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Abstract Evolution leads to animals being well-adapted to their en-
vironment, in terms of physical abilities and behaviours. Many animal
behaviours, however, are not simply genetically determined, but are a
result of learning. Learning is generally assumed to be an adaptation to
environmental change, but the relationship between environmental fac-
tors, learning, and evolution is complex and not fully understood. Here,
the role of reinforcement learning is of increasing interest. We present a
general model inspired by evolutionary games which analyses and com-
pares fitness distributions of individuals in a changing environment which
either learn or evolve through mutation. We show that reinforcement
learning offers a potential mechanism for the initial evolution of learning
irrespective of any technical parameters and confirm previous findings of
other established models of learning.

1 Introduction

Through evolution, animals are generally very well-adapted to their environ-
ment. Phenotypic plasticity allows for suitable adaptations even in the face of
changing environments [12]. Thus both physical abilities and behaviours of ani-
mals are generally appropriate to their environment. Nevertheless many animal
behaviours are not solely genetically determined, though some are, but the re-
sponse of the animal’s learning capabilities. Hence a key question arises: under
which conditions is the ability to learn beneficial? From a biological perspective,
learning is a mechanism for rapid adaptation (modification) of behaviour during
the individual’s lifetime and a distinct adaptation to changing environments in
particular [7]. The main line of argument is that learning incurs some cost, so
that a constant environment should select for a genetically fixed pattern of be-
haviour over learned behaviour. But the relationship of learning and evolution
is complex and an important aspect of learning is environmental predictability
(commonly referred to as regularity) [15]. Clearly, there is nothing to learn in
an environment which is absolutely unpredictable. So far both factors, environ-
mental change and regularity, have been discussed in the literature as selective



factors in the evolution of learning. A contradiction at first sight, but a solution
to the paradox would be that learning is in fact an adaptation to intermediate
levels of environmental change [8].

Associative learning is a fundamental cognitive process observed across species
(including mollusks, insects, birds and mammals) [11] that affects a wide variety
of behaviours ranging from colour recognition [2, 9, 13, 20] and spatial repre-
sentation [1], to causality judgements [14] and goal-directed behaviour [21]. Of
course, animals use other types of learning (e.g. social learning or perceptual
learning) and ontogenetic mechanisms (e.g. habituation and phenotypic plastic-
ity) to adapt their behaviour to the environment. Nonetheless, the pervasiveness
and relevance of associative learning makes it the ideal candidate to investigate
when learning is most effective. We are interested in the initial evolution of learn-
ing [3,17] and in particular how reinforcement learning [4,5] could evolve within
a population of generally well adapted animals. To answer this question we focus
on a simple model of learning where individuals learn to associate events that
occur together, for instance two stimuli, a stimulus and a response, or a response
and its outcome [10].

2 Model Definition

Our work develops that of [18, 19], which investigated the effects of aversive
learning in a changing environment on a predator’s diet choice and energy in-
take. Here we describe fitness distributions of learning individuals in changing
environments more generally and compare them with a simplistic mutation pro-
cess to understand the relationship between evolution and learning.

In our model the learning individual uses Q-learning [22], chosen for the sim-
plicity of its implementation of real-time error-correction learning and as it is
increasingly supported by both behavioural and neural data. In Q-learning an
individual uses experience following its interactions with the environment to in-
fer optimal decisions. The learning individual utilises an action-value function
to build a representation of the environment which describes the expected fu-
ture payoff following a specific action in a specific state of the environment. It
then minimises the error of the function’s future payoff prediction building on
a growing amount of evidence from past trial-and-error interactions with the
environment. These payoff predictions are discounted by a factor γ, represent-
ing future uncertainty. The prediction error is modulated by a learning rate α.
Finally, the individual translates the action-value function predictions into a
decision following a stochastic policy, e.g. Gibb’s soft-max policy.

An individual of the mutating population has a genetically determined deci-
sion policy chosen randomly from a uniform distribution at the beginning of each
generation. The important differences between the two populations are: (i) the
mutation process is random and not adaptive, operating on fixed phenotypes
and (ii) learning is adaptive but incurs an exploration cost, where suboptimal
decisions are made to learn about the environment. Selection is not included as
we are only interested in both populations’ fitness distributions.
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Figure 1. The environment with the choice of a certain and an uncertain option. (a)
The two options of the environment with the certain option being equal to zero and
the uncertain option following a uniform fitness payoff distribution g(R) with limits −a
and a as given by Equation (1). (b) The distribution of absolute fitness change follows
a triangular distribution h(|Ri − Ri+1|) with ε = (2/3)a being the average absolute
fitness change given the uniform distribution of fitness payoff g(R) with β = 1.

We define the environment to be stationary and ergodic, consisting of two
options, a certain and an uncertain one, as shown in Figure 1. The model param-
eters are described as follows: (i) R: the fitness payoff following an interaction
with the environment, (ii) F : the fitness of an individual at the end of a gen-
eration, (iii) F̂ : the scale-free fitness of an individual, (iv) l: the length of a
generation in interactions with the environment, (v) β: the number of environ-
mental changes per generation time, (vi) ε: the extent of environmental change
per generation time, (vii) α: the learning rate of the learning individual and
(viii) γ: the discount rate of future payoffs. The certain option gives a constant
fitness payoff R = 0 and the uncertain option returns a uniformly distributed
fitness payoff g(R) with zero mean. The value of 0 for the fitness of the constant
option and the mean of the variable option is chosen for simplicity (it is possible
to add an arbitrary constant to both and not qualitatively change our results).

The learning individual cannot draw from any secondary source of informa-
tion such as a correlation between environmental states which motivates the
choice of the uniform distribution g(R). The term regularity refers to the pre-
dictability of an environment within models of learning. A perfectly regular en-
vironment is one that is constant throughout the lifetime of an individual, with
irregularity increasing as the number of changes per lifetime increases. We define
irregularity as the expected number of environmental changes in a lifetime, given
by β/l. This is perhaps a simplistic definition, and we do not make direct use
of it, except that the environment becomes increasingly irregular with greater
(smaller) values of β (l). We define the limits [−a, a] of the Uniform distribution
g(R) as follows:

a =
3

2β
ε, (1)

where ε is the absolute average fitness change per generation derived from the
triangular distribution h(|Ri−Ri+1|) of the absolute difference of the uniform fit-



ness payoff g(R) as shown in Figure 1. We assume that an increased frequency of
environmental change β results in smoother and less pronounced single changes
as reflected in Equation (1). The fitness F of an individual is the sum of the
fitness payoffs from its interactions with the environment F =

∑l
t=1Rt.

3 Results

We present the distributions of n = 5000 generations interacting with their
environment using a scale free variant of the fitness F̂ = βF/lε, which will
allow a more intuitive comparison of the two populations. We will present the
results for each population respectively in the form of box-plots and associated
Kolmogorov-Smirnov significance tests.

Figures 2a and 2b show the main characteristic of the mutation process: as
the process is random and not adaptive it is independent of the number of inter-
actions per generation l and of the extent of environmental change per generation
ε. The fitness distributions are also symmetric with mean zero. Additionally, α
and γ do not apply to the mutation process. Figure 2c shows the effects of the
frequency of environmental changes β. The fitness distribution is unaffected for
β ≤ 1, i.e. when mutations occur more frequently than changes in the environ-
ment. If β > 1 the fitness distribution of the population of mutating individuals
becomes increasingly narrow. This is a direct result of the mutation process be-
ing non-adaptive and therefore it is less likely that individuals are well suited
(or poorly suited) for a number of consecutive environmental states.
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Figure 2. Scale-free fitness distributions of the mutating population, all with n = 5000
generations. (a) The fitness distribution is independent of ε and l. (1) ε = 0.1, β = 1,
and l = 1000. (2) ε = 100, β = 1, and l = 1000. (3) ε = 10, β = 1, and l = 10.
Distributions are not significantly different using a Kolmogorov-Smirnov test, all with
p > 0.1. (b) Fitness distributions scale equally with β independently of ε and l. (1)
ε = 10, β = 10, l = 1000. (2) ε = 1, β = 10, l = 10. Distributions are not significantly
different using a Kolmogorov-Smirnov test, all with p > 0.1. (c) Fitness distributions
become narrower with increasing β. Distributions are not significantly different for
β ≤ 1 using a Kolmogorov-Smirnov test, all with p > 0.1. (1) β = 0.1, (2) β = 0.5, (3)
β = 1, (4) β = 2, (5) β = 10, (6) β = 100. In all cases ε = 1, l = 1000.
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Figure 3. Scale-free fitness distributions of a learning individual. All cases are with
n = 5000 generations. (a) Learning requires a certain amount of environmental change
to occur to be beneficial: (1) ε = 0.1, l = 10 vs. (2) ε = 10, l = 10. Learning benefits
from longer generation times: (2) vs. (3) ε = 10, l = 1000. In all cases β = 1, α =
0.5, γ = 0.9. (b) Learning incurs exploration cost and learning benefits diminish in
unreliable environments. (1) β = 0.1, (2) β = 0.5, (3) β = 1, (4) β = 2, (5) β = 3, (6)
β = 5, (7) β = 10, (8) β = 100. In all cases ε = 1, l = 1000, α = 0.5, γ = 0.9.

The population of learning individuals uses Q-learning to adapt to the current
environmental state. This requires exploration which is the sole cost of learning
in our model. Additional costs of learning are difficult to quantify and we assume
that during the initial evolution of learning these were relatively small [7]. Figure
3a shows that learning requires certain environmental conditions; in particular
learning benefits from a changing environment (Figure 3a1 vs. 3a2). The cost
and benefits of exploration in the learning population can be seen (Figure 3a1)
versus the mutating population (Figure 2a) where the learning behaviour cuts
off both tails of the fitness distribution and does not produce the outliers as
in the mutation process. Additionally, learning benefits from longer generation
times to exploit experience (Figure 3a3).

In Figure 3b we see that learning is directly affected by β compared to the
population of mutating individuals which is unaffected for β ≤ 1 (Figure 2c). The
effect of β on the fitness distribution of the learning individuals is not linear, and
there are multiple underlying factors. In environments with very rare changes an
increasing majority of the population benefits from learning (Fig 3b1). At first,
an increasing frequency of environmental change increases the fraction of individ-
uals benefiting less from learning with the fitness distribution developing a more
pronounced tail of learning individuals having negative relative fitness (Figure
3b1-5). Nevertheless, environmental change benefits learning at the same time
with the median of the population increasing (Figure 3b4). Secondly, a further
increase of β results in the cost of consecutive exploration and consequent er-
rors outweighing this initial benefit and the distribution increasingly aligns with
the fitness distribution of the mutating population. Finally, learning does not
provide any benefits in highly irregular environments interfering with any pos-
sibility of exploitation. Therefore the only difference in the fitness distributions
is the shorter tails for the learning individuals, which is the result of continuous
exploration (Figure 3b8 vs. Figure 2c6).
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Figure 4. Scale-free fitness distributions of the learning individuals showing the effects
of the extent of environmental change (ε). Learning benefits from a certain extent of
environmental change but too severe changes incur a high cost of mistakes during the
required exploration. Additionally, there is a combined effect of regularity and change.
(1) ε = 0.1, (2) ε = 0.5, (3) ε = 1, (4) ε = 2, (5) ε = 5, (6) ε = 10, (7) ε = 20, (8) ε = 50,
(9) ε = 100, (10) ε = 500, and (11) ε = 1000. All cases are with n = 5000 generations,
l = 1000, α = 0.5, and γ = 0.9. (a) β = 1. (b) β = 10.

Figure 4 shows the combined effect of ε and β. We have already discussed the
individual effects of β relating to Figure 3b. For ε we can see that in environments
with small values of absolute environmental change throughout a generation the
fitness distribution of the learning individuals aligns with the fitness distribution
of the population of mutating individuals. A learning individual prioritises con-
tinuous exploration if the environmental change is small which is a consequence
of learning being an adaptation to changing environments. The shorter tails in
the fitness distribution of the learning population compared to the mutating
population are the result of this continuous exploration as discussed previously
(Figure 4a1 vs. Figure 2a and Figure 4b1 vs. Figure 2b). An increase of ε has
beneficial effects for learning individuals as learning requires a certain extent of
environmental change to exploit. A further increase of ε makes mistakes during
exploration more expensive which can potentially neutralise the benefits of ex-
ploiting beneficial states of the environment. The important difference between
a severe extent of environmental change (ε) and an irregular environment (β)
is that mistakes in the case of ε are extremely aversive and stop any further
costly exploration. This is why the fitness distribution of learning individuals
in violently changing environments loses the negative tail compared to rapidly
changing environments (Figure 4a11 vs. Figure 3b8). Combining frequency and
extent of environmental change shows that there is a specific combination of
these factors which hugely benefits the learning individuals (Figure 4b7).

Our results also show that the fitness distribution of the learning population is
independent of the learning rate α and the discount factor γ, within a meaningful
range (clearly α cannot be too low; α = 0 corresponds to no learning at all).
This result should not be misinterpreted: there are specific values of α and γ
best suited for achieving optimality in a specific state of the environment. But
within a changing environment the distribution of fitness is independent of the
specific choice of α and γ.



4 Discussion

In this paper we look at the fitness distribution of individuals using reinforce-
ment learning, i.e. Q-learning, in a changing environment. Our model confirms
previous findings: (i) learning requires environmental change and longer gener-
ation times to be beneficial, (ii) learning is optimal for specific combinations of
regularity and size of environmental change, and (iii) regularity is the key envi-
ronmental factor which impacts whether learning is advantageous. In addition,
we show that (iv) the fitness distribution of learning individuals in changing
environments is independent of the learning rate α and the discount factor γ.

We do not present an evolutionary theory of learning in itself, but show that
a simple reinforcement strategy (increasingly backed by experimental studies of
neural correlates) is beneficial for a vast range of environmental parameters. In
particular, the fact that the success of reinforcement learning is independent
of technical parameters of learning α and γ, is a new and reassuring insight.
These are technical parameters which allow the tuning of over-fitting and the
extent of exploration for a specific learning task and have great importance in the
field of computing. But in a biological context of changing environments these
technical learning parameters become negligible. This significantly reduces the
complexity of the initial evolution of reinforcement learning in comparison to the
combinatorial explosion of the parameter space in models of connectionism [6].

Our model does not include interactions between individuals. Nevertheless,
it reproduces many widely accepted theories of learning in the context of change
and regularity [17]. In addition, it has been widely acknowledged that the benefit
of learning is the ability to adapt to a changing environment faster than the
time scale on which evolution operates [7]. This is an important evolutionary
dynamical argument, but is distinct from those of our paper; here the benefits
of learning lie in exploitation ability rather than adaptation speed itself.

Considering the effects of selection the mutating population in our model has
a constant relative arithmetic mean fitness of zero. The environmental changes
only affect the fitness variability of the mutating population in a symmetric
fashion. As the arithmetic payoff of both options in our model are equal, selection
would increase long-term fitness of the mutating population by discarding the
uncertain option from the action space of the mutation process in order to reduce
fitness variability [16, 18]. This provides an alternative interpretation of why
learning is a distinct adaptation to changing environments alongside the cost
argument: a simplistic mutation process cannot exploit environmental change
without the introduction of increased fitness variability at the same time.

Taking selection into account, our results show that reinforcement learning
is a promising starting point for the initial evolution of learning. The key en-
vironmental factor here is regularity. If selection cannot discard the uncertain
option from the action space of the mutational process, learning is always bene-
ficial as it has lower fitness variability even in extremely irregular environments
when compared to the mutating population. If selection can in fact discard the
uncertain option in the case of the mutating population then learning becomes
disadvantageous in highly irregular environments.
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