection of statistical procedures that accommodate time-to-event censored data. Previously, 

incomplete data were treated as missing data and omitted. This loss of information introduced 
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bias in estimated quantities. The procedures discussed here avoid bias and are more powerful as 

they utilize the partial information available on a subject or item (Tableman and Kim, 2004). 

Survival analysis is the study of the occurrence and timing of events. Covariates are studied to 

determine their effect on survival duration. Censoring and time-dependent covariates (time-

varying explanatory variables) are central to survival analysis (Cox and Oakes, 1984, Lawless, 

2003, Bedford and Cook, 2009).  

The survival function is the most well-known function in survival analysis; it describes the 

probability that an individual survives up to time t. Related to this is the hazard function, which 

is the risk of death (per unit time) (Ziaei. et. al., 2013, Lambert and Royston, 2009). If our 

individual has lifetime distribution T, following standard terminology (see Raza and Broom, 

2016) the survival function is  

 ( ) 1 ( ) . (1)S t F t P T t= − =     

The hazard rate or hazard function is 
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which leads to the important expression 
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log ( ) ( ) . (4)
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Notice that F(+∞) = 1 (i.e., S(+∞) =0) iff 


=
0

)( duuh . 

Continuity will be assumed but concepts and formulae can be modified to include jumps in the 

density function when it is important (Raza and Broom, 2016). These fundamental properties can 
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be estimated directly from data in a number of ways, but perhaps the simplest and most robust is 

the Kaplan-Meier estimator, which estimates the hazard function, using the discrete hazard 

function (Miller. et. al., 2005, Hamdan and Garibaldi, 2009) 

. (5)
j

j

j

d
h

n
=  

Here dj is the number of observed deaths within a particular (unit) interval, and nj is the number 

of individuals at risk at the start of that period. The survivor function is then estimated by 

1

ˆ( ) (1 ). (6)
t

j

j

S t h
=

= −  

This method automatically takes into account any data censoring, where an individual is 

known to leave the study at a particular time; in Raza and Broom (2016) we reduced the 

number at risk n by the number of censored individual’s cj . Thus, the updated number at risk 

was as follows: 

1 . (7)j j j jn n d c+ = − −  

 

A great advantage of this method is that reliable estimates can be obtained without making 

assumptions about the underlying distribution of estimated times (Abuelghar. et. al., 2013). 

The only information that we need to apply this methodology is, for all times where we take 

measurements, knowledge of the values of the total number of individuals at risk at the start of 

the time period and the total number of deaths within the time period, i.e. all values of nj  

and dj . This then enables robust comparisons between survival curves from different 

studies, perhaps between different types of treatment, different times or different countries, 

and helps clinicians to assess the effectiveness of different approaches. Significant censoring 

can be factored in as described above without problems, provided that records are sufficiently 

good to know when contact with patients has been lost. In Raza and Broom (2016) we considered 

situations where we do not have this knowledge, and significant “hidden” censoring occurs 

unknown to the researchers, using a real example as a case study (Nanakaly Hospital data). 

There we presented two models, one without and one with censoring, which addressed this 

problem. In fact our models, in particular the second model, do make parametric assumptions, 

based as they are on an underlying Markov chain model. For details of these models see Figures 
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5 and 6. Nevertheless the models, in particular the simpler first model, were robust to (at least 

certain types of) deviation from such assumptions (Abadi.et.al., 2012, Saleem and Raza, 

2011).  

There are numerous studies on survival analysis in different countries, on various types of 

diseases.  However, there are hardly any survival analyses studies performed on breast cancer by 

Iraqi researchers in general and researchers in the Kurdistan Region in particular. Due to the 

importance of this for both society and the individuals (Tabatabai. et. al., 2012, Clayforth. et. al., 

2007), in this paper we look at the models described above (with and without censoring) based 

on an updated structure applied to data from Hewa Hospital. This accounts for the missing 

reports on times of death of a number of patients who did not return for their follow up 

appointments, a phenomenon which is indicative of a larger problem with the patients’ reaction 

toward this particular diagnosis which may be due to poor health education and general lack of 

awareness of the importance of keeping detailed and complete hospital records. The reason may 

include a general fear of disease or death and the hope of receiving better treatment elsewhere. 

Hospital record consistencies and general compliance appears to be correlated to economic status 

and doctor-patient interaction, and also the apparent termination of a patient's follow up 

treatment may simply be due to bad bookkeeping (Al-Riad Sharif, 2012). In particular it is clear 

that actual death records are almost entirely absent in the data that was obtained. That is the basic 

problem leading to not having the real time of death. 

 

Detailed times of death were provided, with censoring only at the end of the study period on 1st 

June 2014, see Figure 1 for an illustration. Analysing the above data using SPSS provided the 

Kaplan-Meier survival curve in Figure 2. The function flattens out to effectively a horizontal 

line, indicating a hazard rate tending to zero. In particular, Figure 3 shows that the probability of 

death appears very small after 700 days as the curve flatters out around this time (Berslow, 

1975). Since we see a small number of patients remaining for several thousand days, the data 

after this period was removed after time 659 as in Figure 3.  
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Figure 1:  Illustrative plot of survival times including end of period censoring (C), recorded death (RD) and 

hidden censoring, individuals unknowingly lost to the study (L), for the Kurdish data from Hewa Hospital. 

 

 
Survival Time 

Figure 2: Survival curve including censoring for the Kurdish data from Hewa hospital 
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Survival Time 

Figure 3: Survival curve including censoring for the Kurdish data from Hewa hospital data for 700 days 

 

 
Survival Time 

Figure 4: Survival curve for the German data from Schmoor et al. (1996) and Schumacher et al. (1994). 

 

The survival curve in Figure 3 is clearly not realistic. For comparison, a survival curve for a set 

of breast cancer data from Schumacher et al. (1994) is shown in Figure 4. The problem with the 

survival curve from Figure 3 is that we calculated it on the assumption that all individuals other 

than those who died (or were censored by reaching the end of the study period) were still active 

in the study, but in fact individuals often did not return to the hospital after initial treatment, and 

there are no clear records of when the deaths of these individuals occurred, or of which 

individuals these were. Thus, there is some secret censoring that we do not have knowledge 
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about. We can think of this to mean that whilst the values of dj are accurate, the values of nj are 

not, and we are (after some time, greatly) overestimating them. As in the Nanakaly data in Raza 

and Broom (2016), the flatness of the curve is likely because only a small number of patients 

remain in the study after this time. In summary, to find a good model for the Hewa Hospital data 

we began by plotting the survival curve using the Kaplan Meier method and it shows that, the 

curve is not reliable when compared to the Kaplan Meier curve for the German data model. 

 

2: Markov model 

2.1: Markov model without censoring for Hewa data 

In general, the process of collecting data in the health sector or any other sector in a developing 

country such as Iraq is not easy, because there is no accurate database system. The most 

dependable data are available in the official records but not obtainable readily. One inevitably 

has to refer to numerous government agencies to obtain relevant information from official 

sources such as the Ministry of Health, especially for information regarding the time of death.  

 

The Hewa data includes general information about the breast cancer patients, including their age, 

religion, tumour size, tumour grade, lymph nodes, exercise, educational level, family history, 

breast feeding, smoking, drinking alcohol, occupation, progesterone, estrogen, menopause, 

marital status and income. In addition there are three times involved in this data, time of 

admission, time of diagnosis and time of death. The time of admission refers to the first time 

when the patient visits the hospital and the staff of the hospital administration register general 

information about her. The diagnosis time means the time when the doctor diagnoses the patient 

and refers them to the laboratory to make necessary required tests based on the symptoms that 

they are suffering from. Finally, there is the actual time of death of the patient.  

 

In initial analysis later in this study we use z as an intermediate measurement for the rate of real 

death (which is not given) from the time of diagnosis. This serves to account for the missing 

reports on times of death of a number of patients who did not return for the follow up 

appointments, leading to the hospital not having the real time of death, which is reflected in the 

results of the survival curve when we applied the program at the first step, because we used the 

time of admission instead of the time of death. Clearly there are differences between the time of 
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admission and the time of death, and this leads to significant problems with the analysis. That is 

why we extend the analysis of the survival curve using a Markov process. This is the most 

natural and simple extension to the model to try to deal with the absence of the actual time of 

death.  Here when we applied the Markov process we considered two modifications, one without 

censoring and one with censoring (Alwan, 2010).   

 

Nevertheless, there are some serious limitations to this model. For example, if individuals do not 

get censored at constant rate, the censoring time will follow another distribution rather than an 

exponential distribution, which arises from the Markov model, and we will obtain a different 

picture to that obtained from a Markov process. Potentially more significant problems result 

from the lack of knowledge of the times of death. Deaths are assumed to follow a Markov 

process from the time of diagnosis category and there are two main source of error.  Firstly, the 

rate (z) of this process is unknown and had to be estimated and we have thus considered a range 

of values. Secondly, again this may not be a Markov process, which would also affect the shape 

of the survival function.  

 

We addressed this problem through estimating these numbers by constructing two new models, 

as described above, each using Markov chains and estimating the number at risk n~  and deaths 

d
~

. Figure 5 represents the original structure Markov survival model with no censoring.  

 
Figure 5: The Markov survival model without censoring for Nankalay data 

Consider a population of individuals in three categories; either at risk (I), died (RD) or who have 

left the study (without our knowledge), which we shall call “lost” (L). Individuals simply move 

from state (I) to the other two states at constant rates (l) to (L) and (p) to (RD). We thus have a 

Individual

(I)

Recorded Death

(RD)

Lost 

(L)

p Ɩ
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population as described by Figure 5. Denoting the proportion of individuals in states (I), (L) and 

(RD) at time t by )(tPI , )(tPL and )(tPRD  respectively. 

 

More generally we need to allow for observed censoring as well as hidden censoring within our 

model. Thus, we now add an extra “censored” category (C) to our model, where individuals 

move from (I) to (C) at rate (q). Importantly, individuals also move from the lost category (L) to 

(C) at the same rate (q). This is clearly appropriate for our dataset, since the only overt censoring 

is due to the end of the study, and thus any individual will reach this at the same time, whether in 

category (I) or (L). We thus then have a population as described by Figure 6. We note that for 

individuals censored because we know that they have dropped out of the study prior to the end 

time, it would seem reasonable to assume that these and the “lost” individuals would be entirely 

separate, and so that the transition rate q from state (L) to state (C) would be absent.  

 

Figure 7 shows the first model for the Hewa data; here we have four stages, three of them are the 

same as for the first model of the Nanakaly data plus on extra stage from recorded death (where 

we use the admission time as a proxy for recorded death) to death (z). Here the same conditions 

and protocol will be required for the continuous-time Markov chain as applies in the Nanakaly 

data Model I, but for the different sample space; 

],,,[ DRDLI= . 

The difference between the time of admission (RD) and the time of death (D) occurs because 

when the patient leaves the study, this may not indicate their death, but simply that they are 

possibly lost in the study or they have not been followed up, as is shown in the transition stages 

in Figure 6 with censoring. However, the term (D) represents the patients that are actually dead 

in the study, as shown in Figure 7 without censoring.     

 . 
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Figure 6:  The Markov survival model with censoring for Nankaly data 

 
Figure 7: The Markov survival model without censoring for Hewa data 

 

The state probabilities at time t, are represented by the following: 

 ( )( ) ( ) ( ) ( ) . (8)I L RD DP P t P t P t P t=  

They depend continuously on time with constant transition rate represented by:  

(9)
dP

P PQ
dt

 = =          

for a given transition matrix )( isqQ = , where isq is the rate of flow from ( si → ), which is a |P| * 

|P| matrix of transition rates if it fulfils the following two conditions: 

Individual

(I)

Censored 

(C)

Lost 

(L)

Recorded Death 

(RD)

Individual

(I)

Recorded Death

(RD)

Lost 

(L)

Death

(D)

p 
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z 

q 

q 
Ɩ 
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a) Q  has no negative off-diagonal entries, i.e. 0isq  for all si  . 

b) Q  has row sums equal to zero, or  =
s isq 0  for all i . 

11 12 1 1

21 22 2 2

1 2

1 2

... ...

... ...

. . ... . ... .
(10)

... ...

. . ... . ... .

... ...

s n

s n

i i is in
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 
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 

 

 The solution of (9) identifies the following equation for P:  

0 (11)tQp p e=  

subject to initial conditions 0)0( PPI = . The transition rate matrix Q  for Figure 7 is given by: 

( ) 0

0 0 0 0
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The transition rate out of state I is the same as in Model I from Raza and Broom (2016), i.e. as in 

equation (14),  

( ) ( )

1( ) 0 ( ) ( ) ( ) . (14)l p t l p t

I I I

d
P t l p P t P t k e e

dt

− + − += − +  = =  

Similarly the equation, initial condition and solution for (L) are identical to before, i.e. 
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l
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For state (RD) the flow in equals )(tPp I and flow out equals )(tPz RD . 

−= )()()( tPztPptP
dt

d
RDIRD   

)()()( tPptPztP
dt

d
IRDRD =+ . 

Multiplying both sides by the integrating factor 
zte   we get  

=+ zt

I
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dt
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=

−−+− dtePtPeeep
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dt
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( )

5( ) . (15)zt z l p t

RD

p
e P t e k

z l p

− −= +
− −

   

Dividing both sides of equation (15) by zte  we get the following equation 16. 

( )

5( ) . (16)zt l p t

RD

p
P t k e e

z l p

− − += +
− −

  

To find the value of constant 5k  we use the fact that at time zero 0)0( =RDP  which leads to 

( )( ) [ ]. (17)zt l p t

RD

p
P t e e

l p z

− − += −
+ −

   

As already mentioned, the transition rate from state (RD) to state (D) is (z), and so the flow into 

state (D) is equal to )(tPz RD and the flow out is equal to zero. Thus 

( ) ( ) 0. (18)D RD

d
P t z P t

dt
= −  

By substituting equation (17) into the above formula we get  

][)( )( tplzt

D ee
zpl

p
ztP

dt

d +−− −
−+

= . If we let 
zpl

p
w

−+
= and then integrate we obtain 

equation (19) below: 
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When 0)0(0 == DPt  then we obtain 

( )( ) [(1 ) (1 ) ]. (20)
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Table 1 shows a summary of the above solutions: 
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 Table 1: Summary of all state transitions for model I Hewa data 

State In flow Out flow Equations for state probabilities Probability values 

I 0 )()( tPpl I+  )()(0)( tPpltP
dt
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L )(tPl I  0 0)()( −= tPltP
dt

d
IL

 )1()( )( tpl

L e
pl

l
tP +−−

+
=  

RD )(tPp I  )(tPz RD  )()()( )( tplzt

IRD ee
zpl

p
ztPptP

dt

d +−− −
−+

−=  ][)( )( tplzt

RD ee
zpl

p
tP +−− −

−+
=  

D )(tPz RD  0 0)()( )( −−
−+

= +−− tplzt

D ee
zpl

p
ztP

dt

d  ])1(
)(

)1[()( )( tplzt

D e
pl

z
e

zpl

p
tP +−− −

+
−−

−+
=

 

 

The results in Table 1 are helpful in setting up the second Hewa model (now including 

censoring), but these should be applied using the same mathematical formalism as for the first 

model (which does not account for censoring).  

We can derive, from the Markov process (see Figure 7), estimates of the number of individuals 

moving from state (I) to (RD) and then (D). In the calculation below we shall use the following 

terms:  

td
~

 is the estimated number of real deaths, while dt  is the number of recorded deaths, and xt is the 

probability of death of an individual in the (RD) category, all within the t th time interval starting 

at Tt and ending at Tt+1. 

 

In time interval Tt to Tt+1, dt individuals move from (I) to (RD) to (D). Here, recorded death (RD) 

is the transaction from individuals (I) to recorded death (RD) at rate p; recall that this does not 

mean that all of the individuals are dead, but some of them may be lost to the study. However, 

death (D) means that the individuals really have died, and this is assumed to happen at the start 

of the interval. Individuals in the record death category (RD) can then move to death (D) by rate 

z, at the start of the subsequent time interval, which they do with probability xt .Thus the number 

of individuals remaining in state (RD) at the end of the time interval is  
=

−

=

−
t

i

i

ij

ji xd
1

1

)1(

 

and, so 

to estimate the number of deaths for Hewa patients, the following equation is used:        

1

1

1
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where 

1 2 1 1 3 2 2 2 1 10 , , (1 ) (22)d d x d d x d x x d= = = + −     

and 

11 exp( ( )). (23)t t tx z T T+= − − −        

We can write this as a recurrence relation in td
~

 following equation (21) as follows: 

1
1

1

1
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−
+
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The number of individuals dying in the t th period is the sum of all the probabilities of the death 

of individuals whose deaths were recorded before this. To estimate the number at risk ( 1
~

+tn ) we 

use a similar method to the first model in Raza and Broom (2016), and so need the value of ô  as 

in the following equation: 

0
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The equation of the total number of patients n  is 

0 0

(26)
n n

r t t
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 


= =

= + −    

where, Nr is the number of individuals remaining in the study. 

Thus,   

1 , (27)
ˆ
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o
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The adjusted hazard function )(ˆ tha  and the adjusted survival function )(ˆ tSa  are given by: 
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Recall that due to only a small number of events occurring later in the study, we cut off the data 

at time 659 just after one of the death events thus letting 659=  569.639n = and 
=

=
n

t

td
0

137 . 

Using 005.0=z  we obtain 
0

127.361
n

t

t

d


=

=  and ˆ 0.182o = .  

2.2: Markov model with censoring for Hewa data 

The second Markov Chain structure model for the Hewa data is represented in figure (8) below: 

  

 
 

 
 

Figure 8: The Markov survival model with censoring 

The probabilities at time t of being in state (I, L,C, RD and D) respectively are represented by the 

following vector: 
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The transition rate matrix Q  is given by 
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The derivatives from equation (9) are represented by: 
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. 

The transition rates out of the I state are the same as in the second model for the Nanakaly data, 

for more detail see Raza and Broom (2016), but for the Hewa model we add the rate of transition 

from state (I) to state (RD) (as opposed to state D) given by (p). Thus the equation, initial 

condition and probability for state (I) are the same as before, i.e.  

( )( ) . (34)l p t

IP t e− +=  

Similarly, the equation, initial condition and probability for states (L) and (C) are identical to in 

the previous model so 

 ( )( ) (1 ). (35)l p t

L

l
P t e

l p

− += −
+

 

 ( ) ( )( ) (1 ) (1 ). (36)l p q t qt l p t

C

l q l
P t e e e

l p q l p

− + + − − ++
= − − −

+ + +
 

For the state (RD) the flow in equals )(tPp I and the flow out is )(tPz RD . Thus 

( ) ( ) ( ). (37)RD I RD

d
P t p P t z P t

dt
= −    

( ) ( ) ( ). (38)RD RD I

d
P t z P t p P t

dt
+ =  

Thus as in the previous Hewa model (see equation 19) we get  
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==+= ++− tpqlztzt

I

zt

RDRD

zt

RD

zt eepetPpzetPtP
dt

d
etPe

dt

d )()()()())((

( ) ( )

5( ) . (39)zt z l q p t z l q p t

RD

p
e P t p e dt e k

z l q p

− − − − − −= = +
− − −    

To find the value of the constant 5k  we consider time zero, so that  

5 50 (40)
P p

k k
z l q p l q p z

+ =  =
− − − + + −

  

and substituting equation (39) into equation (40) we get equation (41), 

( )( ) [ ]. (41)zt l q p t

RD

p
P t e e

l q p z

− − + += −
+ + −

 

Now the last transition from state (RD) to state (D) has rate (z). The value of the flow in is equal 

to )(tPz RD and the flow out is equal to zero. Thus 

( ) 0. (42)D RD

d
P z P

dt
= −  

By substituting equation (41) into the above formula we get  

.][)( )( tpqlzt

D ee
zpql

p
ztP

dt

d ++−− −
−++

=  If we let 
zpql

p
w

−++
= , and then integrate here 

we obtain equation (43) below: 

( )

6( ) . (43)zt l q p t

D

zw
P t we e k

l q p

− − + += − + +
+ +

     

When 0=t then 0)0( =DP  and thus 

6 . (44)
zw

k w
l q p

= −
+ +

       

Substituting equation (44) into equation (43) we get  

( )( ) [(1 ) (1 ) ]. (45)
( )

zt l q p t

D

p z
P t e e

l q p z l q p

− − + += − − −
+ + − + +

    

Table 2 is a summary of all the above solutions. 
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Table2:  Summary of all state transitions for model II Hewa data 

State In flow Out flow Equations for state probabilities Probability values 
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Using equations (34) and (41) we can estimate the second model for the Hewa data to determine 

the survival curve in the Hospital. We consider the estimated hazard function )(ˆ thc , represented 

below: 

( )ˆ ( ) . (46)
( ) ( )

RD
c

RD I

z P t
h t

P t P t
=

+
     

This is z times the ratio of the rate of deaths in the population among the at risk individuals (in 

categories RD and I) and the number of at risk individuals.      

Firstly we use the real hazard, function to find the real survival function as shown below:  

( )

( ) ( )

( )ˆ ( ) (47)
( ) ( )

zt l p q t

RD
c

zt l p q t l p q tRD I

p
z e e

z P t l p q z
h t

pP t P t
e e e

l p q z

− − + +

− − + + − + +

 − + + −
= =

+  − + + + −

      

 
( )

( )

1
. (48)

l p q z t

l p q z t

z p e

l q z p e

+ + −

+ + −

 − =
+ − +

    

 

The real survival function is then given by: 


=

−

t

c duuh

c etS 0

)(

)(ˆ   

where, using equation (48), 
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Using partial fractions we obtain 

 
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To simplify the above equation we set   zqplh −++= and tzqplew )( −++= . This gives 
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 
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− − − + 
     

Using equation (50) the real survival function )(ˆ tSc  then takes the following form: 

( )

( )

( )ˆ ( ) exp ln . (51)
( )

z z
l p q z t ptl q z l q z

c pt l p q z t

p e l q z l p q z e
S t

l p q z e p e l q z

+ + − + − + −

+ + −

 
   + + − + + − = − =    + + − + + −   

  

      

We denote l/p, the ratio of probabilities for an individual to be lost to the study or die, 

respectively, by  , to account for the right censoring in this population caused by the end of the 

study period. We can use the number of recorded deaths to estimate the number of lost 

individuals provided we can estimate  =l/p. 
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3: Estimating the p , , l  , q  and z values 

At low t , the survival probability satisfies  
ptetS −−~)( , so that (0) ( ) ptS S t e−  so we estimate the 

rate of recorded death p using the following equation 

1 (0)
ˆ ln ( ). (52)

( )

S
p

t S t
=       

We tested different values of time t for equation (52). In principle the lower the t  value, the 

better ( q̂ ), assuming that there are enough events for a reliable estimate. For very small t , there is 

little data to use to estimate the value of p . There was sufficient data at time t =10, where there 

had been 29 recorded deaths. Here 9790.0)10( ==tS  and so we obtain the following estimate 

of p , 

00212.0~)
9790.0

1
(ln

10

1
ˆ −=p . 

To estimate  we apply the same methods as in Raza and Broom (2016) and using equation 53: 


+

+
=

+−



 

1

)(
)(

1pte
tS





+
=

1
)(S ,                    (53) 

where )(S  is the limiting apparent survival probability for the data. In practice, in contrast to 

Raza and Broom (2016), a small number of individuals remained in the study indefinitely, and so 

we had to choose a practical cut-off value. We selected the value associated with time t =750, 

which led to an estimated value of 07029.7~ = . We selected this value because it was close to 

the equivalent cut off value from Figure 3 and it gives us an estimated survival curve very close 

to the survival curve from the real data except for when there are few individuals left in the 

study. We see this in Figures 9 and 10. 
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Survival Time 

Figure 9: Kaplan Meier method for apparent and estimated survival functions at time 3715 days 

                  (-) is adjusted with cut off  up to 750 days, (o) is Real data and (-o) is adjusted without cut off. 

 

 
Survival Time 

Figure 10:  Kaplan Meier method for apparent and estimated survival function at up tp time 750 days 

                     (-) is adjusted with cut off  up to 750 days, (o) is Real data and (-o) is adjusted without cut off. 

 

To find the rate of loss of individuals, denoted by l , we use the definition of , 
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pl
p

l
 == . Thus we have 

01499.0ˆ =l . 

The rate of censoring individuals q  at time t  can be estimated using the equation below. 

( ) ( )( ) (1 exp ) (1 ),l p q t qt l p t

c

l q l
P t e e

l p q l p

− + + − − ++
= − − −

+ + +
 

where )(tPc is the proportion of censored individuals at time t . 

After testing different value of t  we conclude that a small value of t  has not enough censored 

individuals for reliable prediction. In practice censoring here is not a homogeneous Markov 

process (as implicit in the model); note for the models in Raza and Broom (2016) we saw that 

this was not important for that model, but here it is. A large number of censored individuals 

between t =700 to t =750 also made these values unreliable. A sensible choice is t = 1000 

because the variations in q̂  are larger below t = 1000. Then the estimated q  value is 

00160.0ˆ =q . The discussion above is illustrated by Table 3.  

Table 3: The estimated rate of censored individuals ( q̂  ) at different time (t ) 

t  200 500 700 750 875 1000 2000 

q̂  0.00093 0.00078 0.00085 0.00211 0.00182 0.00160 0.00159 
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4: Applying Our Models To The Kurdish Data 

4.1: Without Censoring 

From the Hewa data, the value obtained for S(∞) (the limiting value of the survival curve) is 

0.87607, which gives an estimate of ~  = 7.07029 individuals lost per death event. Our method 

applied without censoring then gives the adjusted Kaplan-Meier survival curve in Figure 11. This 

figure says that the probability of surviving up to 50 days is 0.990 and up to 100 days is 0.971, 

during these periods (i.e. up to 100 days) there were 113 death and 51 censored patients. Up to 

700 days, there is a probability of survival 0.707, where an additional 20 patients died and 383 

patients were censored, supposing that z =0.005.  

 
Survival Time 

 

Figure 11: Adjusted survival curve for the Hewa data using the method without censoring (z=0.005) 

 

Since z depends upon an intuitive estimate using little evidence, we considered z to be 10 times 

bigger and 10 times smaller than 0.005. As above, we took the times of death to be given by the 

Markov process starting at the time of diagnosis which we discussed in Section 2.2. Figure 12 is 

the equivalent survival curve when z =0.05, which shows a different shape of survival curve for 

the same period compared to Figure 10. For the first period of 50 days the survival probability is 

0.941 and for the second period up to 100 days it is 0.889, while for the period up to 700 days the 

probability is 0.744.  
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Survival Time  

Figure 12: Adjusted survival curve for the Hewa data using the method without censoring (z=0.05) 

Figure 13, the survival curve when z=0.005, shows different survival probabilities again for the 

same period respectively. For up to 50 and up to 100 days the survival probabilities are 0.999 

and 0.997 respectively, while the survival probability up to 700 days is 0.929. 

 
Survival Time 

Figure 13: Adjusted survival curve for the Hewa data using the method without censoring (z=0.0005) 
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4.2: With Censoring  

For the survival curve for the with censoring model we again need to estimate is z . For this case 

we use the previous z value of the first model without censoring, which was chosen to be equal 

to 0.005. We see this in Figure 14. 

 
Survival Time 

Figure 14:  Adjusted survival curve for the Hewa data using the method with censoring (z=0.005) 

Figures 15 and 16 show the equivalent figures using z equal to 0.05 and 0.0005 in the same way 

as for the previous model. 

 
Survival Time 

Figure 15:  Adjusted survival curve for the Hewa data using the method with censoring (z =0.05) 
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Survival Time 

Figure 16: Adjusted survival curve for the Hewa data using the method with censoring ( z=0.0005) 

 

For the second model we used the Markov Chain to estimate the rate of recorded deaths, the rate 

of censoring, the rate of losing individuals and the rate of death ( lqp ,, and z ). The survival 

curves arising from the two models are considerably different (Figures 11 and 14), partly 

because of non-homogeneous censoring in the data. Observe that while the survival curve 

corresponding to z = 0.005 appears to be approaching zero, setting z = 0.05 yields a curve 

decreasing more slowly. Finally, for z = 0.0005, we obtain an even slower drop of the survival 

function, which does not appear to be approaching zero in the observed timeframe, casting doubt 

on the reliability of this estimate. 

5: Discussion 
 

In this paper we considered the modelling of survival data when crucial information is missing. 

Indeed, in the scenarios we consider, towards the end of the study missing data constitutes the 

vast majority of the dataset, making accurate estimation very challenging. The models in this 

paper are built on those from our earlier work, Raza and Broom (2016), which considered how to 

deal with a specific type of missing data in a health setting, where individuals leave a medical 

study without notifying the hospital concerned. For the new model there is an additional problem 

of missing data, caused by uncertainty about the time of death compared to (what could be taken 

as) the recorded time of death. The original and new works are both based upon a set of breast 

cancer data from a hospital in the Kurdistan region of Iraq, Nanakaly and Hewa hospitals, 

respectively.  
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Here for the Hewa dataset there were thus two problems with the data, the problem of “lost” 

individuals, but also the problem of the absence of definitive times of death. We developed two 

models that tried to overcome these issues. We generated a new Markov chain model for two 

distinct cases, for data with and without censoring. For the first of our two models, the without 

censoring case, we estimate the number of observation and the number of deaths in a natural 

way. Here we adjusted the true number of individuals at risk tn~  and the estimated number of 

deaths td
~

, which depends upon the rate of transition from the Recorded Death class to the Death 

class (z). The estimated hazard rate was then adjusted from that using the original data tt nd  to 

tt nd ~~
. As mentioned in the previous paper for the Nanakaly data there is a consistent scaling 

which preserves the order of the risk factors, though not in quite as straightforward a manner, as 

td
~

 is a weighting of the number of recorded deaths from different time periods. 

However, for the second model, with censoring, we need to estimate crucial parameter values, 

and for appropriately chosen estimates we get realistic survival function curves. However, 

estimates are made with little information. Thus, while our survival curves are plausible, we 

cannot rely on them. Here we used the Markov Chain to estimate the rate of recorded death, the 

rate of censoring, the rate of losing individuals and the rate of death ( zandlqp ,, ) in our model. 

Further, we saw that the survival curves arising from the two models were considerably different 

(see Figures 9 and 11), partly at least as a consequence of the non-homogeneous censoring in the 

data. Thus, the conclusions from our analysis of the risk factors in the Hewa data are not robust. 

We believe that it is not possible to obtain such robust conclusions from the current data. In such 

circumstances our predictions would not be reliable. Similarly, if different groups of individuals 

have different rates with different l/p ratios, this might also affect the results. We claim, 

however, that in circumstances where the problems outlined occur, our model is a good first step, 

and a considerable improvement on making no adjustment.  

This leads on to the question, how prevalent will the problems that we have described be? With 

sufficiently accurate records and follow-up of individuals they will not occur, and of course a 

better solution than applying our methods is to have these processes in place. Nevertheless, in 

reality they often will not be. This is particularly the case in regions with a history of upheaval 
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and developing medical services. It can be argued that these are precisely the regions which most 

need accurate survival models and so the application of our methods can be of significant value. 

The problems stem from an incomplete database due to various reasons based on what the 

Region has gone through in the past.  The Region separated from the central Government in 

1991 causing an internal conflict after that era. Every sector has been affected by this abnormal 

environment including the health sector. In comparison to various other diseases, the rate of 

breast cancer among women in the Region has risen dramatically. This is why we chose this 

disease to study in Kurdish society. The research involves the application of survival analysis in 

order to find new tools and ways to illustrate the importance of knowing the survival rate. When 

we first started collecting the data, we found that some data was missing which may be due to 

either those recording the data not realising the importance of the details or the patients not 

returning to the hospitals for a follow-up check. We have therefore made some adjustments to 

the data by proposing the use of a new model developed using mathematical methods. 

The best way to collect data that we can depend on is the use electronic health records (EHR) as 

recognized by the Academy of Medical Royal Colleges in 2008  

(https://www.aomrc.org.uk/publications/) statements/doc_view/217-academy-statement-the-

case-and-vision-for-patient-focusedrecords.html). The most important thing we must look at is 

the list of clinical record headers, each with a description of what should be logged under each 

header. In addition to the clinical categories, the full set of record headers should include 

admission, handover, discharge, outpatient, referrals, communications, and space for special 

remarks. The recorded data in the Kurdish hospital Hewa did not meet these standards. (HSCIC, 

2013). 

The specific subject of our data, breast cancer, is the most common type of cancer in women in 

both developed and developing countries. The incidence of breast cancer is increasing in 

developing countries due to increased life expectancy, increased urbanization and wider adoption 

of western lifestyles. Although some risk reduction might be achieved with prevention, these 

strategies cannot eliminate the majority of breast cancers that develop especially in low and 

middle-income countries where breast cancer is diagnosed in very late stages (IARC 2020b). 

Early detection is therefore required to improve the outcome of breast cancer and remains the 

cornerstone of breast cancer control.  
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The World Health Organization promotes breast cancer control within the context of national 

cancer control programs integrated with non-communicable disease control and prevention. In 

order to make efficient use of the medical equipment and trained staff available, the WHO has 

adopted a programme heavily focusing on early detection and prevention (Lyons et al., 2018). 

Given the relative underdevelopment of medical infrastructure across the region and the 

consequent difficulty of arranging regular check-ups, it is crucial to educate the female 

population on early signs of breast cancer as well as the associated risks (Duggan et al., 2020). 

Mortality rates related to breast cancer around the Eastern Mediterranean are steadily increasing 

even as the overall incidence is lower than across the developed world. One explanation 

proffered by Mahdi et al. (2022) is that many cases of breast cancer appear to be diagnosed at an 

advanced stage of the disease, complicating treatment independent of the medical resources 

available. A useful case study is presented by Iraq. In the decade from 2009 to 2019, the 

incidence of breast cancer almost doubled from 9.5/100,000 to 18.2/100,000, making it the 

leading tumour diagnosis as well as the second most lethal cancer in Iraq (Ministry of Health and 

Environment, Republic of Iraq, 2021). Recent data suggests that in addition to rising incidence 

rates, breast cancer in Iraqi women is diagnosed at later stages and younger ages when measured 

against the corresponding figures from western countries (Alwan and Kerr, 2018, Alwan, 2022). 

This combination of trends makes the reported mortality rate one of the highest in the world, 

according to recent comparative literature (IARC 2020b).  

As a result of war, internal displacement, and the chaos and disorder associated with civil strife 

over the last 40 years, the Iraqi healthcare sector has not been able to develop at rates comparable 

to other countries of the region. While some government initiatives have been launched in an 

attempt to reverse the tide and improve certain key indicators (Alwan and Kerr, 2018), health 

outcomes have broadly deteriorated (WHO 2022, Physicians for Human Rights 2021).  

The breast cancer early detection (BCED) programme was evaluated over nine years in a study 

of a total of 360 patients at the Medical City Teaching Hospital and the national cancer research 

center (INCRC) in Baghdad. During the studied period, the proportion of women presenting with 

stage IV cancer significantly fell from 15.2% in the first year to 9.1% at the end of the study 

(Alwan et al., 2017a). At the same time, the proportion of advanced stage (III and IV) diagnoses 

remains alarmingly high.  
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We note that the awareness and knowledge of breast cancer risks and detection techniques 

among Iraqi women was the focus of a study carried out in the Kurdistan Region of Northern 

Iraq. The convenience sampling technique (CST) was used to select 400 female Kurdish patients 

presenting at either the maternity teaching hospital in Erbil or one of the primary healthcare 

centres (PHCs). At first glance, the results of the study were encouraging; for instance over half 

of the surveyed population reported some knowledge of mammography, and almost 90% were 

aware of the beneficial effects of early detection on prognosis. However, some misconceptions 

remain relatively widespread; roughly a third assumed breast cancer to be altogether preventable. 

Furthermore, the level of accurate knowledge of breast cancer risks and early detection 

techniques correlated heavily with socioeconomic status, suggesting the necessity of further 

outreach programs targeting poorer and less literate communities (Husamaldien and Dauod, 

2016). 

In summary, the treatment of breast cancer in the region presents particular challenges 

compounded by the lack of accurate data and is an appropriate area to apply our methodology. 

However, while of course the supply of such data is the preferable solution, we believe that our 

methods are of potential value in many cases where there are significant problems with the 

accuracy and availability of data. 

6- Conclusion:- 

All over the world, especially in the developing regions, the rates of breast cancer, the most 

common malignancy in women, constituting just under one fifth of cancers in females, are on the 

rise. Kurdistan-Iraq is no exception, with an age-adjusted incidence rate of 68.9 per 100,000 per 

year; in fact, breast cancer is the most prevalent cancer among the population (affecting about 

one third of female cancer patients), with particularly alarming rates among the younger 

demographic, according to the Kurdistan-Iraqi Cancer Registry. In order to tackle this problem, a 

precise understanding of the survival rate is essential. In order to do so, in this work we adopt the 

Cox regression and Kaplan-Meier methods. 

The main conclusion is that we have developed a new method for performing a survival analysis 

on a set of data where there are important unknown factors. In particular, we have shown how to 

adjust a Kaplan-Meier analysis to find a survival curve in such circumstances, and also shown 

how to estimate a true hazard (survivor) function from the biased one obtained directly from the 
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data.  Using data from Hewa hospital we generated a new model in two cases; with and without 

censoring. For these models we need to estimate the number of deaths and also crucial parameter 

values. For some parameter estimates we get realistic survival function curves. However, 

estimates are made with little information. Thus, while survival curves are plausible we cannot 

rely on them. These models are nonetheless a significant improvement on trying to estimate 

survival curves without them..  
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