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Abstract. Natural environments are intrinsically complex. This complexity 

derives on the one hand from the high entanglement of organisms interacting in 

competitive relationships with each other: the prey is part of the predator's 

environment and vice versa. On the other hand, natural environments are also 

defined by their dynamics of constant change. Thus, evolution in natural 

environments is defined by the dynamic competitive relationships of organisms 

and, typically, results in multiple species, which successively adapt in response 

to their adaptations. In particular, predator-prey co-evolution has been identified 

as an influential factor in the evolution of aposematism. In this paper we address 

the problem of formalizing predator aversive learning in the presence of 

aposematism by applying a reinforcement learning algorithm on a biologically 

plausible predator lifetime model. 
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1 Introduction 

The majority of species are at risk of predation in their natural habitat and are targeted 

by predators as part of the food web. Through the process of evolution by natural 

selection a predator is confronted with manifold mechanisms that have developed to 

avoid predation. So-called secondary defenses commonly involve the possession of 

toxins or deterrent substances which are not directly observable by predators. However, 

many defended species use conspicuous signals as warning flags in combination with 

their secondary defenses –what we call aposematism. There is a wide body of theory 

addressing the emergence and evolution of aposematism (Broom et al., 2006; Broom 

et al, 2008; Lee et al., 2010; Lee et al., 2011; Leimar et al., 1986; Marples et al., 2005; 

Ruxton et al., 2004; Ruxton et al., 2009; Yachi and Higashi, 1998). Within this context, 

the role of the predator as the selective agent and the mechanisms of the predator's 

aversive learning process are at the heart of current research (Barnett et al., 2007; Hagen 

et al., 2009; Sherrat, 2003). Nevertheless, there is no accepted formal model of aversive 

learning in foraging literature.  

A normative modern framework for aversive learning can be found within the field 

of reinforcement learning, which provides a mapping of environmental states to an 

individual's action in order to maximize a reward signal in an unsupervised manner 

(Barto et al., 1990; Watkins, 1989; Sutton and Barto, 1998). Solving the underlying 



 

reinforcement learning problem is crucial since natural environments are too complex 

to learn from examples of desired behaviour –such examples will not be representative 

for all states of an individual's environment. But it is in these unknown situations when 

learning is most beneficial and an individual has to rely on its own generalized 

experience from interactions with its environment. This is where a classical trade-off 

arises between exploration and exploitation: to maximize a reward an individual should 

perform the actions that it knows to be rewarding from previous experience. However, 

to find such actions in the first place an individual had to explore actions with unknown 

outcome. Therefore, the mapping of states to actions has to be obtained through trial-

and-error, or goal directed learning where actions have subsequent effects on future 

rewards. The last decade has seen a proliferation of research on the neural and 

psychological mechanisms of reinforcement learning. We know from studies of neural 

correlates in behaving animals that reinforcement signals in the brain represent reward 

prediction error rather than a direct reward-reinforcement relation (Daw and Doya, 

2006; Dayan and Balleine, 2002; Dayan and Daw, 2008; Dayan and Niv, 2008; Doya, 

2007; Maia, 2009; Montague et al., 1996; Montague et al., 2004; Rangel et al., 2008; 

Schultz, 2002, 2007, 2008; Schultz et al., 1997). Temporal difference learning is a 

reinforcement learning methodology that reflects these insights by representing states 

and actions in terms of predictions about future rewards where the learning objective is 

to iteratively update the target values of future rewards towards their true values based 

on experience from interactions with the environment. However, apart from in 

Teichmann et al. (2014a) reinforcement learning has not been proposed to formalize 

aposematism within the foraging problem.  

In this paper, we introduce a predator lifetime model where an individual's payoff is 

both dependent on the environment and additional aspects of an individual's behaviour, 

metabolism, and lifetime traits, which are usually abstracted away in reinforcement 

learning formalisms. This approach will allow us to investigate the cost of learning and 

the interactions of behaviour and metabolism on the learning outcome. In our approach 

the learning problem is to find an optimal foraging strategy under the aspects of 

maximizing the predator's payoff in an episodal task such as a day of foraging. 

Importantly, the predator's behaviour has delayed effects on its rewards so that a 

trajectory is not only dependent on its initial conditions but also on all the predator's 

actions and the subsequent state transitions. Therefore, we have to choose an episodal 

learning algorithm, which considers the entirety of actions and state transitions of a 

trajectory within its learning updates. We have used back-propagation through time 

(BPTT) as an efficient method to calculate the derivative of the predator's payoff 

function in the policy space for episodal tasks. The rest of the paper is structured as 

follows: in the next section we describe how reinforcement learning operates. The 

predator life model is introduced in detail in Section 3. Section 4 describes the 

reinforcement learning algorithm used to calculate optimal trajectories, and the 

derivatives used are formulated in Section 5. The results of the simulations are 

presented in Section 6. We shall conclude with a discussion of the results and further 

work. 



 

2 Reinforcement Learning 

A typical reinforcement learning scenario is an animal inhabiting a state space  SÌ » n

, such that at k  iteration it “lives” in state sk ÎS . The state space represents any 

features the modeller considers relevant, typically a collection of stimuli, but can also 

include internal constructs. At each iteration, the animal chooses an action uk  (from an 

action space uk ÎU ), which takes it to the next state according to a model function  

 

sk+1 = f sk ,uk( )
 

(1)
 

  

and gives it an immediate scalar rk , represented by the reward function 

 

rk+1 = r sk ,uk( )   (2) 

 

The animal keeps acting, forming a trajectory of states s0,s1,...( )  
indefinitely or until 

a given terminal state is reached. In this problem the animal must learn to choose actions 

that maximize the expectation of the total long-term reward, the return, received from 

any given start state s0 . Formally, the problem is to find an policy p s,z( ), where z  is 

the parameter of a function approximator (typically, a neural network), which calculates 

actions  

 

uk = p sk ,z( )
 

(3) 

 

 

such that the following value function is maximized 

 

V s0,z( ) = g krkkå
 

 (4)

   

subject to Equations (1), (2) and (3), where g Î 0,1[ ]  is a constant discount factor 

that specifies the relative importance of long-term costs over short-term ones.  

3 The Predator Lifetime Model 

This section introduces the lifetime model of an individual predator and the definition 

of the individual’s payoff based on its environment and additional aspects of its 

behaviour, metabolism, and lifetime traits. In this model an individual predator is 

characterized by its state sk  at iteration k . The state is given by  

 

sk = T ,A,X,Y{ } (5) 

 



 

with T  being the time of an iteration k  within an episode, A  the age of the 

predator, and X  and Y  the axes of the spatial location of the predator within its 

environment at iteration k . The predator finds itself in an environment defined by the 

availability of different food sources. The dispersion of each prey population i  within 

the environment is described by a well-understood Gaussian distribution function 

 

gi X,Y( ) = pi exp -
X - xi,0( )
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(6) 

 

with xi,0 ,yi,0( )  being the center of the prey population with density pi  and 

s i,x,s i,y( ) the spread of the prey. The model assumes that the prey is aposematic with 

both models (venomous animals) and potential mimics (non-venomous animals which 

mimic the defenses of venomous animals). The predator feeds on prey it encounters, as 

it cannot distinguish between models and mimics based on their appearance. However, 

the predator has the option to move around freely in its environment to avoid encounters 

with possibly aversive prey based on its experience. The predator’s locomotion is 

defined by its action vector uk , given by  

 

uk = ex,ey{ }  (7) 

 

with ex ,ey  
representing the energy invested into locomotion at iteration k . The value 

function V  describes the total payoff of a predator at the end of an episode and is the 

result of the predator’s interaction with the environment. Thereby, the predator’s 

actions have subsequent effects on its environment through locomotion and the 

predator’s spatial location within the environment according to the reinforcement 

learning model. The subsequently received payoff for the predator being in a specific 

state sk  and taking action uk  at iteration k  is given by the payoff function as follows  

 

 

(8) 

 

where  is the metabolic cost of the predator, - E uk( )  the absolute energy 

expenditure of a predator’s actions, and R s( )  the state specific payoff defined as 

 

R sk( ) = gi sk( )d ti( ) r - ti
2( )

i

å  (9) 

 

 where 

 



 

d t( ) =
1

1+ d0t
 

(10) 

 

is the probability of ingesting a prey individual of toxicity t  after taste sampling. 

The model has the option to include age related effects such as an age dependent agility 

of the predator given, for example, by  

 

l A( ) =
1

1+ A
 

(11) 

 

The environment of this model is Markovian defined by the state transition function 

 

 

(12) 

 

The transition of time  between iterations occurs in unit time steps reflecting 

abasal metabolic expenditure and the additional costs of foraging such as the sampling 

of prey items ts , the handling of prey th , and the recovery from ingested toxins ttt
2 . 

The predator ages  linearly with time. The predator’s locomotion results in a 

change of its spatial location  depending on the predator’s energy investment 

ex ,ey  with the maximal spatial displacement per iteration being a unit step of one. The 

functions of the model are governed by single parameters, which allow the trade off 

between the different aspects of the predator’s behaviour, lifetime traits, and 

environment x0,y0,t0,d0,l0,c0( ) . These parameters define the lifetime model. The 

only term missing is the subjective payoff. The assumption is that this subjective payoff 

can be reverse engineered from the observed foraging behaviour of the predator using 

a reinforcement learning algorithm. The aim is to find the subjective value of the payoff 

for prey type i  such as to reproduce the observed foraging behaviour of the predator. 

Additionally to the lifetime model, we define a final instantaneous cost Y  of the 

terminal state sl  with l  being the final iteration of an episode based on the spatial 

distance of the predator from its den at X = 0,Y = 0( ):  
 

Y s( )
l
=

-rl X
2 +Y 2 if X 2 +Y 2 > e

0 otherwise

ì
í
ï

îï
 

(13) 

 

with -rl  being a punishment for not returning to the den at the end of an episode. 



 

Within a biological context such a final cost can be thought of as a step-like around the 

predator’s den. If a predator has to feed offspring staying behind in the den the cost of 

almost returning will not decrease smoothly within the proximity of the den. 

4 Reinforcement Learning using BPTT 

As discussed previously, the control problem in reinforcement learning is about finding 

an optimal behaviour policy (aka an actor). Reformulating reinforcement learning using 

an actor becomes the problem of finding the parametrization  of the actor  

that maximizes the total value –or minimizes the overall prediction error for a complete 

trajectory based on . This can be achieved using hill climbing on the total 

value of a complete trajectory itself with respect to , i.e. , which is 

also called a policy gradient with back-propagation through time  (BPTT) being an 

efficient implementation of the optimization problem for episodal tasks (Werbos, 

1974). BPTT uses the actor , traditionally implemented as an artificial neural 

network with weights  as a universal function approximator and which is equivalent 

to the behaviour policy. As such, BPTT is an off-line learning algorithm that issues a 

weight update  at the end of an episode. The delayed effects of actions in the 

reinforcement learning problem means that the outcome of a trajectory is not only 

dependent on its initial conditions but also on all the actions of an individual and the 

subsequent state-transitions. Therefore, an episodal learning algorithm has to consider 

the entirety of actions and state-transitions of a trajectory within its updates. Thereby, 

the trajectory of a complete episode is unrolled backwards using the Markovian 

properties of the environment with the component  being computed from the 

prevailing quantity , i.e. the policy gradient of the value function is 

computed backwards in time starting at the end of an episode (Eq. 14). This property 

gives the methodology its name. It is well-known that back-propagation is an efficient 

way of calculating the derivative of the network function in artificial neural networks. 

Back-propagation through time is the extension of that methodology to efficiently 

calculate the derivative of the network function in episodal tasks where the neural 

network has been applied multiple times to create a trajectory of states and payoffs – 

similarly to recurrent neural network problems – including the concepts of discounting 

and bootstrapping. Therefore, the derivative of the overall network function is the sum 

of the discounted incremental gradients at each iteration of the trajectory with their 

calculation expanding as follows: at the beginning of the BPTT algorithm the partial 

gradients of the value function are initialized: 
 
and 

, with Y  (Eq. 13) being the final instantaneous cost of the 

terminal state sl , and l  being the final iteration in an episode of finite length. 

Following the initialization the algorithm processes the trajectory of an episode 

backwards in time starting from the second last iteration to the first iteration in the 

episode. At each step the algorithm adds the partial policy gradient of the current 

iteration to the overall policy gradient of the value function for an episode 

as follows:  

 



 

 
(14) 

 

with the following state dependent value contribution deriving from the Markovian 

properties of the environment 

 

 
(15

) 

 

The final weight update gives the implementation of hill climbing on the value 

function V  with respect to the policy gradient of  using   

 

 
(16) 

 

with a  representing a learning rate. Summarizing, the BPTT algorithm can be 

understood as propagating the policy gradient of the value function with respect to a 

future state  backwards in time through the actor, the state-transition 

function, and the payoff function to obtain the policy gradient of the value function 

 of the previous state. As BPTT utilizes the Markovian properties of the 

environment using the state-transition function for the propagation of the state-

dependent gradient backwards through time it is a model-based methodology. BPTT as 

a simple hill-climbing algorithm on the value function has robust convergence proofs 

(Werbos, 1990).  

5 Derivatives Used by the BPTT Algorithm 

As BPTT is model-based it requires a number of derivatives of the underlying lifetime 

model. The lifetime model is implemented as a Markovian decision process and the 

propagation of incremental gradients backwards through time in the algorithm requires 

the state  and action  dependent derivatives of the state-

transition function f , where 

 

 
(17) 

 

and 

 



 

 
(18) 

 

Furthermore, BPTT requires the state and action dependent derivatives, respectively, 

 and  of the payoff function rk+1 . In regards to the 

lifetime model, the derivatives of the state transition function f  are  

 

 

(19) 

 

where the state dependent time transition  is defined by the predator’s spatial 

location within the environment and its interactions with the present prey. Otherwise 

time progresses constantly and independently of age and time. The state dependent 

derivative of the predator’s ageing follows directly from the time transition. Other 

relevant derivatives of the state transition function f  are the action dependent changes 

in the predator’s spatial location within the environment. The predator can invest 

energy ex ,ey  into locomotion with respect to X  and Y  respectively. By definition of 

the lifetime model the remaining derivatives of the state transition function f  are 

independent of the state or the predator’s actions, i.e.  

 

 
(20) 

 

with the spatial location of the predator being solely affected by the predator’s 

action. Additionally, time and age progress independently from the predator’s 

investment into locomotion within each iteration. Next, consider the state and action 

dependent derivatives related to the value function V , which are given by the sum of 

discounted payoffs along the trajectory of an episode. The derivatives of the 

incremental changes to the value of an episode along a trajectory are   

 



 

 

(21) 

 

where  is the derivative of the state dependent payoff from interacting  

with prey given by  

 

 

(22) 

 

and 

 

 
(23) 

 

The absolute amount of energy invested into locomotion each iteration 

affects the value of an episode as follows:  

 

 

 

(24) 

6  Results 



 

The results in Fig. 1 and Fig. 2 depict the trajectories which are close to an optimal 

trajectory and which were found running the learning algorithm continuously saving 

trajectories that increased the overall payoff V  for an episode. The environment is 

composed of an aposematic prey population and a population of Batesian mimics. The 

predator cannot distinguish between them visually and has to utilize experience from 

ingesting prey individuals to find a rewarding feeding ground. The trajectory of a 

predator which is not utilizing taste-sampling (Fig. 1a) shows avoidance of the aversive 

prey population taking a non-direct route to the population of mimics. The pre-

condition of exploration for successful aversion formation and the non-direct route 

result in a very low value for the locomotion parts of the trajectory. In order to make 

the predator exploit the population of mimics the length of an episode had to be high 

with l = 80  in the simulation. The taste-sampling predator takes a more direct route 

towards the population of mimics and experiences a much higher value for the 

locomotion parts of the trajectory (Fig. 1b). 

Fig. 2 shows the locomotion profile for the non-taste sampling predator. The 

predator’s locomotion in general is optimized towards efficiency maximizing the 

displacement per energy expenditure  and , which is at 

ex = ey = 0.5  in the simulation with a diagonal locomotion of length 0.7 being therefore 

most efficient. There is a trade-off in this simulation as the population of mimics is not 

located on the diagonal and due to the presence of an aposematic prey population. 

Additionally, the predator is over-staying in the feeding grounds with the second half 

of the trajectory showing a more rapid locomotion than the first half. 

 

  
(a) The state dependent reward payoff R(sk) 

for a predator not utilizing taste sampling: d0 

= 0 and ts = 0. 

(b) The state dependent reward payoff R(sk) 

for a predator utilizing taste sampling: d0  = 1 

and ts = 0.1. 



 

  
(c) The partial derivative of the reward with 

respect to the spatial position of the predator 

not utilizing taste sampling: d0 = 0 and ts = 0. 

(d) The partial derivative of the reward with 

respect to the spatial position of the predator 

utilizing taste sampling: d0 = 1 and ts = 0.1. 

 

Fig. 1. The state dependent reward of an exemplary environment with aposematic prey and 

Batesian mimics. All with th = 0.1, tt = 0.2, p1 = p2 = 0.5, x1,0 = y1,0 = 5, s1,x
= 5, s1,y  = 2.55, 

t1 = 5, r1 = 1, x2,0 = 10, y2,0 = 8, s 2,x
= 2, s 2,y= 2, t2 = 0, r2 = 15, l = 80. 

 

  
(a) The predator’s locomotion optimizes the 

energy expenditure with 
 

and . 

(b) This plot shows the difference of the 

second half compared to the first half of an 

episode. The predator prefers to feed longer 

and return to its den using a greater step size 

than the optimal of 0.7. 

 

Fig. 2. The locomotion profile of a predator not utilizing taste sampling with an episode of 

length l = 80.  



 

These results show some interesting properties: (a) In a biological context the 

trajectories of the predator are unstable; (b) the element of the model which is generally 

optimized is the efficiency of locomotion (the behavioural expenditure); (c) a non-taste 

sampling predator avoids the aposematic prey population in order to minimize its 

metabolic costs from toxin ingestion; and (d) The predator shows a tendency to over-

stay in the feeding grounds and returns to the den with above optimal energy 

expenditure for locomotion. 

7 Discussion 

In this paper we have presented a predator lifetime model including life history traits 

that have been traditionally abstracted away in the literature such as metabolic costs, 

locomotion, prey handling, and toxin recovery. The model was defined in such a way 

that it can be interpreted in a psychological context of subjective behaviour driven by 

reward motivated objectives and an evolutionary context of a behavioural repertoire 

which is driven by fitness and co-evolution between predator and prey. 

We applied a reinforcement learning algorithm trained using back-propagation 

through time (BPTT), to simulate behaviour of single individuals driven by rewards. 

BPTT address learning in episodal tasks based on experience including discounted 

future rewards. We used an artificial neural network as a universal function 

approximator in order to implement the policy. The learning task for the simulator is 

defined in a way to address the discussion of when behaviour is optimal (Teichmann et 

al., 2014b). On the one hand, the environment in the simulation contains rewards and 

punishment and optimal behaviour should maximize positive reinforcement. On the 

other hand, the environment contains a fitness related element in the form of an 

instantaneous final cost in case the predator does not return to its den at the end of an 

episode. From a biological context this cost function is a steep step-like function: if the 

predator has to feed offspring in its den then being close to the den will not gradually 

reduce the cost of not returning. The trajectories from the simulator show  instability 

due to the interference of maximizing positive reinforcement along the trajectory 

(excluding the fitness cost) and maximizing the value of a complete trajectory 

(including the fitness cost). The simulator oscillates between two states: (i) a state of 

maximizing rewards along the trajectory excluding the final cost where the predator 

stays in the feeding ground and does not return to its den and (ii) a state of maximizing 

the value of the complete trajectory including the final cost where the predator 

successfully returns to its den. However, the simulation shows that the predator 

generally optimizes the efficiency of its behavioural expenditure. That the rewards 

interfere with the optimal behaviour as the predator overstays in the feeding grounds 

and uses above optimal energy for its locomotion on its return to the den corresponds 

in fact with biological findings (Nonacs, 2001). Summarizing, as far as we know the 

paper presents the first attempt to formalize foraging behaviour as a learning problem. 

In order to do this we have extended the traditional reinforcement learning framework 

with relevant ethological features, making it biologically plausible (à la Berridge 1996, 

2003; Berridge et al., 2009). Hence our model is a contribution to foraging theory as 



 

well as to reinforcement learning research. Of course, our results are preliminary, and 

future work will include investigating the effects of alternative terminal cost functions 

and refining the lifetime model. For instance, the model could be further developed by 

integrating a Darwinian fitness function. Finally, we will also consider whether we can 

eliminate, at least partially, fluctuations around optimal trajectories by using variations 

of the learning algorithm as such. 
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