
The application of temporal difference learning in optimal diet models

Jan Teichmann a,n, Mark Broom a, Eduardo Alonso b

a Department of Mathematical Science, City University London, Northampton Square, London EC1V0HB, United Kingdom
b Department of Computer Science, City University London, Northampton Square, London EC1V0HB, United Kingdom

A U T H O R - H I G H L I G H T S

� We apply model-free reinforcement learning to optimal diet models.
� The presented model incorporates uncertainty of changing environments.
� The model predicts effects of Batesian mimics and aposematism on predators diet choice and energy intake.
� The model uses a precondition of exploration of the action space for successful aversion formation.
� Conflicting rewards lead to foraging behaviour which is conditionally suboptimal in fixed environments but allows better adaptation in changing
environments.
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a b s t r a c t

An experience-based aversive learning model of foraging behaviour in uncertain environments is presented.
We use Q-learning as a model-free implementation of Temporal difference learning motivated by
growing evidence for neural correlates in natural reinforcement settings. The predator has the choice of
including an aposematic prey in its diet or to forage on alternative food sources. We show how the
predator's foraging behaviour and energy intake depend on toxicity of the defended prey and the
presence of Batesian mimics. We introduce the precondition of exploration of the action space for
successful aversion formation and show how it predicts foraging behaviour in the presence of conflicting
rewards which is conditionally suboptimal in a fixed environment but allows better adaptation in
changing environments.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Predators have to secure a high energy intake in the face of
changing and uncertain environments. Through the evolution of
predator–prey interactions manifold mechanisms have emerged to
avoid predation. The so-called secondary defences commonly involve
the possession of toxins or deterrent substances which are not
directly observable by predators. However, many defended species
use conspicuous signals as warning flags in combination with their
secondary defences (aposematism).

There is awide body of theory which addresses the emergence and
evolution of aposematism (Ruxton et al., 2004; Yachi and Higashi,
1998; Broom et al., 2006; Leimar et al., 1986; Lee et al., 2011; Marples
et al., 2005). However, the field of aposematism has a renewed interest
in the role of the predator and details of the predator's aversive

learning process. In particular, the role of aposematism in memory
formation has beenwidely studied (Speed, 2000; Svádová et al., 2009;
Skelhorn and Rowe, 2006; Johnston and Burne, 2008; Speed and
Ruxton, 2005). As the selective agent, aversive learning is an important
aspect of predator avoidance. It has been shown that predation of
defended prey is rather a state dependent decision and predators can
increase their attack rates on defended prey e.g. when particularly
hungry (Barnett et al., 2007; Sherratt, 2003). There have been
suggestions of an interaction of appetitive learning with aversive
learning to explain predator behaviour of ingesting toxins in these
situations (Hagen et al., 2009).

An interesting perspective is to look at the predator and the
consequences of aposematism in combination with aversive learn-
ing on the predator's diet and energy intake. In particular, the role
of mimics in the evolution of aposematism and their effect on
foraging is not very well understood (Gamberale-Stille and Tullberg,
2001; Lev-Yadun and Gould, 2007; Svádová et al., 2009; Holen,
2013). A predator may utilise sampling to distinguish between the
toxic model and the mimic (Gamberale-Stille and Tullberg, 2001;
Darst, 2006; Holen, 2013).
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The traditional way of analysing and predicting foraging behaviour
is the application of optimal foraging theory (OFT) which maximises
the predator's net fitness per unit time (MacArthur and Pianka, 1966;
Stephens and Krebs, 1987; Sih and Christensen, 2001). However, OFT
has well known limitations: OFT usually fails to correctly predict
foraging behaviour on mobile prey in complex environments (Sih and
Christensen, 2001; Pyke, 1984; Perry and Pianka, 1997). It can be
argued that OFT was never intended for predictions in the case of
mobile prey and that the optimisation per unit time omits the
uncertainty of more complex environments. There are models which
address optimal foraging under the constraints of risk and uncertainty
and previously extended OFT with learning (McNamara and Houston,
1985). The two main approaches to optimal behaviour in dynamic
decision making are dynamic programming (DP) and stochastic
optimal control methods (e.g. Bayesian decision theory) (Houston
and McNamara, 1982; Stephens and Charnov, 1982; McNamara and
Houston, 1985; Mangel and Clark, 1986; McNamara et al., 2006).
Especially dynamic programming found wider application in beha-
vioural ecology and has been used in models of dynamic decision
making to identify optimal behaviour numerically (Clark and Mangel,
2000). These models have all in common that they are model based:
they depend on a representation of the environment in the form of a
model developed from expert knowledge and the learning objective is
to find the parameters which optimise the representational model.

On the contrary, a normative framework of rational decision
making in a changing and complex environment is reinforcement
learning (RL). RL combines the computational task of maximising
rewards and the algorithmic implementation of natural learning
without an explicit supervisory control signal (Mitchell, 1997;
Sutton and Barto, 1998).

Neural correlates of behaving animals show that reinforcement
signals in the brain represent the reward prediction error rather than a
direct reward-reinforcement relation. Temporal difference (TD) learn-
ing reflects these insights by representing states and actions in terms
of predictions about future rewards (Niv, 2009; Berns et al., 2001).
Additionally, TD learning ismodel-free: the environment is represented
by moving targets rather than by a model and the learning objective is
to iteratively update the targets towards its true values based on
experience from interactions with the environment. TD learning has
been widely used in artificial systems to choose appropriate actions in
complex non-stationary environments. Furthermore, the computa-
tional theories are increasingly supported by experimental data
describing the activity of dopaminergic neurons, mediate reward-
processing and reward-dependent learning (Schultz et al., 1997;
Montague et al., 2004; Daw et al., 2006; Dayan and Niv, 2008).
In the greater picture of learning algorithms, TD learning resides
between dynamic programming and Monte Carlo methods (Sutton
and Barto, 1998).

The rest of the paper is structured as follows. In the next two
sections we apply a TD learning algorithm in a model of predator's
interaction with conspicuous prey to gain insights on how aversive
learning influences foraging in uncertain environments, and present
the results. Next we discuss the main findings and discuss similarities
and differences to the optimisation approach of traditional OFT.
In particular, we will compare TD learning with McNamara and
Houston (1985) and Sherratt (2003). We will conclude that TD
learning is a new approach to OFT which is better suited for modelling
foraging in dynamic environments with learning.

2. Methodology

In our model the predator interacts with its environment to
find an optimal foraging strategy to optimise its rewards. The
predator's environment offers a stable background of alternative
food sources. Additionally, the predator has the choice to include a

conspicuous looking type of prey into its diet. However, the
conspicuous prey population may consist of an aposematic model
species and a Batesian mimic species. We assume the environment
to be uncertain with non-stationary parameters over a predator's
lifespan.

2.1. Temporal difference learning

The predator is not able to distinguish models and mimics
based on their appearance and utilises experience to learn the
optimal foraging behaviour. Based on the growing understanding
of learning at the computational and neural level we use Temporal
difference (TD) learning to implement the predator's aversive
learning: in particular, we use Q-learning (Watkins, 1989). The
learning process consists of a reward prediction termed the action-
value function (1) of taking action a in state s at iteration k:

Q ðs; aÞ ¼ EfRkjsk ¼ s; ak ¼ ag: ð1Þ
The condition for the action-value function and Q-learning is

for the Markov property to hold

Pfskþ1 ¼ s′; rkþ1 ¼ rjsk; akg: ð2Þ
The reinforcement signal consists of the TD error of the reward

prediction based on experienced rewards following an undertaken
action a. Finally, the Q-learning update rule is utilised in order to
minimise the prediction error (Barto et al., 1983; Sutton and Barto,
1998).

Each action taken has a state dependent subsequent reward
signal termed rkþ1. The predator not only takes immediate
rewards into account but also the sum of discounted future
rewards (3) with K being the end of an episode and γ being the
discount factor. This combines an ubiquitous interest into rewards
with the uncertainty of future events as follows:

Rk ¼ ∑
K

i ¼ 0
γirkþ iþ1 ¼ rkþ1þ ∑

K

i ¼ 1
γirkþ iþ1

¼ rkþ1þγ ∑
T

i ¼ 0
γirkþ iþ2

¼ rkþ1þγRkþ1: ð3Þ
The predator uses the experienced immediate reward rkþ1 to

minimise the prediction error by updating its state dependent
action-value function using the Q-learning method. The algorith-
mic representation of the Q-learning update process is presented
in (4) with α being the learning rate following the derivation in (3)
as follows:

Q ′ðsk; akÞ←Q ðsk; akÞþα rkþ1þγ max
akþ 1

Q ðskþ1; akþ1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{target

�Q ðsk; akÞ
0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
TD error

: ð4Þ

Q-learning is an iterative algorithm which uses the immediate
experienced reward to form a target with Q ′ being the new
estimate for Q. Thereby, Q-learning bases its update partially on
a prevailing estimate Q ðskþ1; akþ1Þ which is known as bootstrap-
ping. Q-learning is widely used to model Markov decision pro-
blems and under certain conditions, Q-learning has been proved to
converge to optimality (Watkins and Dayan, 1992). For a more
detailed introduction of the Q-learning algorithm we refer to the
supplementary material in Appendix A.

Finally, the predator uses the Gibbs soft-max policy which is
the probability of taking action a in state s under stochastic policy
π to translate its action-value predictions into foraging behaviour:

πðs; aÞ ¼ Pfak ¼ a j sk ¼ sg ¼ expðQ ðs; aÞÞ
∑
a
expðQ ðs; aÞÞ: ð5Þ
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2.2. The predator's interaction with conspicuous prey

We term the action of falling back on the alternative background
food sources as a¼0 and the action of attacking conspicuous prey
as a¼1.

We assume the population of conspicuous prey consists of a
fraction p of Batesian mimics and a fraction 1�p of defended
models. The reward signal for the alternative stable background
food source is rkþ1 ¼ f1 j a¼ 0g. The reward signal for ingesting a
mimic individual is rkþ1 ¼ f2 j a¼ 1; i¼mimicg and rkþ1 ¼ f1�t2 j
a¼ 1; i¼modelg for ingesting a model individual with toxicity t.
These reward signals do not have to represent necessarily fitness
related entities (Pyke, 1984). In our model we simply assume
mimics to be rewarding and that toxicity has a non-linear effect on
the reward, which seems like a reasonable assumption.

We consider two different cases (Fig. 1):

1. The predator has the ability to use taste-sampling to distin-
guish models from mimics assuming that the model's toxicity t
operates as a clue to the predator. This foraging strategy is also
called go-slow behaviour (Guilford, 1994). The probability of
rejecting a model based on taste-sampling is given as follows:

dðtÞ ¼ 1� 1
1þd0t

: ð6Þ

2. The predator has no ability to distinguish mimics and models and
the encounter is solely frequency dependent i.e. d0¼0 in Eq. (6).

3. Results

In the case of the predator being unable to distinguish models
from mimics (d0¼0) the average reward signal is solely frequency
dependent and given as

R¼
1 if a¼ 0
2pþð1�t2Þð1�pÞ if a¼ 1:

(
ð7Þ

If the predator utilises taste-sampling it can distinguish models
from mimics based on the model's toxicity and will not ingest the
toxic model with probability d(t) given in (6). After the predator
rejects a conspicuous prey individual it will stay in the locality and
forage for another conspicuous prey individual. The average
reward signal incorporating taste sampling derives from the
geometric series and is given as follows:

R¼
1 ifa¼ 0
2p 1

1�ð1�pÞdðtÞþð1�t2Þð1�pÞ ð1�dðtÞÞ
1�ð1�pÞdðtÞ if a¼ 1:

(
ð8Þ

To obtain the optimal diet we find the correct, discounted
action-value function by solving the TD learning problem:

0¼ Rþγ max
akþ 1

Q ðskþ1; akþ1Þ�Q ðsk; akÞ: ð9Þ

Figs. 2 and 3 show the probability of an experienced predator
attacking conspicuous prey based on the frequency of mimics (p) and
the model's toxicity (t). We define aversiveness as πða¼ 1Þo0:5 with
the threshold toxicity (tn) given in (10) for which conspicuous prey
becomes aversive and Rða¼ 0; tnÞ ¼ Rða¼ 1; tnÞ holds as follows:

tn ¼

ffiffiffiffiffiffiffiffiffiffiffi
� p

p�1

q
if d0 ¼ 0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2d20�4p2 þ4p

p
þpd0

2p�2 otherwise:

8><
>: ð10Þ

We see that taste-sampling lowers the aversiveness of defended
conspicuous prey when mimics are present.

Figs. 4 and 5 show the average reward (R) of an experienced
predator. Mimics increase the average reward of the predator
through increased foraging on non-aversive conspicuous prey.
Conversely, increasing toxicity of the models reduces the average
reward for the predator until the increasing toxicity intake from
mistakenly ingested models becomes aversive.

4. Discussion

We apply Q-learning to the problem of optimal foraging behaviour
of an experienced predator in an uncertain environment. Our motiva-
tion lays in the recognised importance of aversive learning in
aposematism and the difficulties of the classical OFT approach to
predict foraging behaviour onmobile prey (Sih and Christensen, 2001).
In the case of mobile prey additional factors of prey handling and
uncertainty need to be considered, making the OFT model increasingly
complex (Holen, 2013). Instead, reinforcement learning offers a
normative framework of rational decision making in a changing and
complex environment with growing evidence of neural correlates.

The TD learning based approach puts the emphasis on experi-
ence including discounted future rewards and requires exploration
of the action space. This is fundamentally different from the OFT
models of net fitness maximisation per unit time. It has been long
argued that a learning animal cannot be foraging optimally and
vice versa (Ollason, 1980).

We hypothesise that a non-stationary environment introduces
great uncertainty on the prey-population's parameters t and p which
selects for learning in evolving predators to adapt quicker to their
changing environment. Evidence for this claim has to come from an
evolutionary model and is subject to future work. To coincide widely
with the original OFT methodology, we assume that the learning
process is sufficiently faster than the frequency of change of the
environment to concentrate solely on the experienced predator and to
exclude the iterative learning phase. Furthermore, we assume that the
conspicuous prey inhabits a distinct locality. These assumptions allow
us to solve the TD learning problem directly (9) and we present the
policy a predator adopts through Q-learning.

In the context of previous foraging models which incorporated
learning, our learning methodology is model-free. Relevant models,

Fig. 1. The predator's interaction with its environment and possible reward signals.
The predator has the ability to recognise toxic models by taste-sampling. t stands
for the toxicity of defended models.
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among others, are from McNamara and Houston (1985) and
Sherratt (2003). McNamara's learning rule describes a Monte Carlo
method using past events to learn the maximum possible long-
term rate as defined by the marginal value theorem (Charnov,
1976). It uses discounted experience from past interactions with
the environment to optimise a current parameter estimation. The
corresponding concept in TD learning is termed eligibility trace and
is bridging TD learning with Monte Carlo methods. Eligibility
traces can make TD learning more efficient but as we exclude
the iterative learning phase it has no application in our model.
Nevertheless, TD learning is conceptually different as its learning
objective is based on bootstrapping future rewards rather than
optimising the current estimate of a parameter from past events.

Sherratt's (2003) model uses Bayesian learning based on
dynamic programming. The learning objective is to infer the
Bayesian posterior mean estimate of the fraction of defended prey
in an unknown population from past experience. The model uses
Beta distributions in the Bayesian inference to represent an
assumed underlying binomial distribution of defence in a group
of prey. The main assumption for the application of dynamic
programming is the existence of a finite time horizon where the

predator ceases attacking completely. Sherratt's model provides an
optimal sampling strategy for novel prey populations with con-
stant values for cost and benefit of an attack. However, the model
cannot provide optimal foraging policies in changing populations
or when defence is not just binomial distributed.

We conclude that TD learning is a new approach to optimal
foraging in dynamic environments where cost-benefit values of
attacking prey do not necessarily follow simple distributions. TD
learning uses a model free objective which makes it an ideal
method for learning in complex and dynamic environments where
parameters are subject to constant change.

Our model confirms expected results such as that mimics in
general lower the aversiveness of the conspicuous prey population
and undermine aposematism. Nevertheless, highly toxic models
can sustain aversion even for high frequencies of mimics especially
in predators not utilising taste sampling. However, it requires
exploration for a predator to gain insights about its environment
and to form aversive memory. Therefore, even an aversive prey
population experiences some level of predation.

Fig. 3. Predator attack probability (π) of conspicuous prey utilising taste-sampling
(d0¼3) (6) and discount rate γ¼0.5 following Gibbs soft-max policy (5). t stands for
the toxicity of models and p for the fraction of mimics. The shaded area indicates
aversive toxicity.

Fig. 4. The predator's average reward (R) from interacting with its environment
without taste-sampling (d0¼0) and discount rate γ¼0.5. t stands for the toxicity of
models and p for representative fractions of mimics. The shaded area indicates
suboptimal rewards due to foraging on aversive prey.

Fig. 5. The predator's average reward from interacting with its environment
utilising taste-sampling (d0¼3) and discount rate γ¼0.5. t stands for the toxicity
of models and p for representative fractions of mimics. The shaded area indicates
suboptimal rewards due to foraging on aversive prey.

Fig. 2. Predator attack probability (π) of conspicuous prey without taste-sampling
(d0¼0) and discount rate γ¼0.5 following soft-max policy (5). t stands for the
toxicity of models and p for the fraction of mimics. The shaded area indicates
aversive toxicity.

J. Teichmann et al. / Journal of Theoretical Biology 340 (2014) 11–1614



Our model predicts that a taste-sampling predator increases
its attack rate on mixed conspicuous prey populations in the
case of moderately defended models and rewarding mimics.
The taste-sampling predator gains increased rewards from mod-
erately defended models as it allows for better discrimination of
models and mimics. This is a contrary finding to Holen (2013)
in which mimics benefit from moderately defended models.
This difference is founded on the representation of toxins as
recovery time in the OFT maximisation approach and the missing
occasional ingestion of models to maintain aversion for highly
toxic models.

An interesting paradox is the foraging behaviour on aversive
prey which reduces the reward for the predator further before
recovering through increasingly falling back on alternative back-
ground food sources. (The adopted attack policy for certain
parameters results in an average reward R which lays in the
shaded area in Figs. 4 and 5, and is suboptimal.) This is a result
of the conflicting reward signals of mimics and models and the
necessity of exploration of the action space in the face of
uncertainty for successful aversion formation. Additionally, an
increasing frequency of mimics slows the switching to alternative
food sources through further extended uncertainty. Similar results
have been observed in counter conditioning and operant conflict
situations (Williams and Barry, 1966; Blaisdell et al., 2000; Mazur
and Ratti, 1991; Matsushima et al., 2008). Our model predicts a
fixed amount of average long term toxicity intake which a
predator tolerates motivated either by the higher reward signal
of ingested mimics or as a consequence of uncertainty. (Although
the toxicity of immediate rewards which induce switching to
alternative food sources depends on the amount of mimics and
the specific rewards, see Eq. (10) and Figs. 2 and 3, the average
reward function described in Eqs. (7) and (8) has a fixed minimum
as presented in Figs. 4 and 5.) This foraging behaviour on aversive
prey for a specific parameter space is conditionally suboptimal in a
stationary environment (even if only during an individuals life-
time) but we note that (a) it reflects what real animals do, and
(b) it is a good policy precisely because environments are inher-
ently uncertain.

Summarising, our main conclusions are as follows:

� TD learning is a suitable approach to optimal foraging in changing
environments.

� Even aversive prey experiences some level of predation as part
of the predator's aversive memory formation.

� Taste-sampling lowers the effective aversiveness of conspicu-
ous prey if mimics are present.

� Intermediate toxicity of aposematic models increases the pre-
dator's foraging on conspicuous prey through increased dis-
crimination from taste-sampling and higher average rewards
when mimics are rewarding.

� The conflicting reward signals from mimics and models cause
uncertainty and conditionally suboptimal foraging behaviour
on aversive prey.

� The uncertainty is linked to a fixed amount of average toxicity
intake which predators tolerate in order to forage on rewarding
mimics before switching to mediocre background food sources.

� Taste-sampling extends the range of parameters where sub-
optimal foraging occurs.

Appendix A. Q-learning algorithm

Q-learning is a simple algorithmic implementation of reinfor-
cement learning. Particularly, it is a model free method which
allows to learn about Markovian environments from experienced
rewards without the necessity of building representations of the
environment. Instead, the algorithm uses moving target values.

The predator learns from iterative interactions with its environ-
ment. We term the current iteration subscript k. At each iteration k the
predator finds itself in state sk of its environment, accordingly, sk is the
encounter with a particular type of prey in our model. The actual
learning process targets the predator's reward prediction following
action ak (respectively, attacking conspicuous or alternative prey) in
state sk termed the action-value function Q ðsk; akÞ. This action-value
function is an approximation of the actual function Qnðs; aÞ. Conse-
quently, the aim of the learning process is to find Q ðsk; akÞ �Qnðs; aÞ.
The predator is basing its decision process on Q ðsk; akÞ following a
decision policy πðsk;Q ðsk; akÞÞ, effectively knowing all of the current Q
values gives the probability that we choose to attack or not for the
next encounter. This involves an iterative update process which is
typically formulated in an algorithmic representation because of its
origin in computing, as follows:

Q ′ðsk; akÞ←Q ðsk; akÞþα rkþ1þγ max
akþ 1

Q ðskþ1; akþ1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{target

�Q ðsk; akÞ
0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
TD error

: ðA:1Þ

The iterative algorithm expands as follows: at iteration k, the
predator interacts with the environment of state sk which is a
realisation from the state space S. Following a certain decision policy
π, the predator takes action ak out of the action space A. As a result of
this interaction at iteration k, the predator experiences an immediate
reward rkþ1. The terminology refers to the experienced reward at the
subsequent iteration kþ1 which emphasise that the reward is in
consequence of the predator's action. Next, the predator forms a target
value which is a composition of the experienced reward rkþ1 and
discounted future rewards. Thereby, future rewards are a prevailing
estimate Q(skþ1,akþ1) which is known as bootstrapping. The difference
between the target value and the estimate at iteration k gives the
temporal-difference (TD) error. Finally, the Q-learning algorithm
updates the estimate Q(sk,ak) to Q ′ðsk; akÞ towards the formed target
value, subsequently reducing the TD error. As the Q-learning algorithm
uses bootstrapping, these targets are moving ones. Hence, the update
process should progress slowly with α, the learning rate, being a small
positive constant. Fig. A1 shows a possible implementation of the
Q-learning algorithm as pseudo-code.

Fig. A1. Q-learning algorithm in pseudo-code.
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Appendix B. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2013.08.036.
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