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Abstract

We present a stochastic model of individuals’ movements between two patches of resources. The population is made up

of two types of individual with differing competitive abilities, and two types of movements occur, with individuals moving either to

increase their intake rate or at random. Several previous models have used simulations to evaluate the likely distribution of

individuals. We instead derive equations for the equilibrium distribution of the population, which can be solved numerically. This

avoids the need to choose an initial distribution for the population, and enables us to obtain the probability with which rare events

occur. This may not be possible when simulations are used, since a rare event may not occur at all. We find that when random

movements are rare, an increase in the rate of random movements out of a patch can increase the number of individuals on that

patch. We consider an approximation to the model with rare random movements, which provides an explanation for this

phenomenon.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Ideal Free Distribution (IFD) of Fretwell and
Lucas (1970) describes the distribution of animals
among a number of patches of a resource, such as food.
Under this distribution, the proportion of individuals on
a patch is equal to the proportion of resources on that
patch. This model assumes that all animals are equally
competitive and can move between the patches at no
cost.
In practice, all individuals are rarely equal competi-

tors. Sutherland and Parker (1985) altered the IFD to
allow for unequal competitors. Under their model, it is
the proportion of competitive units, rather that the
proportion of individuals, which equals the proportion
e front matter r 2005 Elsevier Ltd. All rights reserved.

i.2005.04.010

ing author. Tel.: +441273 872878.

esses: g.e.yates@sussex.ac.uk (G.E. Yates),

ex.ac.uk (M. Broom).
of resources on each patch. In this case there are several
stable equilibria.
In a review of several empirical studies on the subject

Kennedy and Gray (1993) found that under-matching
often occurs, meaning that the better patch is under-
used. Although several equilibria are possible when
competitors are unequal, only a few have been observed
in practice; these being close to the equal numbers
equilibrium. This is the sole equilibrium when compe-
titors are equal.
Houston and McNamara (1988) have provided an

explanation for this. Using statistical mechanics, they
obtain the probability of each equilibrium occurring,
and find that the most likely are close to the equal
numbers equilibrium. They also show that the number
of individuals of a given type on the best patch increases
with competitive ability, meaning that the proportion of
the population on that patch is less than the proportion
of resources, thus explaining observations of under-
matching.

www.elsevier.com/locate/yjtbi
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It is possible that the animals do not base their
decision to move purely on their intake rate. They may
also move to avoid predators or to find a mate (Hugie
and Grand, 1998). It is also possible that they do not
have perfect knowledge of the intake rates in other
locations, or they may not be able to distinguish
between intake rates when the difference between them
is small. Abrahams (1986) proposed the perceptual limit
model, in which animals move randomly between
patches when the difference between potential intake
rates is below a certain fixed level, the perceptual limit.
He used Monte Carlo simulation to estimate the
distribution of a population of identical animals
between locations. More recently, formulae have been
developed which give the probability of observing each
possible distribution of the population between two
patches, along with the expected intake rate on each
patch and overall (Collins et al., 2002). Under this
model discrete time steps are used, with an individual
selected at each time step, which decides whether to
move or not. This decision is based on the individual’s
potential intake rates on each patch if the difference
between these is larger than the perceptual limit,
otherwise the animal either moves or remains on the
same patch with equal probability.
Several models which incorporate movements for

non-IFD reasons in populations of unequal competitors
have been developed in recent years. Each of these has
had its problems. Hugie and Grand’s (1998) analytical
model, which predicted a unique stable equilibrium
distribution close to the equal numbers distribution
when both IFD and non-IFD movements occur,
received criticism from Ruxton and Humphries (1999).
They developed an individual-based model, in which
movements occurred during discrete time intervals.
During each interval there was an opportunity for one
IFD and one non-IFD movement. Their simulations
resulted in several of the possible unequal competitors
IFDs close to the equal competitors distribution
occurring.
The assumptions of this model have in turn been

criticized by Hugie and Grand (2003), who argue that
alternating between the two types of movement is
unrealistic; as is the restriction that only one individual
can move per time interval. They reiterate their earlier
finding (Hugie and Grand, 1998) that there is a unique
population distribution. This is based both upon an
infinite population model and an individual-based finite
population model.
Jackson et al.’s (2004) model, which includes unequal

competitors, avoids most of the problems of previous
individual-based models. This model consists of two
patches and a population of two phenotypes. Indivi-
duals move either to increase their intake rate, or at
random. They use a Markov Chain Monte Carlo
approach, where the probability of each type of move-
ment occurring is assessed at each time step. This
avoids the necessity to alternate between IFD and non-
IFD movements, as in Ruxton and Humphries’ (1999)
model, while providing a realistic mechanism for
removing the possibility of mass movements which is
present in Hugie and Grand’s (2003) model. Hugie and
Grand (2003) use a damping constant to do this, which
is argued to be biologically unrealistic by Jackson et al.
(2004).
Jackson et al.’s (2004) simulations of this process

show that when competitors are unequal and the levels
of resources on each patch differ, only a few equilibria
close to the equal numbers equilibrium can occur.
Our model is similar to that of Jackson et al. (2004).

There is one important difference which is described in
the next section. In addition, we derive equations for the
probability of being in each possible state at equili-
brium, which can be solved numerically. This is
advantageous, since we are able to obtain probabilities
for very rare events, which may never occur in
simulations. We also avoid the problem of having to
choose a starting state, which may cause bias in
simulation results.
We also investigate an approximation to our model

which can be used when random movements are rare.
This cuts down on the amount of equations which need
to be solved, since it is assumed that the process will be
at one of the unequal competitor IFD states at
equilibrium.
Our model shows up novel features, such as an

increase in non-IFD movements from Patches 1 to 2 can
increase the number of individuals on Patch 1. Another
feature is that equilibria can occur where the proportion
of competitive units on a patch does not equal the
proportion of resources, when there are no random
movements. Fig. 8 shows an example where this is the
case.
2. The model

The population is divided between two patches,
labelled 1 and 2. A resource is available at these patches
at the constant rates Q1 and Q2, respectively. There are
two phenotypes within the population; types N and M.
These have competitive abilities KN and KM , respec-
tively, which are positive constants used to weight the
number of individuals of a given type on each patch. We
assume that type M individuals have a higher compe-
titive ability than those of type N, hence KNoKM . The
number of individuals of type N on Patch i is denoted
Ni, while the number of type M individuals on Patch i is
denoted Mi.
Under the IFD for unequal competitors, the propor-

tion of resources on Patch 1 is equal to the proportion of
competitive units, rather than the proportion of the
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population (Sutherland and Parker, 1985). That is

Q1

Q1 þ Q2

¼
KNN1 þ KMM1

KNNT þ KMMT

,

where NT and MT are the total numbers of individuals
of types N and M, respectively. This equation may have
several solutions, which lie on what is known as the
unequal competitors IFD line. This line is defined by the
equation

M1 ¼
Q1ðKNNT þ KMMT Þ

KMðQ1 þ Q2Þ
�

KN

KM

N1. (1)

There are random movements out of each patch at a
rate proportional to the number of individuals on that
patch, along with movements made to increase an
individual’s intake rate. Fig. 1 shows the possible
transitions and their rates. The constants ai scale the
rates of random movements, while the ls give the rate at
which an individual moves in order to increase its intake
rate.
A type N individual on Patch 1 will have intake rate

KNQ1

KNN1 þ KMM1
.

The other three intake rates are defined similarly. Were
this individual to move to Patch 2, its intake rate would
become

KNQ2

KNðN2 þ 1Þ þ KMM2
,

meaning that it is only beneficial to move if

KNQ2

KNðN2 þ 1Þ þ KMM2
4

KNQ1

KNN1 þ KMM1
.

The rate at which a type N individual on Patch 1 moves
to Patch 2 for IFD reasons, l11, is given by

l11 ¼ max 0;
KNQ2

KN ðN2 þ 1Þ þ KMM2
�

KNQ1

KNN1 þ KMM1

� �
.

N1

M1

N2

M2

(�1 + �11)N1

(�1 + �21)M1

(�2 + �12)N2

(�2 + �22)M2

Fig. 1. The transition rates for a population of two phenotypes.
This is only positive if a move from Patches 1 to 2
increases a type N individual’s intake rate, and the value
of l11 increases with the potential increase in intake rate,
making a move more likely.
Since each type N individual on Patch 1 moves

independently to Patch 2 at rate l11, the total rate at
which type N individuals leave Patch 1 is l11N1. This
differs from Jackson et al.’s (2004) model, where this
factor of N1 is not included. Our inclusion of this factor
seems more intuitive, and also means that the propor-
tion of IFD to non-IFD movements remains constant as
the population size increases. This is not the case for
Jackson et al.’s (2004) model, where this proportion
tends asymptotically to zero.
The other individual rates, l12, l21 and l22, are defined

similarly to l11. These differ slightly from those in
Jackson et al.’s (2004) paper, since each of their IFD
movement rates contains a constant factor b, which has
been omitted from our model. Jackson et al. (2004)
always set b ¼ 1, meaning that comparisons between the
two models can be made. If b were not 1 then dividing a1
and a2 by b in our model would again result in a
comparable model to Jackson et al.’s (2004).
The differential equations for this process are

d

dt
pn1;m1

ðtÞ

¼ ða2 þ l12ðn1 � 1;m1ÞÞðNT � n1 þ 1Þpn1�1;m1
ðtÞ

þ ða1 þ l11ðn1 þ 1;m1ÞÞðn1 þ 1Þpn1þ1;m1
ðtÞ

þ ða2 þ l22ðn1;m1 � 1ÞÞðMT � m1 þ 1Þpn1;m1�1
ðtÞ

þ ða1 þ l21ðn1;m1 þ 1ÞÞðm1 þ 1Þpn1;m1þ1
ðtÞ

� ½ða2 þ l12ðn1;m1ÞÞðNT � n1Þ

þ ða1 þ l11ðn1;m1ÞÞn1

þ ða2 þ l22ðn1;m1ÞÞðMT � m1Þ

þ ða1 þ l21ðn1;m1ÞÞm1�pn1;m1
ðtÞ ð2Þ

for n1 ¼ 0; 1; . . . ;NT and m1 ¼ 0; 1; . . . ;MT . If n1o0,
m1o0, n14NT or m14MT then pn1;m1

ðtÞ ¼ 0.
At equilibrium dpn1;m1

ðtÞ=dt ¼ 0 and equations (2)
become a set of linear equations for pn1;m1

¼ PðN1 ¼

n1;M1 ¼ m1Þ at equilibrium. These equations can be
solved numerically using Matlab. Unlike the simulations
used by Jackson et al. (2004), we have a value for the
probability of each possible pair of values ðN1;M1Þ

being reached. When simulations are used, rare events
may not occur at all, giving no information about how
likely they are.
It is possible to calculate the probability distribution

of N1 from the values for pn1;m1
, using the formula

PðN1 ¼ n1Þ ¼
PMT

m1¼0
pn1;m1

. The distribution for M1 can
be calculated similarly, and from these distributions it is
possible to obtain values for the means and variances of
N1 and M1.
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Fig. 2. The equilibrium distributions of N1 and M1. The parameter

values are: NT ¼ MT ¼ 36, a1 ¼ a2 ¼ 1, Q1 ¼ 100, Q2 ¼ 300, KN ¼ 1

and KM ¼ 5.
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Fig. 3. The equilibrium distributions of N1 and M1. The parameter

values are: NT ¼ MT ¼ 36, a1 ¼ a2 ¼ 0:01, Q1 ¼ 100, Q2 ¼ 300,

KN ¼ 1 and KM ¼ 5.
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3. Evaluations

Table 1 shows the results of some evaluations. The
poorer patch often seems to be over used, except when
random movements are rare (a1 and a2 are small).
Figs. 2–5 show the equilibrium distributions of N1

and M1 in 4 cases. In each of these cases the number of
individuals of each type, their competitive abilities and
the rate at which resources become available at each
patch are unchanged and M1 has a single modal value in
each case. When a1 ¼ a2 ¼ 1 (Fig. 2), this is also true of
N1. When a1 ¼ a2 ¼ 0:01 (Fig. 3) the distribution has
several peaks, close to points on the IFD line, while
when a1 and a2 are Oð10�6Þ (Figs. 4 and 5), only a few
values of N1 on the IFD line have a noticeable
probability of occurring. The value which is most likely
is determined by the relative values of a1 and a2.
The expected number of individuals on Patch 1 at

equilibrium is EðN1Þ þ EðM1Þ. When NT ¼ MT ¼ 36,
a2 ¼ 10�6, Q1 ¼ 100, Q2 ¼ 300, KN ¼ 1 and KM ¼ 5,
the expected number of individuals on Patch 1 is larger
when a1 ¼ 2� 10�6 than when a1 ¼ 10�6 (see Table 1).
This is unexpected, since an increase in a1 from 10�6 to
2� 10�6 equates to an increase in the likelihood that a
random movement takes an individual from Patch 1 to
2, which suggests that the expected number of indivi-
duals in Patch 1 should decrease. The next section
provides an explanation as to why this occurs.
Fig. 6 shows a contour plot of the joint distribution of

N1 and M1 when a1 ¼ a2 ¼ 0:02 and the remaining
parameters are unchanged. The parameters given are as
close as possible to the parameters used by Jackson et al.
(2004) in their Fig. 6. The competitive abilities, resource
availability rates and number of individuals of each type
are identical, while the ais are 20 times larger than those
in Jackson et al.’s (2004) model in order to make the rate
of random movements comparable. The factor 20 was
chosen because this is roughly half the amount of
individuals of each phenotype. This contour plot shows
that the equilibria at ð14; 8Þ and ð19; 7Þ are the most
Table 1

Two phenotypes

NT MT a1 a2 Q1 Q2 KN KM EðN1Þ EðM1Þ Q1
Q1þQ2

KN EðN1ÞþKM EðM1Þ

KN MTþKM NT

VarðN1Þ VarðM1Þ

36 36 1 1 100 300 1 5 15.2663 9.5973 0.2500 0.2928 8.4510 2.3254

36 36 1 1 100 300 1 10 16.5477 9.7598 0.2500 0.2882 8.8540 1.9204

36 36 1 1 100 300 1 7.5 16.0956 9.6835 0.2500 0.2899 8.7449 2.0509

36 36 1 1 100 100 1 1 18.0000 18.0000 0.5000 0.5000 5.9653 5.9653

24 24 1 1 100 300 1 5 10.0509 6.1117 0.2500 0.2820 5.6336 1.2953

36 36 0.1 0.1 100 300 1 5 14.8118 8.0670 0.2500 0.2553 8.7958 0.7817

36 36 0.01 0.01 100 300 1 5 17.4467 7.2683 0.2500 0.2490 11.3282 0.5523

36 36 0.001 0.001 100 300 1 5 19.1535 6.9488 0.2500 0.2495 15.5944 0.6471

36 36 0.0001 0.0001 100 300 1 5 19.6179 6.8736 0.2500 0.2499 18.0708 0.7263

36 36 10�05 10�05 100 300 1 5 19.6854 6.8626 0.2500 0.2500 18.5024 0.7405

36 36 2� 10�06 10�06 100 300 1 5 22.2825 6.3434 0.2500 0.2500 18.6979 0.7480

36 36 10�06 10�06 100 300 1 5 19.6926 6.8615 0.2500 0.2500 18.5494 0.7420
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Table 2

The number of ways in which N1 type N individuals and M1 type M

individuals can be placed on Patch 1

N1 M1 Permutations Probability

0 11 6:0081� 108 3:0349� 10�9

4 10 1:4973� 1013 7:5634� 10�5

9 9 8:8630� 1015 4:4770� 10�2

14 8 1:1488� 1017 5:8029� 10�1

19 7 7:1769� 1016 3:6253� 10�1

24 6 2:4380� 1015 1:2315� 10�2

29 5 3:1470� 1012 1:5897� 10�5

34 4 3:7110� 107 1:8746� 10�10

36 3 7:1400� 103 3:6067� 10�14
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Fig. 4. The equilibrium distributions of N1 and M1. The parameter

values are: NT ¼ MT ¼ 36, a1 ¼ a2 ¼ 10�6, Q1 ¼ 100, Q2 ¼ 300,

KN ¼ 1 and KM ¼ 5.
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Fig. 5. The equilibrium distributions of N1 and M1. The parameter

values are: NT ¼ MT ¼ 36, a1 ¼ 2� 10�6, a2 ¼ 10�6, Q1 ¼ 100,

Q2 ¼ 300, KN ¼ 1 and KM ¼ 5.
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Fig. 6. The joint equilibrium distribution of N1 and M1. Note that a

continuous state-space is assumed in the production of this contour

plot. The parameter values are: NT ¼ MT ¼ 36, a1 ¼ a2 ¼ 0:02,
Q1 ¼ 100, Q2 ¼ 300, KN ¼ 1 and KM ¼ 5.
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likely to be reached under our model. In contrast,
Jackson et al.’s (2004) simulations resulted in ð19; 7Þ and
ð24; 6Þ occurring a similar number of times. This may be
due to the use of simulation, for which it is necessary to
choose initial values for N1 and M1. The values chosen
can have a large effect on the outcome. Our differing
IFD transition rates are another possible cause of the
differences observed.
In order to try to explain which equilibrium is most

likely to be reached the number of ways in which N1-
type N individuals and M1 type M individuals can be
selected to be on Patch 1 was calculated, for each
equilibrium point ðN1;M1Þ. These are given by

NT

N1

 !
MT

M1

 !

and are shown in Table 2. This method has been used by
Houston and McNamara (1988) to identify the most
likely distribution of individuals. Table 2 also shows, for
each equilibrium, the proportion of these ways of
distributing the population which give that equilibrium.
According to Table 2, the most likely equilibrium is

ðN1;M1Þ ¼ ð14; 8Þ, but this is not the case for either
Figs. 4 or 5. However, the modes of N1 and M1 in
Fig. 2, where random movements play a significant part,
are close to these values. This method of calculating the
most likely equilibrium assumes that the population is
randomly distributed between the patches, subject to the
constraint that all IFD transition rates are zero. The fact
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that the probabilities in Table 2 do not agree with those
in Figs. 4 or 5 suggests that this assumption is invalid
under our model. This seems particularly likely for the
parameter set used in Fig. 5, where the ais are not equal.
4. An approximation to the model when random

movements are rare

This approximation models the population as a
discrete time Markov chain, where the states are the
equilibria of the model when no random movements
occur. The transition probabilities are calculated in two
stages.
If ðn1;m1Þ is an equilibrium point of the model with no

random movements then it is certain that the next
movement will be a random one. The probability with
which each possible random movement occurs is given
by

PððN1;M1Þ ! ðN1 þ 1;M1ÞÞ

¼
a2N2

a1ðN1 þ M1Þ þ a2ðN2 þ M2Þ
,

PððN1;M1Þ ! ðN1 � 1;M1ÞÞ

¼
a1N1

a1ðN1 þ M1Þ þ a2ðN2 þ M2Þ
,

PððN1;M1Þ ! ðN1;M1 þ 1ÞÞ

¼
a2M2

a1ðN1 þ M1Þ þ a2ðN2 þ M2Þ
,

PððN1;M1Þ ! ðN1;M1 � 1ÞÞ

¼
a1M1

a1ðN1 þ M1Þ þ a2ðN2 þ M2Þ
.

As soon as a random movement has occurred, one or
more of the IFD movement rates is positive and we
assume that a1 and a2 are small enough that the
possibility of random movements can be ignored.
The regions where each of the IFD transition rates are

positive are given by

l1140 3

M14
Q1ðKNðNT þ 1Þ þ KMMT Þ

KMðQ1 þ Q2Þ
�

KN

KM

N1, ð3Þ

l2140 3

M14
Q1ðKNNT þ KMðMT þ 1ÞÞ

KMðQ1 þ Q2Þ
�

KN

KM

N1, ð4Þ

l1240 3

M1o
Q1ðKNNT þ KMMT Þ � Q2KN

KM ðQ1 þ Q2Þ
�

KN

KM

N1, ð5Þ
l2240 3

M1o
Q1ðKNNT þ KMMT Þ � Q2KM

KM ðQ1 þ Q2Þ
�

KN

KM

N1. ð6Þ

The boundaries of the each of these regions are straight
lines with negative gradient �KN=KM . These are also
parallel to the unequal competitors IFD line, which has
intercept

Q1ðKNNT þ KMMT Þ

KMðQ1 þ Q2Þ
.

Since KNoKM ,

Q1ðKNNT þ KMMT Þ � Q2KM

KM ðQ1 þ Q2Þ

o
Q1ðKNNT þ KMMT Þ � Q2KN

KMðQ1 þ Q2Þ

o
Q1ðKNNT þ KMMT Þ

KM ðQ1 þ Q2Þ

o
Q1ðKNðNT þ 1Þ þ KMMT Þ

KMðQ1 þ Q2Þ

o
Q1ðKNNT þ KM ðMT þ 1ÞÞ

KMðQ1 þ Q2Þ

meaning that l2140 ) l1140 ) l12 ¼ 0 ) l22 ¼ 0
and l2240 ) l1240 ) l11 ¼ 0 ) l21 ¼ 0. Also it is
impossible for l12 or l22 to be positive at any states
above the unequal competitors IFD line, and it is
impossible for l11 or l21 to be positive at any states
below this line.

Fig. 7 shows these regions when NT ¼ MT ¼ 36,

Q1 ¼ 100, Q2 ¼ 300, KN ¼ 1 and KM ¼ 5. The IFD
equilibria are also shown. There are two of these which
are not on the unequal competitors IFD line. At ð0; 11Þ
only l11 is positive, but it is impossible for a type N

individual to move from Patch 1 to 2, because they are
all on Patch 2 already. Similarly, at ð36; 3Þ only l12 is
positive but all of the type N individuals are already on
Patch 1. These two equilibria are not mentioned in
Jackson et al.’s (2004) paper, although it appears they
occur when no random movements are included in their
model, since their Fig. 5 gives the frequency with which
the simulation finished in 9 different states, while there
are only 7 equilibria on the unequal competitors IFD
line. If their process reached one of these states, one of
the IFD transition rates for type N individuals would be
positive (l11 at (0,11), l12 at (36,3)), since they do not
include a factor of N1 or N2 as our rates do. It is not
stated explicitly what they do in this situation.
Fig. 7 shows that at most 2 of the IFD transition rates

are positive at any point ðN1;M1Þ. These move the
values of N1 and M1 back towards one of the equilibria.
This means that having left an equilibrium due to a
random movement, it is possible to calculate the
probability that the population distribution will return
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Fig. 7. Regions where the IFD transition rates are positive. Only those
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shown (X). The parameter values are: NT ¼ MT ¼ 36, Q1 ¼ 100,

Q2 ¼ 300, KN ¼ 1 and KM ¼ 5.

Table 3

Probability of arriving at each equilibrium having started at the given

starting state

Starting state Equilibria reached

(0,12) (0,11)

(1,11) (0,11) (0.0417), (4,10) (0.9583)

(0,10) (0,11) (0.2048), (4,10) (0.7952)

(4,11) (4,10) (1.0000), (0,11) (1:41� 10�5)

(5,10) (4,10)

(4,9) (4,10) (0.6449), (9,9) (0.3551)

(3,10) (4,10)

(9,10) (9,9) (0.9986), (4,10) (0.0014)

(10,9) (9,9)

(9,8) (9,9) (0.7005), (14,8) (0.2995)

(8,9) (9,9)

(14,9) (14,8) (0.9908), (9,9) (0.0092)

(15,8) (14,8)

(14,7) (14,8) (0.7603), (19,7) (0.2397)

(13,8) (14,8)

(19,8) (19,7) (0.9707), (14,8) (0.0293)

(20,7) (19,7)

(19,6) (19,7) (0.8239), (24,6) (0.1761)

(18,7) (19,7)

(24,7) (24,6) (0.9331), (19,7) (0.0669)

(25,6) (24,6)

(24,5) (24,6) (0.8896), (29,5) (0.1104)

(23,6) (24,6)

(29,6) (29,5) (0.8742), (24,6) (0.1258)

(30,5) (29,5)

(29,4) (29,5) (0.9523), (34,4) (0.0477)

(28,5) (29,5)

(34,5) (34,4) (0.7915), (29,5) (0.2085)

(35,4) (34,4)

(34,3) (34,4) (0.9967), (36,3) (0.0033)

(33,4) (34,4)

(36,4) (36,3) (0.1885), (34,4) (0.8115)

(36,2) (36,3)

(35,3) (36,3) (0.0783), (34,4) (0.9217)

Each of these starting states is one move away from an equilibrium. In

the cases where only one equilibrium is listed this is certain to be

reached.
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to each of the equilibria. If the state (N1;M1) is above
the unequal competitors IFD line

M14
Q1ðKNNT þ KMMT Þ

KM ðQ1 þ Q2Þ
�

KN

KM

N1

� �

then

PððN1;M1Þ ! ðN1;M1 � 1ÞÞ ¼
l21M1

l11N1 þ l21M1

and

PððN1;M1Þ ! ðN1 � 1;M1ÞÞ ¼
l11N1

l11N1 þ l21M1
,

while if (N1;M1) is below the unequal competitors IFD
line then

PððN1;M1Þ ! ðN1;M1 þ 1ÞÞ ¼
l22M2

l12N2 þ l22M2

and

PððN1;M1Þ ! ðN1 þ 1;M1ÞÞ ¼
l12N2

l12N2 þ l22M2
.

These probabilities can calculated at each step until an
equilibrium is reached. Multiplying these together gives
the probability of this sequence of events occurring.
Adding together the probabilities for all of the sequences
of movements which start from the same point and lead
to the same equilibrium gives the probability of that
equilibrium being reached from a particular state. The
probability of arriving at each equilibrium having
started from a point close to one of the equilibria is
shown in Table 3.
Having calculated the probability of each possible

random movement from an equilibrium ðN1;M1Þ, and
the probability of arriving at each equilibrium given that
a particular random movement has occurred, it is
possible to obtain the transition matrix for movements
between the equilibria. The stationary distribution for
this process can then be found.
These stationary distributions are shown for two cases

in Tables 4 and 5. In both cases a2 ¼ 10�6. In the first
case a1 ¼ 10�6 also, while in the second a1 ¼ 2� 10�6.
The distributions agree closely in each case. Note that
when a1aa2 each probability is weighted by the
expected time before a movement out of the given state.
This is given by expf�ða1ðn1 þ m1Þ þ a2ðn2 þ m2ÞÞg. If
a1 ¼ a2 then this is equal to expf�a1ðNT þ MT Þg for all
n1;m1, which explains why this weighting is not needed
when a1 ¼ a2 ¼ 10�6.
This approximation suggests a reason why an increase

in the value of a1 can be associated with an increase in
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Table 4

Comparison of the discrete and continuous time Markov chain models

n1 m1 PðN1 ¼ n1;M1 ¼ m1Þ PðN1 ¼ n1;M1 ¼ m1Þ Error Percentage error

under continuous time model under discrete time model

0 11 1:746� 10�9 1:746� 10�9 3:266� 10�12 0.1870

4 10 2:060� 10�4 2:060� 10�4 4:357� 10�7 0.2115

9 9 1:910� 10�2 1:910� 10�2 8:765� 10�6 0.0459

14 8 2:005� 10�1 2:005� 10�1 6:125� 10�6 0.0031

19 7 4:529� 10�1 4:529� 10�1 2:626� 10�5 0.0058

24 6 2:782� 10�1 2:782� 10�1 1:177� 10�4 0.0423

29 5 4:722� 10�2 4:722� 10�2 6:024� 10�5 0.1276

34 4 1:683� 10�3 1:683� 10�3 6:575� 10�6 0.3906

36 3 3:748� 10�7 3:748� 10�7 1:424� 10�9 0.3799

Table 5

Comparison of the discrete and continuous time Markov chain models

n1 m1 PðN1 ¼ n1;M1 ¼ m1Þ PðN1 ¼ n1;M1 ¼ m1Þ Error Percentage error

under continuous time model under discrete time model

0 11 1:381� 10�10 1:381� 10�10 �1:048� 10�14 �0.0076

4 10 1:958� 10�5 1:959� 10�5 6:153� 10�9 0.0314

9 9 3:628� 10�3 3:626� 10�3 �2:137� 10�6 �0.0589

14 8 7:614� 10�2 7:609� 10�2 �4:594� 10�5 �0.0603

19 7 3:439� 10�1 3:438� 10�1 �7:612� 10�5 �0.0221

24 6 4:224� 10�1 4:226� 10�1 2:313� 10�4 0.0548

29 5 1:433� 10�1 1:436� 10�1 2:882� 10�4 0.2011

34 4 1:020� 10�2 1:026� 10�2 6:387� 10�5 0.6263

36 3 2:924� 10�6 2:941� 10�6 1:795� 10�8 0.6141
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the expected number of individuals on Patch 1, since it
enables us to find conditions under which increasing a1
increases the probability that once the system has
returned to equilibrium after a non-IFD movement
from an equilibrium on the unequal competitors IFD
line, the value of N1 þ M1 has increased. Under such
conditions it is reasonable to expect EðN1 þ M1Þ to
increase also.
We first consider the conditions under which each

IFD transition rate is positive after a non-IFD move-
ment away from an equilibrium on the unequal
competitors IFD line. For example, the equation of
the unequal competitors IFD line (1) can be rearranged
to give

N1 ¼
Q1ðKNNT þ KMMT Þ

KNðQ1 þ Q2Þ
�

KM

KN

M1,

while the equation of the line bounding the region where
l21 is positive is

N1 ¼
Q1ðKNNT þ KM ðMT þ 1ÞÞ

KN ðQ1 þ Q2Þ
�

KM

KN

M1.
This means that l21 is positive after a type N individual
makes a non-IFD movement from Patch 2 to 1 if

Q1ðKNNT þ KM ðMT þ 1ÞÞ

KN ðQ1 þ Q2Þ

�
Q1ðKNNT þ KMMT Þ

KNðQ1 þ Q2Þ
o1.

This simplifies to

KMQ1

KN ðQ1 þ Q2Þ
o1 


KM

KN

o1þ
Q2

Q1

.

The conditions under which each of the other transition
rates are positive are shown in Table 6.
By rearranging Inequalities (3) and (5), for the regions

where l11 and l12 are positive, it can be seen that the
state ðn1;m1Þ is an equilibrium if and only if

Q1ðKNNT þ KMMT Þ � Q2KN

KN ðQ1 þ Q2Þ
�

KM

KN

m1

pn1p
Q1ðKNðNT þ 1Þ þ KMMT Þ

KN ðQ1 þ Q2Þ
�

KM

KN

m1.
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Table 6

Conditions under which each transition rate is positive after a movement from ðn1;m1Þ, which is an equilibrium on the unequal competitors IFD line

Movement l11 l21 l12 l22

ðn1;m1Þ ! ðn1 þ 1;m1Þ Always KM
KN

o1þ Q2
Q1

Never Never

ðn1;m1Þ ! ðn1;m1 þ 1Þ KN
KM

o1þ Q2
Q1

Always Never Never

ðn1;m1Þ ! ðn1 � 1;m1Þ Never Never Always KM
KN

o1þ Q1
Q2

ðn1;m1Þ ! ðn1;m1 � 1Þ Never Never KN
KM

o1þ Q1
Q2

Always

10 11 12 13 14 15 16 17 18 19 20
10

11

12

13

14

15

16

17

18

19

20

N1

M
1

Equilibria
Boundary of region where λ11>0 
Boundary of region where λ12>0 
Boundary of region where λ21>0
Boundary of region where λ22>0

Fig. 8. There are two lines of equilibria. The upper line is the unequal

competitors IFD line. Only part of these lines are shown for clarity.

The parameter values are: NT ¼ MT ¼ 36, Q1 ¼ 200, Q2 ¼ 300, KN ¼

1 and KM ¼ 1:5.
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The length of this interval is 1, meaning that it must
contain an integer value n1 for each m1 (or two values if
the end points of this interval are integers). We assume
that the end points are not integers, in which case we can
denote the nearest equilibria to ðn1;m1Þ by ðn1 �

k1;m1 þ 1Þ and ðn1 þ k2;m1 � 1Þ, where k1 and k2 are
positive integers. If the unequal competitors IFD line is
the only line of equilibria then k1 ¼ k2 and k141, but
this is not the case in general. It is possible for there to
be more than one line of equilibria. This is the case if
KN ¼ 1; KM ¼ 1:5; Q1 ¼ 200 and Q2 ¼ 300, as Fig. 8
shows. In this case there is a further line below the
unequal competitors IFD line. There may also be no
equilibria on the unequal competitors IFD line, since it
is possible that this line does not pass through any
integer valued points in the required region. However,
here we concentrate on cases where the unequal
competitors IFD line is the only line of equilibria. From
Table 6, it can be seen that after a single individual
moves from the equilibrium ðn1;m1Þ on the unequal
competitors IFD line, it is possible to return to that
equilibrium, since l11ðn1 þ 1;m1Þ, l12ðn1 � 1;m1Þ,
l21ðn1;m1 þ 1Þ and l22ðn1;m1 � 1Þ are all positive.
We define the probabilities P1ðn1;m1Þ;P2ðn1;m1Þ;
P3ðn1;m1Þ and P4ðn1;m1Þ to be the probabilities that
ðn1;m1Þ is the first equilibrium reached from the states
ðn1 þ 1;m1Þ, ðn1 � 1;m1Þ, ðn1;m1 þ 1Þ and ðn1;m1 � 1Þ,
respectively. As stated above, it is always possible to
return to ðn1;m1Þ after a non-IFD movement, meaning
that P1;P2;P3;P440.
Under our approximation, after a movement from

ðn1;m1Þ to ðn1;m1 þ 1Þ it is possible to reach the
equilibrium at ðn1 � k1;m1 þ 1Þ, since l11ðn1;m1 þ 1Þ40,
meaning that P3o1. If l22ðn1 � 1;m1Þ40 it is also
possible to reach ðn1 � k1;m1 þ 1Þ from ðn1 � 1;m1Þ.
The equilibrium at ðn1 þ k2;m1 � 1Þ can be reached
from ðn1;m1 � 1Þ, meaning P4o1, and may be reached
from ðn1 þ 1;m1Þ if l21ðn1 þ 1;m1Þ40. It is not possible
to reach ðn1 � k1;m1 þ 1Þ from ðn1 þ 1;m1Þ or ðn1;m1 �

1Þ or to reach ðn1 þ k2;m1 � 1Þ from ðn1 � 1;m1Þ or
ðn1;m1 þ 1Þ.
Using the probabilities of the possible non-IFD

movements given above, the probability that ðn1 �

k1;m1 þ 1Þ is the first equilibrium reached after a non-
IFD movement from ðn1;m1Þ is

a2ðMT � m1Þð1� P3Þ þ a1n1ð1� P2Þ

a1ðn1 þ m1Þ þ a2ðNT þ MT � n1 � m1Þ
.

Since P2 and P3 do not depend on a1, differentiating this
expression with respect to a1 gives

a2½ðMT þ NT � n1 � m1Þð1� P2Þn1 � ðMT � m1Þð1� P3Þðn1 þ m1Þ�

½a1ðn1 þ m1Þ þ a2ðNT þ MT � n1 � m1Þ�
2

.

This is negative if P2 ¼ 1.
Similarly, the probability that ðn1 þ k2;m1 � 1Þ is the

first equilibrium reached after a non-IFD movement
from ðn1;m1Þ is

a2ðNT � N1Þð1� P1Þ þ a1m1ð1� P4Þ

a1ðn1 þ m1Þ þ a2ðNT þ MT � n1 � m1Þ
.

The probabilities P1 and P4 do not depend on a1, hence
the derivative of this expression with respect to a1 is

a2½ðMT þ NT � n1 � m1Þð1� P4Þm1 � ðNT � n1Þð1� P1Þðn1 þ m1Þ�

½a1ðn1 þ m1Þ þ a2ðNT þ MT � n1 � m1Þ�
2

,

which is positive if P1 ¼ 1.
If the unequal competitors IFD line is the only line of

equilibria, then k1 ¼ k241 for all equilibria. This means
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that the probability that the value of N1 þ M1 has
increased once the system returns to equilibrium after a
non-IFD movement from ðn1;m1Þ increases with a1 if
either P1 ¼ 1 or P2 ¼ 1, which is equivalent to
maxfP1;P2g ¼ 1. P1 ¼ 1 if and only if l21ðn1 þ 1;
m1Þ ¼ 0, while P2 ¼ 1 if and only if l22ðn1 � 1;
m1Þ ¼ 0. Therefore, maxfP1;P2g ¼ 1 if and only if

KM

KN

41þmin
Q1

Q2

;
Q2

Q1

� �
.

In the case considered here, with KN ¼ 1; KM ¼

5; Q1 ¼ 100 and Q2 ¼ 300, the condition

KM

KN

41þmin
Q1

Q2

;
Q2

Q1

� �
,

is satisfied and k1; k241 at all equilibria. Hence, the
expected value of N1 þ M1 increases with an increase in
a1. This suggests that when a1 ¼ 10�6, a2 ¼ 0, and KN ,
KM , Q1 and Q2 are unchanged, the population should
be almost certain to be in the state ð34; 4Þ at equilibrium.
This is indeed the case, with EðN1Þ ¼ 33:9998 and
EðM1Þ ¼ 3:9996 in this case.
5. Discussion

We have derived a model describing the distribution
of a population between patches of resources, which is
developed from that of Jackson et al. (2004). The major
differences between our model and theirs are the rate at
which IFD movements occur and the fact that we derive
equilibrium probabilities for being in each state, rather
than using simulations. Our rates for IFD movement are
more realistic than those of Jackson et al. (2004), since
they depend both on the possible gain in intake rate and
the number of individuals present who can make the
move. This seems plausible; for example, each type N

individual on Patch 1 moves at rate l11, meaning that
the total rate of IFD movements of type N individuals
from Patch 1 is l11N1.
The inclusion of this factor also means that there are

up to two equilibria for which one of the lijs is positive.
For example, if KN ¼ 1; KM ¼ 5; Q1 ¼ 100 and
Q2 ¼ 300, then l11ð0; 11Þ40, meaning that it is bene-
ficial for type N individuals on Patch 1 to move to Patch
2, but there are no such individuals to make the move.
Our inclusion of the factor N1 in the IFD movement
rate means that this rate will be 0, while it is not stated
explicitly what happens under Jackson et al.’s (2004)
model when the state ð0; 11Þ is reached. They do not
mention the equilibria at ð0; 11Þ or ð36; 3Þ, but it seems
they are observed when no random movements occur,
since 9 frequencies are given on their Fig. 5, while there
are only 7 IFD equilibria for the set of parameters used.
Our evaluations produce similar results to the

simulations of Jackson et al. (2004). Under-matching
is often observed, and the joint equilibrium distributions
of N1 and M1 are similar to those observed by Jackson
et al. (2004), in that they have one modal value when
random movements are common, and several when
these movements are rare. In these cases the modal
values are close to IFD equilibria.
We have found that it is possible for there to be more

than one line of IFD equilibria. There may be points
that are not on the unequal competitors IFD line for
which all of the IFD transition rates are zero. Such a
case is shown in Fig. 8, where there is a further line
below the unequal competitors IFD line. It is also
possible that there are no equilibria on the IFD line,
since it may not pass through any integer valued points
such that 0pN1pNT and 0pM1pMT .
Our calculation of equilibrium probabilities rather

than the use of simulations enables us to ascertain the
likelihood of rare events, which may not occur during
simulations, and avoids the need to choose an initial
distribution.
The use of our approximate model may assist in the

computation of the joint equilibrium distribution of N1

and M1, since there is a much smaller number of states
under this approximation. For the parameter set
considered, it is only necessary to find the stationary
distribution of a model with 9 states, as opposed to
solving a set of 372 equations. It should be noted that
the calculation of the probability of moving to each
equilibrium after a random movement was not trivial.
Nevertheless, significant savings could be made, parti-
cularly for very large groups.
An increase in the rate of random movements out of

Patch 1 can lead to an increase in the number of
individuals on this patch when random movements are
rare. Our approximation of the model provides a
possible explanation for this, since we are able to find
circumstances under which the probability with which
the number of individuals on Patch 1 has increased once
the system returns to equilibrium after a random
movement from an equilibrium on the unequal compe-
titors IFD line increases with a1. It is reasonable that
EðN1 þ M1Þ should increase with an increase in a1
under these conditions.
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