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Abstract
Aposematism is the signalling of a defence for the deterrence of predators. We
presently focus on aposematic organisms that exhibit chemical defences, which are
usually signalled by some type of brightly coloured skin pigmentation (as is the case
with poison frog species of theDendrobatidae family), although our treatment is likely
transferable to other forms of secondary defence. This setup is not only a natural one to
consider but also opens up the possibility for richmathematicalmodelling: the strength
of aposematic traits (signalling and defence) can be unambiguously realised using
variables that are continuously quantifiable, independent from one another and which
together define a two-dimensional strategy space wherein the aposematic behaviour of
any one organism can be represented by a single point. We presently develop an exten-
sive mathematical model in which we explore the joint co-evolution of aposematic
traits within the context of evolutionary stability. Even though empirical and model-
based studies are conflicting regarding how aposematic traits are related to one another
in nature, the majority of works allude to a positive correlation. We presently suggest
that both positively and negatively correlated combinations of traits can achieve evo-
lutionarily stable outcomes and further, that for a given level of signal strength there
can be more than one optimal level of defence. Our findings are novel and pertinent
to a sizeable body of physical evidence, which we discuss.
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1 Introduction: an overview of aposematic signalling

Aposematism is a complex biological process that involves the mobilisation of a
defensive and a signalling trait and has revealed challenges of considerable magnitude
to theorists and experimentalists alike. Out of the many unanswered questions in
aposematism, an obvious one stands out: how should the defence and the signalling of
that defence co-evolve? We explore new answers to this question by building on those
already provided in Broom et al. (2006) and use these to deepen our understanding
of more curious instances in nature that could not be accounted for from previous
models.We should note that aposematism ismanifest in a vast array of physical systems
among whichmodel-based approaches may vary. The article at hand is structured such
that the context within which we seek to answer questions is detailed first (Sects. 1
and 2), while the specific objectives are defined (Sect. 2), addressed (Sect. 3) and
discussed therein (Sect. 4). This introductory section is two-fold: the first subsection
provides details from the underlying biology as inBroomet al. (2006),while the second
discusses previous and more contemporary model-based approaches in aposematism
(their efficacy to deepen our understanding of empirical studies is further discussed in
Sect. 4).

1.1 Notes from the underlying biology

Organisms of all types exhibit defencemechanisms that are deployed to prevent poten-
tial predators frommounting attacks. These exist in a variety of guises, are manifested
in a range of different ways, trigger the senses differently and pose different fitness
advantages to those who deploy them (Ruxton et al. 2018). Defences can either be
permanently present (static constitutive) in the prey individuals that acquire them or
can be deployed during conflict (induced). While the latter have lower costs associ-
ated with maintenance and are effective against attacks that take place over a longer
time period, these are not considered in our paper as they are generally less effec-
tive against the fast-paced and potentially lethal attacks which we consider herein.
Prey defend themselves against such attacks by reducing the likelihood of encounter
(primary defences) and of the probability that an attack results in death as well as by
reducing the probability that similar-looking prey are attacked in the future (secondary
defences) - see Broom et al. (2006).

Primary and secondary defences are used in conjunction to form more composite
forms of defence, an important example of this being aposematic defence, which we
study presently (in most populations aposematic individuals are rare compared with
their camouflaged counterparts - see Santos et al. (2003), Vences et al. (2003) and
Ruxton et al. (2018)). In most discussions, aposematic signalling is understood as a
signal that informs potential predators of the existence of a defence that may not be
readily detectable by predators. Chemical defences are a typical example of this as
they are retained within the body and are usually not detectable to the predator unless
it has made physical contact with the prey. Indeed, chemical defences might be the
classical example of defences that can be detected after an attack has been attempted
(although behavioural defences such as the ability flee or fight back also exist).
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It is argued that both predators and prey can benefit from honest signalling of
chemical defences if there are costs to both parties associated with prey capture prior
to detection of defences (such as time and energy invested in chasing and fleeing,
and/or risk of injury). Other defences, however, can be easily detectable by predators
at a distance without the predator making physical contact with the prey (typical
examples being mechanical defences such as a thick shell or spines). It is still possible
that signalling of such defences can be selected because they aid both predator and
prey. In this case, the signal is likely to function so that it draws the predator’s attention
to the defence therefore reducing costs to both parties that might occur because the
predator failed to notice the defences.

Broadly speaking, aposematic signals are phenotypes with three additional prop-
erties (Ruxton et al. 2018). First, they are paired (at least in the mind of a predator)
with some form of secondary defence (e.g. bright skin pigmentation is paired with
unpalatable toxins). That is, the predator’s response to the signalwill be linked to a cog-
nitive association the predator has formed between the signal and the defence or other
aversive trait that makes prey unprofitable to predators. Second, they have evolved
as signals through natural selection and are therefore effective in altering predator
behaviour so that it favours prey survival (e.g. fewer recognition errors, enhanced
wariness, accelerated learning and decelerated forgetting). Third, these alone can act
as a primary defence mechanism in the sense that it is deterring for predators (through
learned aversion - see Broom et al. 2006) and thus reduces the probability that an
attack is mounted.

There is a considerable volume of empirical evidence suggesting that chemical
defences incur fitness costs (reductions in growth, adult size or fecundity - see Darst
et al. (2006) or Zvereva and Kozlov (2016) and the bibliography therein) most likely
associated with the costs of synthesising and/or acquiring (e.g. through dietary mod-
ifications - see Daly (2003) or Darst et al. (2005)) and/or storing toxins. Although it
may be that there is no evidence of costs being incurred at all in some cases, as is the
case with Diprion pini larvae discussed in Lindstedt et al. (2011) for example. It is
also conceivable that fitness costs are less apparent among prey whose defences have
successfully evolved beyond those primary stages: Tarvin et al. (2017) observe that
numerous species of the Dendrobatidae family undergo significant self-poisoning
upon acquiring toxins but whose impact diminishes through ever-increasing amino
acid replacements in toxin-binding sites.

Presently and in Broom et al. (2006) it is assumed that toxins are costly such
that investment in these involves a trade off in fecundity, while a similar but less
explicit effect is seen with investment in conspicuousness. The setup described thus
far opens up the possibility to study aposematism systematically and within a game-
theoretical framework (detailed in Sect. 2) - a task that is achieved successfully and
without sacrificing biological plausibility. The specific objectives are to understand
(a) how conspicuous and (b) how well-defended should a prey individual be so that
a population made up entirely of one type can maintain their composition? In the
following subsection we review the first major contribution in this direction (Leimar
et al. 1986), compare it with the model of Broom et al. (2006) and hence motivate the
relevance of our own insight into this challenge.
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1.2 Game-theoretical modelling of aposematism

Aposematic traits necessarily co-evolve so that primary defences (e.g. camouflage)
are traded off in favour of a conspicuous appearance, which may enhance predator’s
learned aversion to defended prey. But how these traits co-evolve to optimise fitness
is relatively unknown compared with our knowledge of the costs that these incur to
individuals who deploy them. Leimar et al. (1986) were the first to study this problem
and their model is especially important in this regard, not only due to its focus and its
level of detail (see predator psychology, prey behaviour and population structure) but
also due its novel game-theoretical approach. Indeed, predator attack probabilities are
calculated through varied rates of learning and sensory generalisation, while the effec-
tiveness of prey unprofitability is evaluated in terms of individual survival, effects on
predator learning rates, cost of investment and of the associated optimal conspicuous-
ness. The model predicts that for given level of conspicuousness there can be a unique
(nontrivial) optimal value of unprofitability, which can increase if either survival rates
increase and/or if increased prey unprofitability is linked with increased learning rates.

The second, game-theoretical contribution to the theory of aposematism we dis-
cuss came twenty years later and is due to Broom et al. (2006). The focus of the
paper at hand is to uncover implications of this model that had not been seen upon
its publication (neither in Broom et al., 2008) and which may help us gain deeper
understanding of an important body of physical evidence on aposematism in nature.
The details of this model are left for the following section, although we presently
note the following. Broom et al. (2006) consider a large population of prey (among
which aposematism is already established) that maintain dynamic equilibrium with a
large population of predators such that the level of predation pressure remains fixed.
The aposematic behaviour of any one prey item is realised using two-by-one vec-
tor (strategy) containing continuously quantifiable, positive entries that represent the
signalling strength and level of defence of that item (the original model considers a
three-by-one vector). Using functional forms that detail prey-predator interaction and
prey sensitivity to traits, the notion of fitness/payoff is defined and interpreted as the
number of offspring produced per given life cycle. The related concept of an Evolu-
tionarily Stable Strategy (ESS) is defined and constitutes a particular combination of
traits which when assumed by almost all members of the prey population tends to be
retained by successive generations (in absence of drift). Broom et al. (2006) argued
that strategies of this type should be contained within an increasing continuum, such
that to a given level of signal strength is assigned a unique optimal level of defence.
We presently show that these restrictions need not apply and hence draw interesting
connections with the underlying biology.

The model of Leimar et al. (1986) is in a sense complementary to the model of
Broom et al. (2006) in that their overall focus (co-evolution of aposematic traits)
and their detailed game-theoretical approaches are common but their individual aims
vary. In particular, Leimar et al. (1986) aims to study the origins of aposematism and
considers a set of initially naïve predators, whose attack probabilities are maximum
before they have their first encounter (G(0)(x) = e(x), with x representing the level
of prey unprofitability). Over successive prey encounters (labelled by n) these attack
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probabilities continuously decreases according to an inhibitory gradient h(x, x1, y1)
(with x1 being the unprofitability of encountered prey and y1 its conspicuousness), so
that

G(n)(x, x1, y1) = e(x)[1 − h(x, x1, y1)]n . (1)

This equality suggests that repeated encounters affect (decrease) the level of predation
pressure. Notably, such a predator strategy would be unstable in the context of Broom
et al. (2006), which instead considers a regime of fixed predation pressure, which may
have been reached by learning and/or genetic inheritance and is carefully maintained
through a balanced mix of young and old individuals in overlapping generations. It is
thus suggested that the model of Leimar et al. (1986) could pertain to more short-lived
(such as seasonal) predators and the model of Broom et al. (2006) to longer-lived ones.
A final remark is that the type of solution considered in Leimar et al. (1986) is not the
same as the local ESSs that we consider presently (see Sect. 2.2) or in Broom et al.
(2006) and indeed the latter should be consulted for a more elaborate comparison of
the two models.

It should be noted at this stage that there are a number of studies in which it is
incorrectly claimed that Leimar et al. (1986) suggest that optimal levels of conspicuous
and defence are negatively correlated across populations. This is most recently done
in Summers et al. (2015), which constitutes an otherwise indispensable review of
empirical and model-based approaches on honest signalling and indeed one that we
consult in the discussion section of this article. As it happens, the model of Leimar
et al. (1986) does not consider signal strength at all, it only compares a non-signalling
(camouflaged) phenotype to a signalling phenotype. In particular, it is argued that
if the signalling phenotype is associated with a reduced rate of attack by predators
(perhaps through learned aversion) such that the non-predatory cost of producing
toxins increaseswith its effectiveness in reducing predator attack rates then the optimal
strategy may be for the signalling phenotype to invest less in costly toxins than the
non-signalling phenotype. The possibility of a true, negative correlation between signal
strength and level of defence within a causal game-theoretical framework is conceived
for the first time presently and forms a novel extension to the predictions of Broom
et al. (2006).

Broomet al. (2006)were thefirst to study the co-evolutionary stability of aposematic
traits in the sense of a true ESS and subsequent explorations of themodel (Ruxton et al.
2007a; Broom et al. 2008; Teichmann et al. 2014) have been successful in generating
better understanding of its underlying implications. Operating within the framework
of Broom et al. (2006) we presently recover solutions of the type that would not be
expected therein and hence suggest that optimal combinations of aposematic traits can
follow a more complex relationship than what was originally expected. Interestingly,
we deduce that optimal levels of conspicuousness and defence can be both positively
and negatively correlated and that for given level of conspicuousness there can be
more than one optimal level of defence. We have made the critical observation that the
monotonicity of a continuum of ESS solutions (of the type that is predicted in Broom
et al. (2006) and more explicitly displayed in Broom et al. 2008) is governed by the
Implicit Function Theorem (in R

2). Examples of evolutionarily stable continua are
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demonstrated (see Sect. 3) using functional forms that are both biologically plausible
and yet carefully chosen to negate the premise that increased conspicuousness neces-
sarily leads to increased rates of attack. Indeed doing so has brought forward insight
into the model that is novel and has led us to revise some restrictive assertions that
were made upon its publication.

2 Model description and evolutionary stability

We begin this section by introducing the model of Broom et al. (2006) in its most
general setting, whereby prey individuals are allowed to assume any strategy and
hence proceed by setting the scene for what will constitute our main focus henceforth,
namely the study of evolutionary stability. Within the latter, we seek to find a strategy
such that if almost all of the prey population were to play it (residents) then these
could not be invaded by a minority (of mutants) playing a slightly different (local)
strategy. Such a strategy is said to be (locally) evolutionarily stable and when played
by almost all individuals of the prey population, successive generations tend to retain
it (in absence of drift). Upon describing the model in terms of the relevant quantities,
parameters and functional forms (the notion of payoff included), the conditions for
(local) evolutionary stability are presented, as is their novel connectionwith the Implicit
Function Theorem.

2.1 Unrestricted prey strategies

Weconsider a population of prey of a certain specieswhooccupy somehabitat.Assume
that the habitat can be partitioned into effectively infinite, non-overlapping localities
consisting of approximately N prey, where N is taken to be large. In addition, assume
that each locality is visited by n predators, who visit a single locality only. Implicit
in this layout is that there is a uniform territorial division of the habitat among the
predators so that each locality can be perceived as the territory of a specific number
of n predators (n is too taken to be large). It is also generally assumed that the overall
population of prey and predators are in dynamic equilibrium so that in any one locality
predation has no effect on the relative sizes N and n.

Within each locality prey are labelled by the index i , such that {i = 1, 2 . . . , N }
and defend themselves against predators by investing in chemical defences of toxicity
ti ≥ 0, which are advertised by bright skin pigmentation of conspicuousness ri ≥ 0
(totally cryptic prey have ri = 0). The aposematic traits are naturally independent
from one and other and are thus represented by the vector (ri , ti ), which denotes the
strategy of prey individual i - the original model description in Broom et al. (2006)
involves 3-vector strategies that include prey colouration θi ∈ [0, 2π), which we
presently omit.

Prey item i reproduces with fecundity rate F = F(ti ) (F is a declining function of
ti , indicating that investment in toxins is costly), dies of causes other than predation
at some fixed background mortality rate λ (we set λ = 0 in our analysis) and defend
themselves against predators by acquiring aposematic traits (ri , ti ). Upon detecting
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prey, predators can decide to mount an attack, which may or may not lead to capture.
The detection rate D(ri ) is an increasing function of ri and tends to unity as prey
conspicuousness assumes arbitrarily large values - indeed an interval of unit time can
be defined as the time taken for a very bright prey item to be detected by a predator -
while D(0) = d0 > 0, since even fully-cryptic prey can be detected. The probability
that a mounted attack results in capture is given by K = K (ti ), where K is declining
with ti , indicating that more defended individuals are harder to capture. A detected
individual will be attacked with probability Q = Q(Ii ), where Ii represents the
average aversive information that the average predator has on item i . Naturally, it is
assumed that Q is a declining function of Ii and such that Q(Ii ) = 1 for Ii � −1 and
Q(Ii ) ≈ 0 for Ii � 1.

Predators assign Ii to individual i by comparing it to a certain (weighted) base-line
level of aversive information, which is generated through encounters with the prey
population, such that

Ii = 1

n

N∑

j=1, j �=i

L(r j )H(t j )S(ri , r j ). (2)

It is understood that any one locality is quite sizeable (i.e. N is large) and is visited by
a group of predators n, who visit this locality only. Tacit in this discussion is that it is
(usually) not possible for any one predator to experience every single prey item within
its life-cycle; rather, we assume that predators experience the locality collectively and
the aversiveness of their experiences is shared equally among them (see factor of 1/n
in (2)). Even though as a collective, predators have complete experience of the locality,
their perceived aversiveness of a particular individual i is not drawn directly by their
experience of it, but through successive experiences with its neighbours (notice that
the sum in (2) excludes i , but includes the remaining locality).

An important assumption of our model is that predators learn quickly, so that most
of their life they impose mortality based on their understanding of prey traits gath-
ered during a short investigative learning phase early in life. Since learning involves
only a short fraction of the predator’s lifetime it can be mostly ignored from the prey
perspective. Indeed, the overwhelming majority of prey mortality is caused by experi-
enced predators, who have completed the learning process described in (2). A plausible
example of a system that this model might best describe are insectivorous birds, who
might consume hundreds of insects a day and live for several years providing the prey
population is consistent under that timescale (this might suggest a tropical rather than
temperate region). Under such a description we might expect that birds learn about
prey that they encounter on a timescale of days, which is notably shorter than their
lifetime.

The similarity function

S : R≥0 × R
≥0 → [0, 1] s.t . (ri , r j ) 	→ S(ri , r j ) (3)

describes how predators perceive the visual similarity of different-looking prey.While
the (generalised) similarity function S of (3) (denoted with calligraphy) is naturally
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bi-variate, in Broom et al. (2006) and indeed for the remainder of this discussion we
will treat this a as a uni-variate function S of the Euclidean distance separating their
visual appearance. In particular we impose that

S(ri , r j ) = S(|ri − r j |), where S : R → [0, 1] iss.t . x 	→ S(x). (4)

The uni-variate function S on the RHS of (4) is assumed to be C2 and have the
additional four properties. i) S(|ri − r j |) = 1 if and only if i and j are identical (ri =
r j ); ii) S(|ri , r j |) = 0 if and only if i and j are very dissimilar (ri � r j or r j � ri );
iii) S is non-increasing with |ri − r j | (perceived visual similarity does not increase
as signals vary increasingly in strength - see iv) and subsequent discussion for the
behaviour of S near the origin); iv) the similarity function is not flat-peaked at the origin
(S′(0) �= 0) . This last restriction on S is more controversial than the previous ones
and imposing this depends on our interpretation of the predator’s cognitive abilities
and psychology.

With a similarity function that is peaked at the origin the predator is sensitive to
small differences in the conspicuousness of individuals so that even a small deviation
between individuals in conspicuousness is associated with a drop in perceived simi-
larity. In contrast, a similarity function that is flat at the origin implies that the predator
generalises strongly between individuals that differ slightly in conspicuousness and
thus perceives two individuals that vary only slightly in conspicuousness as very sim-
ilar. We note that since the slope is non-zero away from the origin, whilst predators
cannot distinguish easily between those types that they are used to encountering, they
can tell apart small visual differences, relative to the common type, between types that
they are not used to encountering, and we thus consider the peaked function prefer-
able. We should remark that our results would hold for similarity functions that are
peaked in the manner described above and would not hold if the maximum of the gen-
eralisation curve were smooth (like a normal curve) - see also Ruxton et al. (2007b).
Restrictions on the shape of the generalisation functions are discussed in Balogh and
Leimar (2005) in the context of the evolution of mimicry.

Predators find chemically-defended prey aversive and the experience of consuming
them is measured by function H = H(ti ), which is an increasing function of ti and
is zeroed at a critical value of the toxicity ti = tc. Prey with ti < tc are perceived as
negatively aversive (attractive) by predators (H(ti ) < 0), as their toxin level is not
sufficient to outweigh the nutritional benefit received from consuming them, while
prey with ti > tc are non-trivially defended and are seen as positively aversive by
predators (ti = tc describes neutrally aversive prey). Lastly, L = L(ri ) represents
the rate at which encounters that have occurred can be recalled by predators and is
a growing function of ri indicating that encounters with more conspicuous prey can
be better recalled. We will take L = D in our analysis, an idealisation describing
perfect predator recollection. We include a list of symbols and their meanings for
easy reference (see Table 1).

Detection, attack and capture are independent events and thus the predator-induced
mortality rate of item i is given by P(Capture|Attack of i)× P(Attack|Detection
of i) × (Rate of detection of i) = K (ti )Q(Ii )D(ri ) and therefore the total mor-
tality rate for i is λ+ D(ri )K (ti )Q(Ii ). The payoff to item i playing strategy (ri , ti ) is
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Table 1 The parameters and functions of the model

Symbol Meaning

r the conspicuousness of a prey individual

t the toxicity of a prey individual

N the size of the prey population

n the size of the predator population

D(r) the rate at which r -individuals are detected

L(r) the rate at which r -individuals are detected and recalled

S(ri , r j ) the generalised (bi-variate) similarity function applied
to individuals with appearances ri and r j

S(x) the uni-variate similarity function of individuals
differing in appearance by x

H(t) the aversiveness of prey individuals with toxicity t

tc the critical level of toxicity such that H(tc) = 0

F(t) the fecundity of a prey individual with toxicity t

K (t) the probability that an attacked t-individual is captured

Q(I ) the probability that a detected I -individual is attacked

I the level of aversive information if an individual

λ the prey background mortality rate (not due to predation)

a the average relatedness of prey individuals in the
population

a unitless number defined as the number of offspring it produces during its life-cycle.
This can be understood in terms of the existing functional forms as the rate of repro-
duction (F) over the overall rate of death (λ + DKQ), whose reciprocal gives us the
average life-cycle. In particular, we have

P(ri , ti ) = F(ti )

λ + D(ri )K (ti )Q(Ii )
. (5)

It is important to note that the uni-variate functions F, D, K , Q, H and L are
assumed to be of class C2 over R, while S is everywhere C2 except at one point (a
fact whose significance is discussed in the following subsection). This restriction is
necessary and sufficient for expressing the conditions for evolutionary stability in the
form of (15) through to (18) and for understanding how aposematic traits are correlated
in terms of the Implicit Function Theorem (see (14)). This restriction also agrees with
our perception of the physical world; it guarantees that organisms playing slightly
different strategies also have very similar values for the different consequences of
their strategies.
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2.2 Residents vs. mutants

The focus of our analysis is on the evolutionary stability of aposematic traits. We thus
consider a resident-mutant setup of the prey population such that the majority of prey
play some resident strategy (r1, t1), while a much smaller fraction ε�1 play some
mutant strategy (r , t), which we restrict to be local to the resident strategy (contained
in its neighbourhood in strategy space).

We now consider a certain focal individual, whose strategy (ρ, τ )we leave unspec-
ified (by setting (ρ, τ ) ∈ {(r , t), (r1, t1)}) and introduce imperfect mixing to the prey
population by suggesting that in a small, finite number of localities there are rela-
tives of the focal individual. We assume that these relatives are perfect copies of the
focal individual and form mutant colonies that are assumed to be rare. Examples of
colonies are seen in a number of different populations. In Cole (1946) the phenomenon
of “clumping of individuals into groups” is described such that each group may be
relatively or entirely independent of all similar groups and, therefore, that these dis-
tributional units may be randomly distributed”. A more elaborate discussion of the
spatial distribution of insect populations can be found in Taylor (1984). Interestingly,
examples of amphibian populations, which we generally regard in this paper may also
form colonies (as is the case for Polypedates leucomystax frogs that are examined in
Roy (1997)).

We introduce parameter a as a measure of the average local relatedness, which
we define as the fraction of focal copies making up the colony over the total number
of prey in the locality. Under this definition, parameter a is interpreted as a quantity
measuring the concentration of relatives and implicit in this is that the focal individual
breeds true. Almost all localities are empty of mutant colonies and in these there is
no distinction between relatives and non-relatives as all individuals are residents. In
very few however, mutant colonies exist and so a proportion a are distinct from the
resident population. Furthermore, we assume that the background concentration of
mutants in the habitat is carried through to the localities, such that if a = 0 we expect
on average to encounter εN mutants and (1 − ε)N residents. More generally, if a is
non-zero we expect that there are aN − 1 relatives making up the colony (excluding
the focal individual) and (1− a)N non-relatives of which (1− a)εN play the mutant
strategy and (1 − a)(1 − ε)N play the resident strategy. In light of (2) the perceived
aversiveness of the focal individual reads

I ε(ρ, τ ) = 1

n
(aN − 1)L(ρ)H(τ )S(|ρ − ρ|) + (1 − a)ε

N

n
L(r)H(t)S(|ρ − r |)

+ (1 − a)(1 − ε)
N

n
L(r1)H(t1)S(|ρ − r1|).

(6)

In particular, the aversive information for the average mutant or resident is uncovered
from (2) by setting the focal strategy (ρ, τ ) equal to (r , t) or (r1, t1), giving

I ε(r , t) = a
N

n
L(r)H(t)

+(1 − a)ε
N

n
L(r)H(t) + (1 − a)(1 − ε)

N

n
L(r1)H(t1)S(|r − r1|) (7)
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and

I ε(r1, t1) = a
N

n
L(r1)H(t1) + (1 − a)ε

N

n
L(r)H(t)S(|r − r1|)

+(1 − a)(1 − ε)
N

n
L(r1)H(t1). (8)

In the limiting case ε → 0 the above simplify to

I = a
N

n
L(r)H(t) + (1 − a)

N

n
L(r1)H(t1)(|r − r1|) and

I1 = N

n
L(r1)H(t1), (9)

where for convenience we have adopted the notation I (r , t) ↔ I and I1 ↔ I (r1, t1)
for the mutant and resident information in the ε → 0 limit. In keeping with the
presentation of Broom et al. (2006) and indeed for reasons that are more clearly
explained in Appendix IV

The mutant and resident payoffs thus read

P(r , t; r1, t1) = F(t)

λ + D(r)K (t)Q(I )
and

P(r1, t1; r1, t1) = F(t1)

λ + D(r1)K (t1)Q(I1)
. (10)

In this context the resident strategy (r1, t1) is an (local) Evolutionarily Stable Strat-
egy (ESS) if it is stable against a mutant minority playing (r , t) in the locality of (r1, t1)
in strategy space. Indeed, in the ε → 0 limit the condition amounts to the mutant pay-
off in (5) admitting a local maximum for (r , t) = (r1, t1). In principle, the mutant
payoff is a scalar function of four variables (two pairs of strategy vectors) and for
given choice of resident strategy (r1, t1) this is defined on the infinitesimal rectangle
(r1 − δr , r1 + δr) × (t1 − δt, t1 + δt) ’centred’ at (r1, t1). A local ESS is therefore
a resident strategy (r1, t1) that maximises the mutant payoff (over the rectangle) pre-
cisely at the ’centre’ of the rectangle (r , t) = (r1, t1). It is important to remark that the
conditions for maximising P(r , t; r1, t1) over (r1 − δr , r1 + δr) × (t1 − δt, t1 + δt)
cannot be deduced using the standard linearisation techniques from vector calculus,
since P(r , t; r1, t1) is not r -differentiable at (r , t) = (r1, t1). In fact, after suitable
positive scaling ∂r P(r , t; r1, t1) reads

D′(r)
D(r)

− a
N

n
L ′(r)H(t)

Q′(I )
Q(I )

−(1 − a)I1
Q′(I )
Q(I )

S′(|r − r1|)
(−1(−∞,r1) + 1(r1,+∞)

)
, (11)

which is not defined at r = r1 unless S′(0) = 0 - a possibility we exclude.

123



   13 Page 12 of 35 A. Scaramangas, M. Broom

For the remainder of the discussion when referring to the mutant payoff
P(r , t; r1, t1) we may omit the second pair of arguments (r1, t1), which leads to the
shorthand notation P(r , t; r1, t1) ↔ P(r , t). Indeed, this abbreviation carries through
to the partial derivatives, such that

∂t P(r , t; r1, t1)|r=r1, t=t1 ↔ ∂t P(r1, t1)

and

∂t1
[
∂t P(r , t; r1, t1)|r=r1, t=t1

]|r1=r∗
1 , t1=t∗1 ↔ ∂t1∂t P(r∗

1 , t∗1 ).

For the latter it should be remarked that differentiability is not a problem because
∂t P(r , t; r1, t1)|r=r1,t=t1 is everywhere differentiable with respect to the resident trait.
In addition it can be shown that

∂t1∂t P(r∗
1 , t∗1 ) = ∂t1t P(r∗

1 , t∗1 ) + ∂t t P(r∗
1 , t∗1 ), (12)

and in particular that

∂t1t P(r∗
1 , t∗1 ) �= ∂t1∂t P(r∗

1 , t∗1 ).

The quantity ∂t1t P(r∗
1 , t∗1 ) on the LHS is the mixed partial derivative evaluated at

r = r1 = r∗
1 and t = t1 = t∗1 . The quantity ∂t1∂t P(r∗

1 , t∗1 ) on the RHS involves two
steps: first taking the derivative with respect to the mutant trait and evaluating this at
r = r1, t = t1. Second, differentiating this quantity (which is solely a function of the
resident traits) with respect to the resident trait t1 and evaluating the resident traits at
r1 = r∗

1 , t1 = t∗1 . The quantity resulting from this two-step process is not the same as
that on the LHS, which involves a single step. The consequence of this inequality is
especially relevant when considering (14). The reader may consult the more detailed
discussion of Appendix III.

Resident strategies (r1, t1) are chosen from the boundary-inclusive, right-upper-
hand plane {(ρ, τ ) : ρ ≥ 0, τ ≥ 0} where the conditions for maximising mutant
payoff (over its local vicinity) are different at the origin {(0, 0)} to what these are on the
boundaries {(ρ, 0) : ρ ≥ 0}, {(0, τ ) : τ ≥ 0} or the interior {(ρ, τ ) : ρ > 0, τ > 0}.
It is shown in Broom et al. (2006) that the region {(ρ, τ ) : ρ > 0, τ ≤ tc} does not
contain local ESSs. On the aversive and conspicuous subregion {(ρ, τ ) : ρ > 0, τ >

tc} ⊂ {(ρ, τ ) : ρ > 0, τ > 0} the conditions for (local) evolutionary stability read

∂t P(r1, t1) = 0, ∂t t P(r1, t1)
∣∣ < 0,

←
∂r P(r1, t1) > 0 and

→
∂r P(r1, t1) < 0. (13)

We should remark that non-aversive (cryptic) solutions are discussed in Appendix I
and shown in Fig. 5. The partial derivatives with (left and right) arrows correspond
to the left and right partial derivatives with respect to r of the mutant payoff function
defined in (10) - see related discussion in Appendix III

Indeed, imposing that themutant payoff function ismaximised along the t-direction
(at t = t1) for fixed r = r1 and likewise along the r -direction (at r = r1) for fixed
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t = t1 suffices to guarantee a local maximum at (r , t) = (r1, t1). This can be explained
by the discontinuity along the r -direction at r = r1 (expressed in (11)) which in a
sense ’dominates’ all other directional derivatives involving non-zero r -components.
Resident strategies satisfying ∂t P(r1, t1) = 0 are called t-equilibrium points and can
be seen as elements of the zero-level set of the map (r , t) 	→ ∂t P(r1, t1) using the
notation introduced above. Given that the mutant payoff is made up of combinations
of at least C2 functions, it follows that ∂t P is at least C1 and thereby satisfies the
conditions of the Implicit Function Theorem (IFT) in R2. This implies that if (r∗

1 , t∗1 )

is a t-equilibrium point then there exists a smooth function h defined on the vicinity
of r∗

1 with h(r∗
1 ) = t∗1 , whose slope is given by

− ∂r1∂t P(r∗
1 , t∗1 )

∂t1∂t P(r∗
1 , t∗1 )

. (14)

In Broom et al. (2006) it is argued that for most choices of biologically feasible
functions the numerator in (14) is strictly positive whenever t1 > tc and self-consistent
reasoning was given to support this. Although this result holds for the functions we
consider in Sect. 3 (as well as for those considered in Broom et al. (2008)), it is not
sufficient justification for ruling out the prospect of local ESSs that are decreasing with
increasing conspicuousness as it does not account for the sign of the denominator. This
point will be elaborated on in Sect. 3, where the ∗ notation is dropped (strategies are
chosen from the t-equilibrium curve by default).

For the case in which the only source of death for prey is due to predation (λ = 0)
and in which there is perfect recollection of encounters by predators (L = D) the ESS
conditions of (13) with mutant payoff given as in (10) read

F ′(t1)
F(t1)

− K ′(t1)
K (t1)

− aI1
Q′(I1)
Q(I1)

H ′(t1)
H(t1)

= 0, (15)

− F ′′(t1)
F(t1)

+ K ′′(t1)
K (t1)

+ 2aI1
Q′(I1)
Q(I1)

H ′(t1)
H(t1)

K ′(t1)
K (1)

+ a2
(
I1

H ′(t1)
H(t1)

)2 Q′′(I1)
Q(I1)

+aI1
Q′(I1)
Q(I1)

H ′′(t1)
H(t1)

> 0, (16)

D′(r1)
D(r1)

+ aI1
Q′(I1)
Q(I1)

D′(r1)
D(r1)

− (1 − a)I1
Q′(I1)
Q(I1)

S′(0) < 0, and (17)

D′(r1)
D(r1)

+ aI1
Q′(I1)
Q(I1)

D′(r1)
D(r1)

+ (1 − a)I1
Q′(I1)
Q(I1)

S′(0) > 0. (18)

Cryptic ESSs are a possibility andmay constitute a local ESS alongside conspicuous
solutions and their stability conditions are generally simpler than those of (15) through
to (18). Cryptic solutions with t1 > 0 are local ESSs if and only if in addition to (18),
(15) and (16) hold. The cryptic solution (0, 0) is a (local) ESS if in addition to (18)
inequality

F ′(0)
F(0)

− K ′(0)
K (0)

− aI1
Q′(I1)
Q(I1)

H ′(0)
H(0)

> 0 (19)

holds.
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3 An illustrative example

In this section we demonstrate that the model of Broom et al. (2006) can be extricated
from two restrictive conjectures that were made upon its publication. In particular,
we will demonstrate that both positive and negative combinations of aposematic traits
can achieve locally evolutionarily stable outcomes and further that for given level of
conspicuousness there can be more than one optimal levels of toxicity. The majority of
empirical (and model-based studies) suggest that aposematic traits co-evolve so that
increased conspicuousness is coupled with increased unpalatability. Although this is
a sensible assumption to make (more conspicuous prey are expected to suffer higher
predator attack rates hence necessitating increased levels of defence), we will show
that this is not entirely accurate. To showcase our findings we will apply the conditions
for evolutionary stability to functional forms that are biologically plausible andmostly
similar to those used in Broom et al. (2008) but for which predator attack probability is
more sensitive to aversive information. For such a choice of functions the conception
that increased conspicuousness necessarily leads to increased rate of attack is less
relevant, since conspicuous and aversive prey have small chance of being attacked.
The section is made up of two parts: in the first we demonstrate the general process
for solving the conditions for (local) evolutionary stability and propose a partitioning
of the parameter space from which emerge three distinct types of solution. Choices of
parameters are made fromwithin each partition and explicit continua of evolutionarily
stable solutions are depicted (second subsection) in the strategy space .

3.1 Procedure for finding local ESSs

Webegin by assigning examples of functions to the general forms introduced in Sect. 2
as in Broom et al. (2008), but with Q now given as

F(t) := f0e
− f t ; H(t) := t − tc; K (t) := k0

1 + kt
; L(r) = D(r);

S(x) = max(1 − vx, 0); λ = 0; Q(I ) :=
{
q0, for I ≤ 0

q0e−q I 2 for I > 0.
(20)

As is known from Broom et al. (2006) - see Appendix I also - only cryptic solutions
are possible for I ≤ 0. The exact extension of Q on this domain is therefore not
crucial and we have used the simplest form possible to minimise additional analysis
and maintain our focus on conspicuous solutions. The form on I > 0 is such that
increasingly aversive types are attacked less and less according to a Gaussian drop
off. This form is to be contrasted with that used in Broom et al. (2008), where the
exponent in Q involved a linear power in I .

Indeed, Darst et al. (2006) studied different genera of the Dendrobatidae (poison
frog) family and observed that the most conspicuous morphs are the least toxic, while
the least conspicuous ones were the most toxic. It was suggested therein that once
aposematism has become established in a population of prey that the aposematic
traits become decoupled so that arbitrary combinations of these can provide optimal
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protection against predation and indeed that potentially costly unprofitability may be
traded off in favour of bright colouration so that optimal investment in secondary
defence will diminish when more cost-effective conspicuousness evolves as a primary
defence. Notably, similar observations were made by Wang (2011), who looked at
different populations of the Oophaga granulifera species within the Dendrobatidae
family and considered the mechanisms proposed by Darst et al. (2006) to justify his
findings.

Darst et al. (2006) were the first to uncover negatively correlated aposematic traits
in nature and indeed the first to ever provide a sound explanation for this (using
a differential costs analysis based around optimising energy expenditure to reduce
predator attack rate). We presently recover solutions in which aposematic traits appear
decoupled and negatively correlated, with the underlying mechanism detailed in terms
of a exact mathematical framework. In particular, we suggest that traits are selected
so as to optimise fitness in the sense of the conditions detailed in the previous section,
which we presently solve for the functional forms provided here. Substitution of (20)
into (15) provides an explicit expression for the t-equilibrium curve in terms of general
rate of detection

− f + k

1 + kt1
+ 2αD2(r1)(t1 − tc) = 0, (21)

where the quantity α = aqN 2/n2 has been introduced and it is assumed here that
I1 > 0. The case I1 ≤ 0 is discussed in Appendix I and primarily in the context of
crypsis. For the remainder of the discussion, changes in α are attributed to changes in
the fraction N/n representing the relative proportion of prey to predators, with a and
q held fixed (the latter being an inherent property of the predator).

For (21) we note two interesting facts: first, for given level of conspicuousness
there can be (at most) two associated values of toxicity at which equilibrium in the t-
direction can be achieved. Second, the t-equilibrium curve can be both increasing and
decreasing with increasing conspicuousness and changes in its monotonicity occur on
vertices at which the tangent to the curve is vertical. We can see the first by noticing
that with appropriate scaling (21) amounts to

t21 + A(r1)t1 + B(r1) = 0, (22)

with

A(r1) = − f

2αD2(r1)
+ 1

k
− tc and B(r1) = 1

2αD2(r1)

[
1 − f

k

]
− tc

k
.

Clearly for given r1 the LHS of (22) is a second-order polynomial in t1, whose roots

t1(r1) = −A(r1) ± √
A2(r1) − 4B(r1)

2
(23)

correspond to the optimal level(s) of toxicity for given level of conspicuousness.
In particular, the t-equilibrium curve can be identified with the set {(r1, t1) : r1 >
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0, t1 = t1(r1)}, which is generated by plotting the roots of (22) for all values of
r1 > 0. Expression (23) provides insight into the relationship of evolutionarily stable
aposematic traits but is cumbersome to implement in the numerical analysis.

For the second fact, we apply the IFT expression (14) to (21) - it should be evident
that this indeed satisfies the necessary conditions for the theorem - and deduce that
the slope at any point (r1, t1) of the t-equilibrium curve is given by

4αD(r1)D′(r1)(t1 − tc)
(

k
1+kt1

)2 − 2αD2(r1)
. (24)

Substitution of (21) into the denominator given above yields the equivalent expression

−4α

f

D(r1)D′(r1)(t1 + 1/k)2(t1 − tc)2

t2 + 2t1
(
1
k − 1

f

)
+ tc

f + 1
k2

− 1
f k

. (25)

The numerator of the fraction in (25) is strictly negative (except at t1 = tc), whereas
the sign of the denominator is not restricted in this manner. Indeed, the denominator
is a concave-up, second-order polynomial which has two real roots (providing b < 1)
that are given by

T±
SIGN = 1

f
− 1

k
± 1

f

√
1 − b, where b := f

(
1 + ktc

k

)
. (26)

Clearly if b = 1 the polynomial has one root only (see Figs. 3b and 4b), while if
b > 1 the polynomial is strictly positive. This implies that expression (26) provides a
natural partitioning of the parameter space with respect to b (at b = 1) so that there
are two distinct descriptions: b < 1 and b > 1 with b = 1 admitting a border-line
case. In light of (20) it is clear that for given level of toxicity increasing values of f
are associated with higher reductions in fecundity, while increasing values of k are
associated with reduced likelihood of an attack resulting in capture. Therefore b can be
interpreted as an honest measure of prey sensitivity to investment in toxicity such that
prey individuals with b < 1 can be though of as t-insensitive, while those with b > 1
are t-sensitive. Parameters f , k and tc with b ≥ 1 correspond to instances when the
polynomial on the denominator of (26) is positive and where the t-equilibrium curve
is decreasing. In the first case, the strategy space is partitioned so that the equilibrium
curve is decreasing whenever 0 < t1 < T−

SIGN or t1 > T+
SIGN and increasing when

T−
SIGN < t1 < T+

SIGN . Intersections of the t-equilibrium curve with the horizontal
lines T±

SIGN are realised as vertices at which a line tangent to the curve is vertical.
This is where the branches of the curve described in (23) meet, which can either be
achieved at an intersection with T−

SIGN where the curve exhibits a local minimum in
the r -direction (rmin-type vertex) or at an intersection with T+

SIGN , where the curve
exhibits a local maximum in the r -direction (rmax -type vertex).

123



Aposematic signalling in prey-predator systems… Page 17 of 35    13 

Suitable substitution of f in terms of b, k and tc allows us to re-write (26) as

T±
SIGN =

(
tc + 1

k

)(
1 ± √

1 − b

b

)
− 1

k
. (27)

This reformulation indicates that T−
SIGN assumes ever-increasing values over the inter-

val
(
0.5tc − 0.5/k, tc

]
as b increases, while T+

SIGN assumes ever-decreasing values
over the interval [tc,+∞) as b increases. In particular, this shows that the width of the
region of increasing solutions (T−

SIGN , T+
SIGN ) is greatest for b ≈ 0 and least for b ≈ 1

and shrinks monotonically as b increases in between these end values. Furthermore,
since T−

SIGN < tc for all choices of b, the equilibrium curve cannot exhibit rmin-type
vertices in the aversive region, so that only rmax -type vertices can be expected for
b < 1.

Thus far, we have established an effective partitioning of the parameter space and
have indicated how solutions may vary within these. However, in order to effectively
solve (21) we proceed with the following re-arrangement

1

D2(r1)
= 2α

f

(t1 + 1/k)(t1 − tc)

t1 − 1
f + 1

k

, (28)

which is convenient because solutions can be understood as intersections of the r1-
dependent LHS and the t1-dependent RHS. Using f = bk/(1 + ktc) the latter reads

1

D2(r1)
= 2α(1 + ktc)

bk

(t1 + 1/k)(t1 − tc)

t1 − t∗
, with t∗ := 1

k

(
1

b
− 1

)
+ tc

b
. (29)

It is evident from the definition of t∗ that we have recovered the same partitioning of
the parameter space at b = 1. Indeed, if b < 1 then t∗ > tc and the denominator is
zeroed at a value greater than tc, while the opposite is true for b > 1. The critical case
b = 1 is simpler, since t∗ = tc and the expression on the RHS of (29) is linear in t1.

Strategies on the t-equilibrium curve (21) are t-stable if they satisfy (16), which in
conjunction with (21) read

(
k

1 + kt1

)2

− a

t1 − tc

(
f − k

1 + kt1

)
> 0. (30)

Under the assumption that t1 > tc this is analogous to

t21 +
(

− 1

a f
− 1

f
+ 2

k

)
t1 − 1

f k
+ 1

k2
+ tc

a f
< 0. (31)

Since the LHS is concave-up, the inequality can only be satisfied if the parabola has
two distinct real roots and t1 is chosen to lie between these. Indeed, we require that
the discriminant of the parabola in (31) is strictly positive, which amounts to

a2 + 2a(1 − 2b) + 1 > 0, (32)
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Once again, the parabola in a on the LHS of (32) is concave-up and there are three
cases to consider depending on whether its discriminant is negative, zero or positive.
The discriminant is given by 16b2(1 − 1/b) and so if b < 1, all choices of a ∈ [0, 1]
give rise to a stable region through (34). If b = 1 all values of a ∈ [0, 1) will yield
a stable region, while for b > 1 values of a ∈ [0, a−(b)) work. Notice that we have
labelled

a±(b) := 2b − 1 ± 2b
√
1 − 1/b for b > 1, (33)

as the roots of the polynomial in (32). Values of a that yield a stable region should in
principle also be drawn form the interval (a+(b), 1], but it is clear that a+(b) > 1 for
b > 1. Furthermore, the smaller root a−(b) is decreasing over b > 1 with a−(1+) ≈ 1
and a−(b) ≈ 0 for b � 1. It is also self-evident that no t-equilibrium strategy can be
stable in the t-direction whenever b > 1 and a ∈ [a−(b), 1]. In conclusion, given an
appropriate choice of f , k, tc and α the value of b = f (1+ ktc)/k is such that when it
is below unity t-stable strategies can resist invasion against mutant groups of any size,
whereas if it is above unity t-stable strategies can withstand invasion against mutant
groups of maximum size a−(b). Arguably, choices of f , k and tc corresponding to
b = 1 are non-generic.

In particular, we have established that for the appropriate choices of a and b
described above (see Figure (1) also) a given t-equilibrium strategy (r1, t1) is sta-
ble in the t-direction providing that T−

ST AB < t1 < T+
ST AB , where

T±
ST AB = 1

2 f

(
1

a
+ 1

)
− 1

k
± 1

2a f

√
a2 + 2a(1 − 2b) + 1 (34)

b

a

k

f

Fig. 1 On the left (figure a) are shown the sizes a ofmutant groups, againstwhich the residents canwithstand
invasion (along the t-direction) for given choice of b. A t-stable strategy with f , k and tc giving b ≥ 1 have
a maximum associated mutant group size of a−(b) as described in (33) - which decreases down to zero as
b increases - whereas t-stable strategies with b < 1 can withstand invasion against mutant groups of all
sizes. The three x marks blue, green and magenta have coordinates (b, a) given by (0.5, 0.4), (1, 0.3) and
(1.5, 0.2) respectively. Figure b on the right shows the b-level curves of the map ( f , k) 	→ f

( 1+ktc
k

)
, with

tc = 0.5 (this value is used throughout to generate Figs. 3, 4, 5 and 6). x marks correspond to b = 0.5, b = 1
and b = 1.5 with ( f , k) = (0.5, 2), ( f , k) = (1, 2) and ( f , k) = (1.5, 2)
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are the roots of the polynomial on the LHSof (31). These roots provide upper and lower
bounds to the t-stable region and are realised as horizontal lines in the strategy space
(as they do not depend on r1). In particular, points (r1, t1) on the t-equilibrium curve
with T−

ST AB < t1 < T+
ST AB are stable against invasion from mutants (of maximum

group size determined by b) that are more or less toxic, while those outside of this
region are unstable.

It can be shown that the upper bound T+
ST AB shrinks as the size of the invading

mutant group grows. Indeed

∂aT
+
ST AB = − 1

2a2 f

(
1 + √

p(a)
) + 1

2a f
√
p(a)

(1 + a − 2b),

wherewe have used the shorthand p(a) := a2+2a(1−2b)+1. Clearly, the expression
on the RHS is negative for choices b > 1 and a ∈ [0, a−(b)), while also for the non-
generic case b = 1 and a ∈ [0, 1). For choices b < 1 and a ∈ [0, 1] we consider the
re-scaled inequality

2a2 f
√
p(a)∂aT

+
ST AB < 0 ⇔ 4a2b2(1 − 1/b) < 0, (35)

which holds true. Using similar reasoning for the lower bound T−
ST AB

2a2 f
√
p(a)∂aT

−
ST AB < 0 ⇔ 4a2b2

(
1 − 1/b

)
< 0, (36)

we conclude that for b < 1 and a ∈ [0, 1] the term T−
ST AB is shrinking with growing

mutant group size a, while it increases for growing a, whenever b > 1 and a ∈
[0, a−(b)). Interestingly, for non-generic choices b = 1 and a ∈ [0, 1) the term
T−
ST AB is constant over all mutant group sizes.
Stability in the r -direction is guaranteed by condition (17). With the current func-

tional forms in place, stability against less conspicuous mutants is guaranteed by

− D′(r1)
D(r1)

+ 2αD(r1)(t1 − tc)
2
[
D′(r1) + v

(
1

a
− 1

)
D(r1)

]
> 0 (37)

while stability against more conspicuous mutants holds when

− D′(r1)
D(r1)

+ 2αD(r1)(t1 − tc)
2
[
D′(r1) − v

(
1

a
− 1

)
D(r1)

]
< 0. (38)

3.2 Explicit examples of evolutionarily stable outcomes

In this subsection we make use of all results established thus far by assigning spe-
cific functional form to the detection rate D(r) and choosing parameters within the
partitions introduced in the previous subsection. In particular, we consider

D(r) = d0
d0 + (1 − d0)e−r

(39)
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and without much loss in generality take d0 = 1/2 and tc = 1/2. It remains for us
to constrain the remaining parameters α, a and v so as to explore a suitable range of
admissible solutions. Henceforth, specific plots are produced by making the appro-
priate choice of parameters for a limited set of equalities and inequalities. Indeed, in
Sect. 2 it was made clear that local ESSs are those subsections of the t-equilibrium
curve (defined through equality (15)) that are stable in the in the t-direction and in the
r -direction (inequalities (16), (17) and (18)) and thus considerable emphasis is placed
here in exploring the various forms the t-equilibrium curve can assume (with b < 1,
b = 1 and b > 1 - see Fig. 4) prior to identifying explicit examples of local ESSs.
In Sect. 3.1 it was proposed that the t-equilibrium curve can be generated by finding
intersections of the r1-dependent LHS and the t1-dependent RHS of equalities (28) or
(29), a process which is illustrated in Fig. 3.

We proceed by direct substitution of D into the t-equilibrium condition, which
reads

− f + k

1 + kt1
+ 2α

t1 − 0.5

(1 + e−r1)2
= 0 (40)

and is generated by interpreting it as an intersection of the LHS with the RHS in the
equality below

(1 + e−r1)2 = 2α

f

(t1 + 1/k)(t1 − 0.5)

t1 − t∗
. (41)

Figure 3 shows plots of the RHS of (41) as a function of the resident toxicity for
three different regimes of prey sensitivity b = 0.5 (blue), b = 1 (green) and b = 1.5
(magenta) and for different levels of predation pressure α. The values for f , k and
tc used in the plots of Figs. 3a, b and c correspond to the x marks in Fig. 1b. The
same parameter values are also used in Fig. 4, which should be viewed in tandem with
Figs. 3 since their colour-coding is common (i.e. a curve in Fig. 3 and a curve in Fig. 4
with the same colour represent outcomes that are identical in terms of the parameters
used to generate them). Solutions to (41) are realised in Fig. 3 as intersections (not
shown) of the coloured curves and the horizontal lines LHS = c in the unshaded
region c ∈ (1, 4]. Intersections with c = 4 correspond to cryptic t-equilibrium points
with r1 = 0 while those with c = 1− correspond to very bright equilibrium points
with r1 � 1. Intersections with ever-decreasing values of c in this interval generate a
smooth curves of t-equilibriumparametrizedwith increasing r1 shown as plots over the
strategy space in Fig. 4. Generally, Figs. 3 and 4 are indicative of the partition-sensitive
behaviour introduced in Fig. 1 and discussed thus far.

As explained earlier, the b-partitioning of the parameter space reflects prey sen-
sitivity to investment in toxicity, such that two distinct regimes are understood: prey
with b < 1 are t-insensitive, while prey with b > 1 are t-sensitive (b = 1 is a
non-generic description that can be explained using the remaining cases). This means
that for given level of investment in toxicity the latter benefit less on account of a
comparatively lower rate of reproduction (lower f ) and/or a lower level of protection
against potentially-lethal attacks (higher k). The differences between the two regimes

123



   13 Page 22 of 35 A. Scaramangas, M. Broom

are manifest in the curves of t-equilibrium, which we explore by varying the level
of predation pressure (see Fig. 4) in these. Comparing Figs. 4a and 4c one observes
that while t-insensitive prey exhibit both increasing and decreasing correlation among
aposematic traits (providing predation pressure is moderate-high), t-sensitive prey
with b > 1 allow for negatively correlated traits only.

Having explored the nature of the t-equilibrium curves, we proceed to giving exam-
ples of when sections of these can also constitute local ESSs. That is, we are interested
in sections of the t-equilibrium curve that are stable in the t-direction, namely that are
contained within T−

ST AB < t1 < T+
ST AB (with T±

ST AB given as in (34)). Furthermore,
we require that the t-equilibrium strategies are stable against invasion from equally
toxic but less conspicuous mutant groups, or rather, that the t-equilibrium curve is
contained within the region defined by the inequality

− 1

1 + er1
+ 2α

(t1 − 0.5)2

(1 + e−r1)2

[
e−r1

(1 + e−r1)
+ v

(
1

a
− 1

)]
> 0. (42)

Similarly, stability against invasion from equally toxic but more conspicuous mutant
groups is guaranteed by keeping the t-equilibrium curve within the region defined by

− 1

1 + er1
+ 2α

(t1 − 0.5)2

(1 + e−r1)2

[
e−r1

(1 + e−r1)
− v

(
1

a
− 1

)]
< 0. (43)

Important examples of ESSs are shown in Fig. 5, which constitute distinct reali-
sations emerging from the choices for parameters a, b, f , k and tc that are indicated
by the x marks in Fig. 1; additional choices for a and v are specified in the caption.
In Fig. 5a, the region below the bottom brown curve is r -unstable from the left and
the region above the top brown curve is r -unstable against mutations from the right,
implying that the section of the t-equilibrium inbetween these two curves is r -stable.
The r -stable subsection of this that is containedwithin the blue solid lines (as indicated
by the solid markers) is also t-stable and therefore contains local ESSs, whereby traits
can either be positively or negatively correlated. There are two intersections of the
t-equilibrium curve with the vertical axis r1 = 0. The first is not shown and is not
a cryptic ESS as it is t-unstable, while the other intersection (shown) is an aversive
cryptic solution as it satisfies r -stability from the right (below the top brown curve)
and is t-stable (within the blue solid lines). Since f = 0.5 < 2 = k it follows that the
origin is not an ESS; there are no further cryptic solutions since the LHS of (I.2) gives
t1 = 1.5 > tc.

Figure 5b is more straightforward to analyse because r -stability from the right is
everywhere satisfied. The pair of brown dash-dotted lines are the zero level sets of the
LHS of (43), so that only the region inbetween these is potentially r -unstable. Since
the t-equilibrium curve is entirely above the top brown curve, the section of this that
is below the top solid green line (as indicated by the marker) consists of local ESSs,
all of which indicate negative correlation between conspicuousness and defence. The
intersection of the t-equilibrium curve with r1 = 0 is not a cryptic solution as it is
t-unstable. The origin is once more unstable because f = 1 < 2 = k. The equilibrium
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provided by (I.2) is equal to 1/2 and is a cryptic solution. This is likely a non-generic
outcome, which we omit from Fig. 5b.

In Fig. 5c the top brown dash-dotted curve is the zero level set of the LHS of (43), so
that the region above it fails r -stability from the right, while the pair of brown curves
below this constitute the zero level set of (42) so that the region inbetween them fails
the r -stability condition from the left. This means that the section of the t-equilibrium
curve in between the top and middle brown curves is r -stable (and contains local
ESSs), while the next section (as indicated by the solid markers) below the middle
brown curve is r -unstable and the last section of the curve above the brown curve is
r -stable (and contains local ESSs). The intersection of the t-equilibrium curve with
r1 = 0 is a cryptic ESS as r -stability from the right is satisfied. The origin is not a
cryptic solution. The origin is oncemore not an ESS since f = 1.5 < k = 2. However,
the equilibrium given by (I.2) with t1 = 1/6 is a non-aversive cryptic solution that
exists alongside the aversive one mentioned above.

4 Discussion

This paper builds on the game-theoretical model of Broom et al. (2006) and constitutes
an important exploration into its far-reaching implications. We have established that it
can be released from some restrictive conjectures that were made upon its publication
and hence argue that it is the only model-based study to provide sound justification
for some more curious instances of aposematic behaviour observed among species
of the Dendrobatidae family. In particular, we have shown that evolutionarily stable
combinations of aposematic traits can be either positively or negatively correlated (on
an across-populations basis) and that for given level of conspicuousness there can
exist more than one optimal levels of defence. Our results were clearly demonstrated
in Sect. 3, wherein biologically plausible functional forms, similar to, but more elab-
orate than those considered previously in Broom et al., (2008) were selected. The
conditions for local evolutionary stability (presented in generality in Sect. 2) were
solved for values of parameters ranging from within three distinct partitions so that
cryptic solutions were discussed alongside conspicuous ones.

In addition to the game-theoretical treatments of Leimar et al. (1986) and Broom
et al. (2006) that are discussed in the introduction, there exists a range of publications
that examine the co-evolution of aposematic traits from the mathematical modelling
perspective andwithin these a variety of drivingmechanisms andnotions for optimality
are considered (see Summers et al. (2015) for a systematic review). Among these, the
majority (see for example Speed and Franks (2014), Holen and Svennungsen (2012),
Lee et al. (2011), Blount et al. (2009), and Franks et al. (2009)) alludes to the idea that
conspicuousness and defence should be positively correlated, with Speed and Ruxton
(2007) admitting the only exception to this. The latter suggests that this correlation
can be either positive or negative depending on the variation in marginal costs of
aposematic display across populations. Although sound and intuitive, the mechanism
presented therein is not expounded in the level of detail that is used here, nor are
strategies ’assessed’ in terms of their evolutionary stability. Another contribution is
that of Svennungsen and Holen (2007), who investigate the possibility of a stable
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dimorphism using a game-theoretical description that is similar to our own. However,
their focus is automimicry and focus on defences as opposed to the joint co-evolution
of a defensive and signalling trait.

This paper is the only theoretical study suggesting that negatively correlated apose-
matic traits (across different populations) could be evolutionarily stable (as mentioned
in the introduction claims thatLeimar et al. (1986) identifiednegatively correlated solu-
tions are not correct). It is important to stress that in our study correlations between
aposematic traits are made on an across-populations basis. This is neither true among
all model-based studies, nor among empirical studies, some of which additionally
consider within population variations while others consider variations across species.

An important assumption of our model is that predators learn quickly to avoid prey
that are unpalatable and that aversive learning occupies a short investigative period
that takes place early on in their life. Insectivorous birds residing in tropical regions
may consume hundreds of insects a day and live several years; for the duration of their
life they impose mortality based on these early experiences and could closely fit the
predator assumptions of Broom et al. (2006) detailed above. There is a considerable
volume of evidence in support of this ’fast learner’ assumption, including the field
observations of Brower (1969) on blue jay - monarch butterfly systems, the commen-
tary of Mallet (2001) and the observations of Darst et al. (2006) among others, on
chickens feeding on poisonous Dendrobatidae frogs.

Among empirical studies, themajority observes that aposematic traits are positively
correlated. In particular,Arenas et al. (2015),Blount et al. (2012),Maan andCummings
(2012), Vidal-Cordero et al. (2012), Santos andCannatella (2011), Cortesi and Cheney
(2010), Bezzerides et al. (2007) and Summers and Clough (2001) have all observed
positive correlations, while Wang (2011) and Darst et al. (2006) observed negative
correlations and lastly Daly and Myers (1967) observed no correlation whatsoever.
These studies have considered samples of taxa ranging from marine opisthobranchs,
wasps, beetles and frogs and while some consider within-population variations, others
look at variations across populations and others yet consider different species of a
given genus. Prior to the present publication, no model-based approach could provide
sound reasoning to support the possibility of negative correlations and indeed we
argue that our present contribution is the only study containing causal confirmation
that evolutionarily stable combinations of aposematic traits need not be positively
correlated (but instead follow a more complex relationship).

The authors of Broom et al. (2006) had originally anticipated that conspicuousness
and defence should be positively correlated. Indeed, this result was confirmed by the
functional forms considered therein and subsequently in Broom et al. (2008) and is in
fact a sensible assertion to make: not only does this appear to be the prevailing pattern
in nature but one would expect that more conspicuous prey should be better defended
as they are more likely to be attacked. As we have demonstrated, this reasoning is
not entirely accurate, especially once aposematism has become established within
a population of prey (although it may better apply during the evolutionary transition
from crypsis to aposematic signalling) and instances in nature that appear to negate this
cannot be ignored. Indeed, using reflectance spectra and toxicity assays on different
populations of Oophaga granulifera (a species of poison frog) Wang (2011) observed
that the less conspicuousmorphswere themost toxic, while themost conspicuous ones
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were the least toxic. Darst et al. (2006) observed a similar effect among different genera
of the Dendrobatidae family and hence hypothesised that aposematic traits become
decoupled so that arbitrary combinations can reduce anti-predator attack rates. This
suggestion supports our own conclusion that for given level of conspicuousness the
optimal level of toxicity (providing this exists) need not be unique. Furthermore, Darst
et al. (2006) propose that potentially costly unprofitability may be traded off in favour
of bright colouration so that optimal investment in secondary defence will diminish
when more cost-effective conspicuousness evolves as a primary defence.

It should be noted that this differential costs analysis of Darst et al. (2006) is based
on the following assumptions: both the production of the signal and production of the
defence are physiologically costly, even if no attacks occur on a particular prey individ-
ual (by contrast, we assume that only investment in toxicity is physiologically costly);
increased conspicuousness is both increasingly physiologically costly and increas-
ingly effective in reducing the likelihood that a predator successfully kills discovered
prey; the same assumptions are true of increased investment in the defence. Thus there
is a natural trade-off between investment in either signal or defence that leads to the
reportednegative correlation; although thismayprovide a sufficient explanation, itmay
in fact not be necessary, since the same effect can be explained by evolutionary stability
considerations alone. A concise explanation of how we retrieved negatively correlated
solutions in this paper cannot be given in an equally similar manner; the model at
hand is far more elaborate and as has become clear from comparison with Broom et
al. (2008) that the particular results retrieved depend strongly on the functional forms
chosen. While in Broom et al. (2008) only increasing solutions are possible, the slight
modification in Q has opened up the possibility for both positively and negatively
correlated traits. Indeed, it is notable herein that individuals that are more sensitive
to investment in toxicity (b ≥ 1) exhibit a negative correlation, while less sensitive
individuals (b < 1) can have both positive and negative correlations; such an effect is
unlikely to hold generally.

As far as empirical testing of the model goes, this is a difficult process; the model
is elaborate and controlling all the parameters involved would admit an unrealistic
task for the biologist. Nonetheless, the connection between Broom et al. (2006) and
Darst et al. (2006) can be clarified to some extent. In particular, although the latter
is most concerned with the effectiveness of choice of strategy on reducing attack by
predators, we are more concerned with its contribution to overall prey fitness. Fitness
is understood as the number of offspring produced per life cycle and naturally depends
on predator-induced mortality, suggesting that the work of Darst et al. (2006) is impor-
tant, but which should be supported by additional demographic measurements. For
example, a population consisting of mainly young prey would indicate high fecundity
and predator-induced mortality, while a population consisting mainly of old prey sug-
gests low fecundity and low predation pressure; these data can be cross-examined with
strategy considerations by means of toxicity assays and reflectance measurements as
in Darst et al. (2006) to establish a connection between strategy and fitness. Such mea-
surements rely on knowledge of average lifespan among camouflaged prey and should
be carried out on an across-populations basis; in practice it may be difficult to identify
populations of a given species playing a range of different strategies. Finally, it would
be interesting to establish whether investment in conspicuousness is physiologically
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costly; this would require that we find two populations that are equally toxic and differ
only in conspicuousness and even so, demographic differences may not be directly
related to differences in the fecundity but to the overall fitness instead.

This brief accounting of empirical and model-based studies (and indeed of this
present article’s relevance to these)would be incomplete if some inherent difficulties in
interpreting empirical findings were not pointed out. For example (i) studies on certain
animals may be naturally more/less relevant to a given model and further, (ii) some are
carried out on an intrapopulation basis, others on an across-populations and others yet
on an across-species basis (Summers et al. 2015). Notably (i) and (ii) limit the number
of potentially relevant studies (there are already not that many) to any given model.
(iii) It is believed that there are several factors driving aposematism in real systems
(such as variation in life history or community structure for example) and the extent
of their individual contributions in any given system may not be generally known (see
Speed and Ruxton 2007). (iv) Experimentalists use different operational definitions of
conspicuousness and toxicity and the specific techniques used for determining these
may make it difficult to compare empirical studies to each other, even if the variables
in (i) and (ii) are fixed (see chapter 6 of Ruxton et al. 2018).

The paper at hand constitutes a significant advancement to the model of Broom
et al. (2006), which to this day is among the leading model-based treatments of apose-
matism. Nonetheless, there are areas that remain to be explored within this and which
we invite the reader to consider. For example, although we provide explicit exam-
ples of local ESSs, we do not discuss whether these can be attained through small,
selectively advantageous mutations - this property is known as convergence stability
and local ESSs are by definition resistant to mutations of this type (this omission is
also mentioned in Broom et al. 2006). Indeed, it would be of interest to determine
whether a population playing an unstable strategy in the locality of the an ESS could
eventually converge to the latter. A separate topic which was explored in Broom et al.
(2006) but not presently is the extent to which optimal toxicity can be affected by
the appearance of an animal and the degree of kin grouping within the population. In
fact, the contribution of colouration to prey appearance (and the existence of non-point
solutions) has been completely ignored in the present paper so as to avoid unnecessary
complexity with regard to studying the co-evolution of conspicuousness and defence.

The model of Broom et al. (2006) can be extended to consider mimicry systems
as well as more general co-existence regimes. For example, we may conceive of a
scenario wherein the prey population is made up two types (belonging or not to the
same species) each playing a different strategy such that the the intention is to deter-
mine whether these can co-exist in a certain proportion over the long term. This is a
possibility if the prey population is in a state of stable equilibrium, whereby the more
fast-paced population dynamics are stable and in addition, each type is (locally) evolu-
tionarily stable in the sense of the definition provided in Sect. 2. Stable co-existence is
an interesting problem to consider in generality and particularly so because Batesian
and automimicry systems are specific examples of this. Indeed, imposing that both
types of prey are equally conspicuous and such that one is positively aversive, while
the other is attractive describes a mimicry situation. Although the most immediate
extension is automimicry, in which both types belong to the same species, our own
interest is in Batesian mimicry - this is also more challenging because to each species
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pertains a different set of functional forms (such as those considered in Sect. 3).The
work of Svennungsen and Holen (2007) is particularly relevant to the extension of
our own model to automimicry systems; they investigate the possibility of an evolu-
tionarily stable dimorphism within a game-theoretical framework that resembles our
own. As mentioned previously, however, our model studies the joint co-evolution of
aposematic traits as opposed to aposematic defences in isolation. Finally, whether or
not conspicuous signals can be better recollected by predators in not fully understood
and so it may be interesting to consider instances in which the rate of recollection is
not simply a scalar of the rate of detection, but is instead scaled by a function that
increases with prey conspicuousness.
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Appendices

I Non-aversive solutions

The discussion in Sect. 3 concerns aversive strategies with I1 > 0 and for good
reason; the majority of solutions we tend to be interested in are aversive. A non-
aversive strategy (r1, t1) can either be conspicuous with r1 > 0 and 0 ≤ t1 ≤ tc or
cryptic with r1 = 0 and 0 ≤ t1 ≤ tc. It is a general result of Broom et al. (2006)
that non-aversive, conspicuous strategies fail (17) and tend to be invaded by the less
conspicuous mutant. Therefore, the only possibility for a non-aversive strategy to be
evolutionarily stable is for it to be cryptic.

Alongside existing cryptic strategies that are aversive, there are now two additional
possibilities for a non-aversive cryptic solution: either (0, t1) with 0 ≤ t1 ≤ tc or the
origin (0, 0), but not both. In order to determine the conditions that either of these are
stable, we should remark that I1 ≤ 0 and therefore that according to (20) we have
Q′/Q = 0. This assumption suggests that the predator does not distinguish between
different levels of toxicity among non-aversive prey and in particular that mutants
are attacked at the same rate as the residents. Since Q′/Q features strongly in the
conditions for stability, these are notably simpler here. Furthermore, we should remark
that a cryptic strategy is r -stable if it can resist invasion against the more conspicuous
mutant. Since this mutant is attacked at the same rate as the associated resident it
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follows that r -stability from the right is trivially true for non-aversive residents since

− D′(0)
D(0)

< 0. (I.1)

Detectability is the only factor influencing marginal differences in fitness so it follows
that the more conspicuous mutant admits a clear disadvantage compared with the
resident. It also follows that the evolutionary stability of non-aversive strategies is
governed by their stability along the t-direction.

The origin is a local ESS if the LHS of (21) is greater than zero. This holds true
if f > k. The strategy (0, t1) is an ESS if t1 < tc and it satisfies the equilibrium
condition

− f + k

1 + kt1
= 0 ⇔ t1 = 1

f
− 1

k
. (I.2)

As it happens any such equilibrium is also t-stable, since (16) amounts to

− f 2 + 2k2

(1 + kt1)2
> 0 ⇔ t1 <

√
2

f
− 1

k
, (I.3)

which holds true for an equilibrium given as in (I.2). In summary, we deduce that if
f > k then the origin is a non-aversive ESS, while if f < k and 1/ f − 1/k < tc then
the LHS of the latter is an ESS.

II More on the root-finding process for b < 1

The purpose of this supplementary section is to elucidate the root-finding process
detailed in Figs. 3 and 4. In particular, we focus on the b < 1 regime, wherein upon
generating the curves of t-equilibrium as changes in the parameterα, we identified four
critical values for this, whose definitions we provide here. The root-finding process is
summarised in equalities (28), (29), the RHS of which admit a local minimum. The
critical values of α are thus defined with respect to their crossing of the limiting values
of the LHS of the same equalities (28) and (29). That is, the local minimum crosses
the bottom dash-dotted line in Fig. 3a for a value of α = α1 defined by

− f + k

1 + kT+
SIGN

+ 2α1D
2(∞)(T+

SIGN − tc) = 0. (II.1)

The same minimum crosses the upper (at value four) dash-dotted line for α given by

− f + k

1 + kT+
SIGN

+ 2α2D
2(0)(T+

SIGN − tc) = 0. (II.2)

From these definitions it is clear that there are three different types of equilibrium
depending on which partition α is chosen from [0, α1) ∪ [α1, α2] ∪ (α2, 1].
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In Figs. 3a and 4a the two critical values of α are given by α1 = (3 − 2
√
2)/4,

α2 = (3 − 2
√
2). For α < (3 − 2

√
2)/4 the aversive maximum lies below unity

(lower dash-dotted line) and the associated t-equilibrium curve in 4(a) consists of
two disjointed roots in the aversive region that come closer with increasing r1. For
(3−2

√
2)/4 < α < 3−2

√
2 the minimum of 3(a) lies between unity and four and so

the equilibrium curve in 4(a) exhibits an rmax -type vertex in the aversive region. For
3 − 2

√
2 < α ≤ 1 the minimum is above four, which is why in 4(a) the equilibrium

curve is not defined.

III Derivatives of the payoff

In this section we provide a number of limit definitions that are supplementary to the
discussion of Sect. 2.2. Let h be positive and arbitrarily small. By ∂t P(r , t; r1, t1) we
mean the partial derivative of the mutant payoff with respect to the mutant toxicity t
for fixed values of the mutant conspicuousness r and remaining resident traits r1 and
t1. That is

∂t P(r , t; r1, t1) := lim|h|→0

P(r , t + h; r1, t1) − P(r , t; r1, t1)
|h| . (III.1)

Higher order derivatives can be defined in a similar way. Along the r -direction the
notation and definition are similar, except that precisely at r = r1 this quantity is not
defined. Instead for r = r1 we use the left and right partial derivatives

←
∂ r P(r , t; r1, t1)|r=r1 := →|h| 0lim

P(r1, t; r1, t1) − P(r1 − |h|, t; r1, t1)
|h| (III.2)

and

→
∂ r P(r , t; r1, t1)|r=r1 := lim|h|→0

P(r1 + |h|, t; r1, t1) − P(r1, t; r1, t1)
|h| . (III.3)

IV Remarks about the implicit function theorem

In this section we wish to make a number of technical clarifications. We begin by
stating proving and verbally explaining the following result

∂t1
[
∂t P(r , t; r1, t1)|r=r1,t=t1

]|r1=r∗
1 ,t1=t∗1 = ∂t1t P(r∗

1 , t∗1 ) + ∂t t P(r∗
1 , t∗1 ). (IV.1)

To prove this result we use the limit definition of the derivative provided in
Appendix III to show that the LHS = RHS. The LHS involves taking two deriva-
tives. Taking the first amounts to

∂t P(r , t; r1, t1)|r=r1, t=t1 = lim|h|→0

P(r1, t1 + h; r1, t1) − P(r1, t1; r1, t1)
z

|h|. (IV.2)
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and taking the second gives the required result

∂t1
[
∂t P(r , t; r1, t1)|r=r1,t=t1

]|r1=r∗
1 , t1=t∗1

= lim
h1→0

1

h1

{
lim
h→0

P(r∗
1 , (t∗1 + h) + h1; r∗

1 , t∗1 ) − P(r∗
1 , t∗1 + h1; r∗

1 , t∗1 )

h

− lim
h→0

P(r∗
1 , t∗1 + h; r∗

1 , t∗1 ) − P(r∗
1 , t∗1 ; r∗

1 , t∗1 )

h

}

+ lim
h1→0

1

h1

{
lim
h→0

P(r∗
1 , t∗1 + h; r∗

1 , t∗1 + h1) − P(r∗
1 , t∗1 ; r∗

1 , t∗1 + h1)

h

− lim
h→0

P(r∗
1 , t∗1 + h; r∗

1 , t∗1 ) − P(r∗
1 , t∗1 ; r∗

1 , t∗1 )

h

}

= ∂t1t P(r∗
1 , t∗1 ) + ∂t t P(r∗

1 , t∗1 ).

In Sects. 2 and 3 we utilised the IFT in two dimensions to argue that the continuum
of evolutionary stable traits is such that one can draw a line tangent to this curve
(existence). Furthermore the same theorem provides a rule - see (14) - that determines
the value of the slope of this tangent. Here we show that the tangent is indeed well-
defined in the case of the equilibrium curve in question. We proceed as follows.

From conditions (15) through to (18) it is clear that if evolutionarily stable outcomes
exist these are manifest as a subset of the continuum defined by the equilibrium
condition ∂t P(r , t; r1, t1)|r=r1,t=t1 = 0, which due to (5) amounts to (15). Note that
while the quantity on the RHS of

∂t P(r , t; r1, t1) = F ′(t)
D(r)K (t)Q(I )

− F(t)K ′(t)
D(r)K 2(t)Q(I )

−aI
H ′(t)
H(t)

F(t)Q′(I )
D(r)K (t)Q2(I )

(IV.3)

is not differentiable with respect to the mutant conspicuousness trait it is by construc-
tion continuous at (r , t) = (r1, t1) at the resident value (r , t) = (r1, t1) it is continuous
at that value. Evaluating the RHS of the latter at (r , t) = (r1, t1) gives

∂t P(r , t; r1, t1)|r=r1, t=t1 = F ′(t1)
D(r1)K (t1)Q(I1)

− F(t1)K ′(t1)
D(r1)K 2(t1)Q(I1)

−aI1
H ′(t1)
H(t1)

F(t1)Q′(I1)
D(r1)K (t1)Q2(I1)

(IV.4)

where the RHS of the latter is differentiable with respect to the resident traits r1 and
t1. The set of points satisfying the condition ∂t P(r , t; r1, t1)|r=r1, t=t1 = 0 is the same
as those satisfying condition

F(t1)

D(r1)K (t1)Q(I1)
∂t P(r , t; r1, t1)|r=r1, t=t1 = 0
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and in particular the IFT in two dimensions can be applied directly to

F ′(t1)
F(t1)

− K ′(t1)
K (t1)

− aI1
Q′(I1)
Q(I1)

H ′(t1)
H(t1)

= 0. (IV.5)
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