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Abstract

In this paper, we consider a model of kleptoparasitism amongst a small group of individuals, where the state of the population is

described by the distribution of its individuals over three specific types of behaviour (handling, searching for or fighting over, food). The

model used is based upon earlier work which considered an equivalent deterministic model relating to large, effectively infinite,

populations. We find explicit equations for the probability of the population being in each state. For any reasonably sized population, the

number of possible states, and hence the number of equations, is large. These equations are used to find a set of equations for the means,

variances, covariances and higher moments for the number of individuals performing each type of behaviour. Given the fixed population

size, there are five moments of order one or two (two means, two variances and a covariance). A normal approximation is used to find a

set of equations for these five principal moments. The results of our model are then analysed numerically, with the exact solutions, the

normal approximation and the deterministic infinite population model compared. It is found that the original deterministic models

approximate the stochastic model well in most situations, but that the normal approximations are better, proving to be good

approximations to the exact distribution, which can greatly reduce computing time.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Food stealing; Equilibrium distribution; Cumulant generating function; Markov process; Parasitism
1. Introduction

There are many biological situations in which a
population is divided amongst a number of sites. These
sites may be physical locations, such as patches of food, or
may categorise the population in some way, perhaps by
their activity or whether they have a particular disease or
not. The rates at which individuals leave each site depend
on the current location of the individual in question, and
are also often dependent on the location of other members
of the population.

A feature of interest in such situations is the expected
proportion of the population at each site at equilibrium.
This is often calculated using a deterministic model, which
assumes that the population is large. Individual movements
in a small population have a much larger effect on
transition rates than in a large population, and can also
e front matter r 2007 Elsevier Ltd. All rights reserved.
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result in large differences between the expected proportion
of the population on each site given by the two models. As
a result of this, stochastic models are generally more
appropriate when considering small populations. The use
of stochastic models also enables the variance of the
number of individuals at each site to be calculated, which is
not possible using deterministic models.
Examples of such models include:
(1) The SIS epidemic. This is one of the simplest

epidemic models, in which individuals are either susceptible
or infective, and once they recover from the disease they
are immediately susceptible again (see Weiss and Dishon,
1971; Nasell, 1996, 1999; Kryscio and Lefèvre, 1989). The
deterministic and stochastic models in this case give very
different results. The deterministic model either converges
to a stable mixture of infective and susceptible individuals,
or the disease becomes extinct, depending upon para-
meter values. For the stochastic model the stationary
distribution is always the trivial one where the disease is
extinct. Extinction may take a long time to happen, and we
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Fig. 1. The stochastic kleptoparasitism model. The sites are indicated by

the boxes, transition rates are given on the arc with the arrow in the

appropriate direction between the states. Both rates into S3 are identical,

as are those leaving S3. Individuals enter state S3 in pairs, one each from

S1 and S2. Similarly, pairs leave S3 simultaneously, with one going to each

of S1 and S2.
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may be interested in interim behaviour, so that the quasi-
stationary distribution (conditional on non-extinction) is
considered.

(2) Coagulation–fragmentation processes. The model
population contains N individuals who are grouped into
clusters of various sizes, where possible events are the
merging of two groups into one and the separation of a
group into two smaller groups. These processes have many
applications including animal grouping; see Durrett et al.
(1998, 1999) and their references. The long-term behaviour
of these processes again differs between the deterministic
and stochastic cases, but the deterministic model is
generally a better approximation to the stochastic one
than in the SIS epidemic.

(3) The ideal free distribution (Fretwell and Lucas, 1970)
which describes the distribution of animals among a
number of patches of a resource, such as prey or mates
(see, for example, Jackson et al., 2004; Hugie and Grand,
1998; Houston and McNamara, 1988; Ruxton and
Humphries, 2003; Yates and Broom, 2005). Deterministic
models predict the optimal distribution of individuals
between patches of different quality. Stochastic models
generally predict undermatching (a lower proportion of
individuals on the higher quality site than predicted by the
deterministic model) and this is often what is observed in
real populations, see for example Kennedy and Gray
(1993). It should be noted that Hamilton (2002) combined
the concept of the ideal free distribution and food stealing,
and modelled individuals moving between two food
patches where stealing was also possible.

We focus in this paper on the modelling of food stealing
or kleptoparasitism. Many authors have observed various
animals stealing food from others. For example Brock-
mann and Barnard (1979) reviewed literature from the
previous 40 years and found such occurrences among a
variety of bird species. Such kleptoparasitic behaviour can
be intraspecific, when food is stolen from members of the
same species, or interspecific, when food is stolen from
members of a different species. Although kleptoparasitism
is particularly well documented among birds, it occurs in
many species. For example, Vollrath (1979) conducted
both field and laboratory research into the theridiid spider,
which steals from two other spider species, while Homer
et al. (2002) have observed the behaviour in hyenas.

Recently a series of game-theoretic models of kleptopar-
asitic behaviour (e.g. Broom and Ruxton, 2003; Luther and
Broom, 2004; Broom et al., 2004) have been developed
investigating the strategic choices of individuals in a variety
of circumstances. They took as their basis the paper
Ruxton and Moody (1997) where behaviour was comple-
tely deterministic in character, due to the large population
assumed and the lack of decisions of the individuals
involved, and its refinement in Broom and Ruxton (1998).
Indeed, conditional on individuals’ decisions, all of these
models were essentially deterministic. In this paper we
consider the refinement of Ruxton and Moody (1997) in
Broom and Ruxton (1998) where no decisions are allowed
by individuals, and introduce a stochastic version of this
model, comparing the large population situation to the
non-deterministic stochastic version.

2. The models

We first recall the structure of the basic model from
Ruxton and Moody (1997) and Broom and Ruxton (1998).
They considered a population where the density of

individuals is P. This population is divided into three
different activities; searching for food items, which we label
state S1 (state S in the original papers), handling a food
item, state S2 (originally state H), and involved in an
aggressive contest, state S3 (originally state A). We shall
label the number of individuals in Si as X i for i ¼ 1; 2 and
the number of fighting pairs in S3 as X 3. Thus if the total
population size is n, then

X 1 þ X 2 þ 2X 3 ¼ n.

The number of available food items per unit area is given
by f. Individuals were able to search an area nf for food in
unit time, so that the rate at which individual searchers
found food (and so moved from state S1 to S2) was
l12 ¼ nf f . At the end of handling, the handler resumed
searching. It was assumed that food items take a time to
handle drawn from an exponential distribution with mean
th, so that individuals move from state S2 to S1 at rate
l21 ¼ 1=th. Individuals also searched for handlers, being
able to search an area of size nh per unit time. When a
searcher encountered a handler, it challenged for the food
item and a fight ensued, and one individual from each of S1

and S2 moved to the fighting state S3, this occurred at rate
l13 ¼ nh per pair of individuals. Contest times were drawn
from an exponential distribution with mean time ta=2. At
the end of a contest, the winner started handling the food,
and the loser resumed searching, so that a fighting pair
splits, one of each moving from S3 to the states S1 and S2,
at rate l31 ¼ 2=ta. These are summarised in Fig. 1.
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2.1. The deterministic model

We further define the proportion of individuals in state
Si as zi for all i and thus if the total population size is n,
then z1 ¼ X 1=n, z2 ¼ X 2=n and z3 ¼ 2X 3=n. The transition
rates are as in Fig. 2.

We can thus find the large population transition rates l0ij
in terms of lij as follows: The transition rate from S1 to S2

is given by l12X 1 ¼ l12ðnz1Þ ¼ nðl012z1Þ for large n) l012 ¼
l12. Similarly l021 ¼ l21, while 2l31X 3 ¼ 2l31ðnz3=2Þ ¼
nðl031z3Þ for large n) l031 ¼ l31 and l13X 1X 2 ¼ l13ðnz1Þ

ðnz2Þ ¼ nðl013z1z2Þ for large n) l013 ¼ nl13.
Following Broom and Ruxton (1998) we see that for an

essentially infinite population, the proportions of the
population in each site satisfy the differential equations:

dz1

dt
¼ l021z2 þ l031z3 � l012z1 � l013z1z2, ð1Þ

dz2

dt
¼ l012z1 þ l031z3 � l021z2 � l013z1z2, ð2Þ

dz3

dt
¼ 2l013z1z2 � 2l031z3. ð3Þ

Note that Eq. (3) can be obtained from a linear
combination of Eqs. (1) and (2). At equilibrium
dz1=dt ¼ dz2=dt ¼ dz3=dt ¼ 0, and substituting z3 ¼ 1�
z1 � z2 into Eqs. (1) and (2) and rearranging gives

ðl012 þ l031Þz1 þ ðl
0
31 � l021Þz2 þ l013z1z2 � l031 ¼ 0,

ðl031 � l012Þz1 þ ðl
0
21 þ l031Þz2 þ l013z1z2 � l031 ¼ 0.

Therefore

z1 ¼
l021
l012

z2, (4)

while z2 solves

l013l
0
21z22 þ l031ðl

0
12 þ l021Þz2 � l012l

0
31 ¼ 0. (5)
Fig. 2. The deterministic kleptoparasitism model. The states are indicated

by the boxes, transition rates are given on the arc with the arrow in the

appropriate direction between the states per individual; thus the actual

transition rate of movement in a large population of size n is n� this

individual rate. Both rates into S3 are identical, as are those leaving S3.

Individuals enter state S3 in pairs, one each from S1 and S2.
Since the coefficients of z22 and z2 in this equation are
positive, z2 is given by the positive root, meaning that

z2 ¼
�l031ðl

0
12 þ l021Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l031

2
ðl012 þ l021Þ

2
þ 4l012l

0
13l
0
21l
0
31

q
2l013l

0
21

.

Note that z2 is the handling ratio, which is directly related
to the food consumption rate per individual. In fact this
consumption rate is z2=th ¼ l021z2.

2.2. The stochastic kleptoparasitism model

Following the description of transitions at the start of
this section, we can see that the transition rates for this
model are as shown in Fig. 1. The numbers of individuals
in S1 and S2 are X 1 and X 2, respectively, while X 3 gives the
number of pairs in S3. There are only four possible
movements. Recall that the population size n is fixed, and
that X 1 þ X 2 þ 2X 3 ¼ n.
The probability that X 1ðtÞ ¼ x1 and X 2ðtÞ ¼ x2 is

denoted by px1;x2
ðtÞ. The Kolmogorov forward equations

for px1;x2
ðtÞ for this process are

d

dt
px1;x2
ðtÞ

¼ l13ðx1 þ 1Þðx2 þ 1Þpx1þ1;x2þ1
ðtÞ

þ l31ðn� x1 � x2 þ 2Þpx1�1;x2�1
ðtÞ

þ l12ðx1 þ 1Þpx1þ1;x2�1
ðtÞ þ l21ðx2 þ 1Þpx1�1;x2þ1

ðtÞ

� ½l13x1x2 þ l31ðn� x1 � x2Þ þ l12x1

þ l21x2�px1;x2
ðtÞ. ð6Þ

8x1; x2 2 f0; 1; . . . ; ng, where by convention px1;x2
¼ 0 if any

of x1o0, x2o0 or x1 þ x24n occur. In addition, since the
number of individuals in S3 must be even, px1;x2

ðtÞ ¼ 0 if
n� x1 � x2 is odd. At equilibrium ðd=dtÞpx1;x2

ðtÞ ¼ 0 8 x1,
x2 and these equations become a set of linear equations for
the joint equilibrium distribution of X 1 and X 2.

2.2.1. The number of distinct states of the stochastic model

Under the model, n� x1 � x2 must be even; the number
of states for which X 1 ¼ x1 depends on whether n� x1 is
odd or even. If n� x1 is odd, there are ðn� x1 þ 1Þ=2 such
states, otherwise there are ðn� x1Þ=2þ 1 states. Since
ðn� x1 þ 1Þ=2 ¼ ðn� ðx1 þ 1ÞÞ=2þ 1, the number of states
when n is even is

n

2
þ 1þ

Xn=2
i¼1

2
n� 2i

2
þ 1

� �
¼

n

2
þ 1þ

Xn=2
i¼1

n� 2i þ 2

¼
n

2
þ 1þ ðnþ 2Þ

n

2

�
n

2

n

2
þ 1

� �

¼
n

2
þ 1

� �2
.
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If n is odd the total number of states is

Xðnþ1Þ=2
k¼1

2
n� ð2k � 1Þ

2
þ 1

� �
¼ ðnþ 3Þ

nþ 1

2
� 2

Xðnþ1Þ=2
k¼1

k

¼ ðnþ 3Þ
nþ 1

2

�
nþ 1

2

nþ 1

2
þ 1

� �

¼
ðnþ 1Þðnþ 3Þ

4
.

In either case the number of states is of order n2=4.
2.2.2. Equations for the moments of X 1 and X 2

It is not practical to solve the equations for px1;x2
. Instead

we find equations for the principal moments of the process,
namely the means, variances and the covariance of the
random variables X 1 and X 2 (from which the moments
involving X 3 can also be found). We begin by obtaining a
partial differential equation for the cumulant generating
function of X 1 and X 2, from which equations for the above
moments can be derived. The cumulant generating function
is denoted Kðs1; s2Þ and is defined to be logMðs1; s2Þ, where
Mðs1; s2Þ is the moment generating function. From this it is
possible to obtain equations for the cumulants of X 1 and
X 2. The cumulant ki;j is the coefficient of si

1s
j
2=i!j! in the

series expansion of Kðs1; s2Þ. The partial differential
equation for Kðs1; s2Þ is

nl31ðes1þs2 � 1Þ þ ½l12ðes2�s1 � 1Þ þ l31ð1� es1þs2 Þ�
qK

qs1

þ ½l21ðes1�s2 � 1Þ þ l31ð1� es1þs2 Þ�
qK

qs2

þ l13ðe�ðs1þs2Þ � 1Þ
q2K
qs1qs2

þ
qK

qs1

qK

qs2

� �
¼ 0. ð7Þ

This is derived in Appendix A.
Differentiating Kðs1; s2Þ with respect to s1 i times and s2 j

times and setting s1 ¼ s2 ¼ 0 in the function obtained gives
the ði; jÞ cumulant of X 1 and X 2.

For example,

qK

qs1

����
s1¼s2¼0

¼ EðX 1Þ;
q2K

qs21

����
s1¼s2¼0

¼ VarðX 1Þ and

q2K
qs1qs2

����
s1¼s2¼0

¼ CovðX 1;X 2Þ.

Applying this to Eq. (7) gives the following set of
equations:

nl31 � l31m1 � l31m2 � l13s12 � l13m1m2 ¼ 0, (8)

l12m1 � l21m2 ¼ 0, (9)

nl31 � l31m1 þ ðl21 � l31Þm2 � ðl12 þ l31Þs21 þ ðl21 � l31Þs12

� l13k2;1 � l13m1s12 � l13m2s
2
1 ¼ 0, ð10Þ
l12m1 þ l21m2 � l12s21 � l21s22 þ ðl12 þ l21Þs12 ¼ 0, (11)

nl31 þ ðl12 � l31Þm1 � l31m2 � ðl21 þ l31Þs22 þ ðl12 � l31Þs12

� l13k1;2 � l13m2s12 � l13m1s
2
2 ¼ 0. ð12Þ

These five equations contain the seven unknowns m1, m2, s
2
1,

s22, s12, k2;1 and k1;2, where mi ¼ EðX iÞ, s2i ¼ VarðX iÞ,
s12 ¼ CovðX 1;X 2Þ, k2;1 ¼ E½ðX 1 � m1Þ

2
ðX 2 � m2Þ� and

k1;2 ¼ E½ðX 1 � m1ÞðX 2 � m2Þ
2
�. Further equations can be

obtained, but the number of unknowns would also be
increased.
It is possible to obtain expressions for m1 and s12 in terms

of m2 from the first two of these equations. These are

m1 ¼
l21
l12

m2 (13)

and

s12 ¼ �
l21
l12

m22 �
l31ðl12 þ l21Þ

l13l12
m2 þ

nl31
l13

(14)

and are derived in Appendix B.
We now show two results relating these moments.

Result 1. The signs of nz1 � m1 and nz2 � m2 are the same.

The proof follows from the fact that expression (4) for
z1, with the substitutions l012 ¼ l12 and l021 ¼ l21 can be
rearranged to give

l12z1 � l21z2 ¼ 0.

Multiplying this equation by n and subtracting (9) gives

l12ðnz1 � m1Þ ¼ l21ðnz2 � m2Þ.

Since l12 and l21 are both positive, it follows that nz1 � m1
and nz2 � m2 have the same sign.
Thus the number of searchers and handlers is either both

overestimated or both underestimated by the deterministic
model.

Result 2. The signs of nz2 � m2 and s12 are the same (and
so are also the same as that of nz1 � m1).

Making the substitutions l012 ¼ l12, l
0
13 ¼ nl13, l

0
21 ¼ l21

and l031 ¼ l31 into Eq. (5) and multiplying by n gives

l13l21ðnz2Þ
2
þ l31ðl12 þ l21Þnz2 � nl12l31 ¼ 0.

Substituting the expression for m1 into (8) and multiplying
by l12 gives

nl12l31 � l31ðl12 þ l21Þm2 � l12l13s12 � l13l21m22 ¼ 0.

Adding these two equations gives

l13l21ððnz2Þ
2
� m22Þ þ l31ðl12 þ l21Þðnz2 � m2Þ � l12l13s12 ¼ 0.

) ðnz2 � m2Þðl13l21ðnz2 þ m2Þ þ l31ðl12 þ l21ÞÞ ¼ l12l13s12.

This shows that the signs of nz2 � m2 and s12 are the same,
since the lijs and m2 are all positive.
Thus if X 1 and X 2 are negatively correlated, as we would

naively assume should usually be the case since the total
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number of individuals in the three categories is fixed, then
this would indicate that the deterministic model would
underestimate the number of searchers and handlers.

2.2.3. The normal approximation

If one assumes that X 1 and X 2 are bivariate normal, then
k2;1 and k1;2 are both 0. This method is described by
Whittle (1957) and has been applied more recently by
Nasell (2003) with the stochastic logistic model, of which
the SIS epidemic is an example. Using this approximation
it is possible to derive expressions for ŝ21 and ŝ22 in terms of
m̂2, and a quartic equation for m̂2, where the ^ above each
variable denotes the normal approximation. These are
derived in Appendix B.

The variances are given by
ŝ21 ¼
l221
l212

m̂22 þ
2l21ðl31 � l21Þ

l12l13
m̂2 þ

l21 � l31
l13

þ
2l221 � 3l21l31 þ l231

l213
�

l21l31ðnþ 1Þ

l12l13
þ

l21l31ðl21 � l31Þ

l12l
2
13

þ
l31ðð2l21 � l31Þnþ l12 þ l31Þ � l12l21

l13ðl12 þ l31 þ l13m̂2Þ
þ

l31n

l12 þ l31 þ l13m̂2
þ
ðl31 � l21Þð3l21l31 þ 2l12l21 � l231 � l12l31Þ

l213ðl12 þ l31 þ l13m̂2Þ

þ
l21l

2
31ðnþ 1Þ

l12l13ðl12 þ l31 þ l13m̂2Þ
þ

l21l
2
31ðl31 � l21Þ

l12l
2
13ðl12 þ l31 þ l13m̂2Þ

ð15Þ

and

ŝ22 ¼ m̂22 þ
2ðl31 � l12Þ

l13
m̂2 þ

l12 � l31
l13

þ
2l212 � 3l12l31 þ l231

l213
�

l12l31ðnþ 1Þ

l13l21
þ

l12½l31ðð2l12 � l31Þnþ l21 þ l31Þ � l12l21�
l13ðl21l12 þ l31l12 þ l21l13m̂2Þ

þ
l12l31ðl12 � l31Þ

l213l21
þ

l12l31n

l21l12 þ l31l12 þ l21l13m̂2
þ

l12ðl31 � l12Þð3l31l12 þ 2l21l12 � l231 � l21l31Þ

l213ðl21l12 þ l31l12 þ l21l13m̂2Þ

þ
l212l

2
31ðnþ 1Þ

l13l21ðl21l12 þ l31l12 þ l21l13m̂2Þ
þ

l212l
2
31ðl31 � l12Þ

l213l21ðl21l12 þ l31l12 þ l21l13m̂2Þ
, ð16Þ
while the quartic equation for m̂2 is

2l313l
2
21ðl12 þ l21Þm̂42 þ l213l21ð3l31ðl

2
12 þ l221Þ

þ 2l12l21ðl12 � l13 þ l21 þ 5l31ÞÞm̂32 þ l13½l31ðl12 þ l21Þðl31ðl
2
12 þ l221Þ

þ l21l12ð3ðl12 þ l21Þ � 2l13ðnþ 2Þ þ 8l31ÞÞ � 2l212l13l
2
21�m̂

2
2

þ l12l31½2ðl12 þ l21Þ2l231 � l13l31ððl212 þ l221Þðnþ 1Þ þ 2l12l21ð3nþ 2ÞÞ

þ l31ðl12 þ l21Þ
3
� l12l13l21ðl12 þ l21Þð2nþ 3Þ þ 2nl12l

2
13l21�m̂2

þ�l212l31nðl31ðl12 þ l21Þðl12 � l13 þ l21 þ 2l31Þ � 2l12l13l21Þ

¼ 0. ð17Þ

These equations are of course rather cumbersome, but
can be used to find numerical results, as we do in the
following section.

3. Numerical evaluations

Tables 1 and 2 show the results of evaluations of both
the stochastic and deterministic models, along with the
normal approximation to the stochastic model, for a
variety of parameter values. The lij ’s were randomly
generated; l12; l21; l31�Uð0; 50Þ and l13�Uð0; 2:5Þ, the
distributions chosen to ensure that the transition rates
were, on average, of similar order (l13 being associated with
the only quadratic transition). Table 1 shows m1, m2, s

2
1, s

2
2,

s12, k2;1 and k1;2, while Table 2 shows m3, s
2
3, s13 and s23.

Since m̂2 satisfies a quartic equation, the normal
approximation gives four values for m̂2. Only one of the
solutions of Eq. (17) was a plausible value for m̂2 for each
set of parameters used here. The normal approximation is
very accurate and all of the estimates of s23, s13 and s23 are
fairly good. In particular, the normal approximation agrees
more closely with the stochastic model than does the
deterministic model for each parameter set.
The deterministic model, stochastic model and its

normal approximation were evaluated for 400 sets of
parameters with the results summarised in Table 3. In each
case the population size was either 10, 20, 30, 40 or 50. For
the first 200 sets (Run 1 in Table 3) l12, l21 and l31
�Uð0; nÞ and l13�Uð0; 3Þ so that the transition rates were
of similar order. The covariance between X 1 and X 2, s12, is
negative for each of these sets of parameters. In the last 200
parameter sets (Run 2 in Table 3) l12�Uð0:5; 1:5Þ,
l13; l21�Uð106; 1:0001� 1010Þ and l31�Uð0; 0:1Þ. These
distributions were chosen to give parameter sets for which
s12 may be positive. If s12 is to be positive it must be when
m2 is small, since expression (14) for s12 in terms of m2 is
decreasing in m2. Also, nl31=l13 must be larger than
ðl21=l12Þm22 þ ðl31ðl12 þ l21Þ=l13l12Þm2. They were chosen
as a result of carrying out some evaluations for which s12
was close to zero. When the normal approximation
provided more than one set of values for the cumulants,
the set which gave the means closest to those given by the
deterministic model were used.
From Table 1 and Run 1 in Table 3 we can see that

generally the deterministic model underestimates the
number of individuals in states S1 and S2, i.e. that
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Table 1

The mean, variance and covariance of X 1 and X 2 for a variety of transition rates

Model l12 l13 l21 l31 m1 m2 s12 s21 s22 k2;1 k1;2

S 26.39 1.297 23.80 11.81 13.4338 14.8958 �2.78 10.92 11.81 �2.06 �1.98

D 26.39 1.297 23.80 11.81 13.3769 14.8327

N 26.39 1.297 23.80 11.81 13.4348 14.8968 �2.83 10.88 11.76

S 13.50 2.380 13.96 3.281 7.1911 6.9542 �0.58 6.59 6.39 �0.52 �0.53

D 13.50 2.380 13.96 3.281 7.1562 6.9204

N 13.50 2.380 13.96 3.281 7.1931 6.9561 �0.61 6.56 6.36

S 17.47 2.300 32.69 30.01 20.9940 11.2195 �3.47 14.51 9.37 �1.89 �2.63

D 17.47 2.300 32.69 30.01 20.9123 11.1758

N 17.47 2.300 32.69 30.01 20.9950 11.2200 �3.51 14.47 9.33

S 49.44 1.516 35.76 9.751 10.7328 14.8386 �2.13 9.19 11.89 �1.72 �1.57

D 49.44 1.516 35.76 9.751 10.6853 14.7730

N 49.44 1.516 35.76 9.751 10.7338 14.8400 �2.18 9.15 11.84

S 46.02 1.274 46.33 4.207 10.0455 9.9783 �1.25 8.79 8.74 �1.05 �1.06

D 46.02 1.274 46.33 4.207 9.9983 9.9314

N 46.02 1.274 46.33 4.207 10.0470 9.9798 �1.29 8.75 8.70

S 44.00 0.2067 34.01 21.19 19.7018 25.4890 �9.16 12.62 13.64 �3.16 �1.40

D 44.00 0.2067 34.01 21.19 19.6698 25.4476

N 44.00 0.2067 34.01 21.19 19.7019 25.4890 �9.17 12.61 13.63

S 23.63 1.273 16.87 40.05 16.0989 22.5499 �5.91 11.88 14.27 �3.39 �2.38

D 23.63 1.273 16.87 40.05 16.0499 22.4813

N 23.63 1.273 16.87 40.05 16.0992 22.5503 �5.94 11.85 14.25

S 49.66 0.1327 2.763 13.47 2.5746 46.2746 �2.33 2.45 4.41 �2.10 1.79

D 49.66 0.1327 2.763 13.47 2.5735 46.2538

N 49.66 0.1327 2.763 13.47 2.5746 46.2746 �2.33 2.44 4.42

S 17.15 0.9662 10.15 0.9526 4.6964 7.9353 �0.42 4.45 7.22 �0.40 �0.38

D 17.15 0.9662 10.15 0.9526 4.6734 7.8964

N 17.15 0.9662 10.15 0.9526 4.6979 7.9379 �0.45 4.43 7.18

S 5.771 0.2995 19.09 28.51 35.3951 10.7001 �7.02 12.16 8.58 1.53 �4.44

D 5.771 0.2995 19.09 28.51 35.3468 10.6855

N 5.771 0.2995 19.09 28.51 35.3952 10.7001 �7.03 12.18 8.56

n ¼ 50 in all cases. The letters in the Model column correspond to each of the models. S stands for stochastic, D for deterministic and N for normal

approximation. The values for the deterministic model in the ‘mean’ columns are nz1 and nz2, respectively. The stochastic model and normal

approximation are described in Sections 2.2 and 2.2.3, respectively.
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nz1om1 and nz2om2. Thus there is a consistent bias
when using the large population approximation, when
the values of the transition rates are broadly compa-
rable. Associated with this, the covariance of X 1 and X 2

was negative in each case (as we may expect because there
is a total of n individuals to divide between these
categories). However, the covariance between X 1 and
X 2 was positive in 180 out of the 200 cases from Run 2
in Table 3 (which used values evaluated in order to
try to make this occur). It follows from Results 1 and 2 in
Section 2.2 that nz14m1 and nz24m2 in these cases, and
so sometimes the more usual result above does not
occur. Note that, as can be seen, the bias is very small
and the large population approximation predicts the
expectation of the number of individuals in these states
well (although the variance can be quite large). The use of
deterministic models for the various previous works on
kleptoparasitism such as Broom and Ruxton (1998) thus
seems reasonable.

The other two covariances were not positive for any of
the parameter sets investigated. Thus the number in the
fighting category S3 seems always negatively correlated
with the numbers in either of the other categories. It was
found that s21os22 () m1om2 and s214s22 () m14m2 for
all cases evaluated. This again makes sense; the larger the
expected number on a given site, the larger the magnitude
of the variance of this number. We have not been able to
prove the generality of these results.
For every set of parameters tested mipm̂i, i ¼ 1; 2 and

s124ŝ12. m̂i and ŝ12 are the estimates of mi and s12 under
the normal approximation. Thus the normal approxima-
tion seems to always overestimate m1 and m2 (although this
overestimate is very small). It has, again, not been possible
to prove the generality of this result.

4. Discussion

This paper considers both a deterministic and a
stochastic model for kleptoparasitism, along with a normal
approximation to the stochastic model. The deterministic
model is that of Broom and Ruxton (1998), for which
explicit solutions for the equilibrium proportion of the
population on each site can be found. The forward
Kolmogorov equations were derived for the equilibrium
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Table 2

The mean and variance of the number of individuals on site 3, along with

the covariances of the number on site 3 with the numbers of individuals on

sites 1 and 2, for a variety of transition rates

Model l12 l13 l21 l31 m3 s13 s23 s23

S 26.39 1.297 23.80 11.81 21.6704 �8.14 �9.02 17.16

D 26.39 1.297 23.80 11.81 21.7904

N 26.39 1.297 23.80 11.81 21.6685 �8.05 �8.93 16.98

S 13.50 2.380 13.96 3.281 35.8547 �6.01 �5.81 11.82

D 13.50 2.380 13.96 3.281 35.9235

N 13.50 2.380 13.96 3.281 35.8508 �5.95 �5.75 11.70

S 17.47 2.300 32.69 30.01 17.7865 �11.04 �5.90 16.94

D 17.47 2.300 32.69 30.01 17.9119

N 17.47 2.300 32.69 30.01 17.7850 �10.96 �5.82 16.78

S 49.44 1.516 35.76 9.751 24.4286 �7.06 �9.76 16.81

D 49.44 1.516 35.76 9.751 24.5417

N 49.44 1.516 35.76 9.751 24.4263 �6.98 �9.66 16.64

S 46.02 1.274 46.33 4.207 29.9763 �7.54 �7.49 15.03

D 46.02 1.274 46.33 4.207 30.0702

N 46.02 1.274 46.33 4.207 29.9732 �7.46 �7.41 14.87

S 44.00 0.2067 34.01 21.19 4.8092 �3.46 �4.48 7.94

D 44.00 0.2067 34.01 21.19 4.8826

N 44.00 0.2067 34.01 21.19 4.8091 �3.44 �4.46 7.90

S 23.63 1.273 16.87 40.05 11.3511 �5.97 �8.36 14.33

D 23.63 1.273 16.87 40.05 11.4688

N 23.63 1.273 16.87 40.05 11.3506 �5.91 �8.31 14.22

S 49.66 0.1327 2.763 13.47 1.1508 �0.12 �2.08 2.20

D 49.66 0.1327 2.763 13.47 1.1727

N 49.66 0.1327 2.763 13.47 1.1507 �0.11 �2.09 2.20

S 17.15 0.9662 10.15 0.9526 37.3683 �4.02 �6.79 10.81

D 17.15 0.9662 10.15 0.9526 37.4301

N 17.15 0.9662 10.15 0.9526 37.3642 �3.97 �6.73 10.70

S 5.771 0.2995 19.09 28.51 3.9048 �5.13 �1.55 6.69

D 5.771 0.2995 19.09 28.51 3.9677

N 5.771 0.2995 19.09 28.51 3.9047 �5.14 �1.52 6.67

n ¼ 50 in all cases. The letters in the Model column correspond to each of

the models. S stands for stochastic, D for deterministic and N for normal

approximation. The value for the deterministic model in the ’mean’

column is nz3. The stochastic model and normal approximation are

described in Sections 2.2 and 2.2.3, respectively.

Table 3

A summary of numerical evaluations of the deterministic and stochastic

models and the normal approximation

Characteristic Run 1 Run 2

Total evaluations 200 200

s1240 0 180

m1om2 and s214s22 0 0

m2om1 and s224s21 0 0

m14m3 0 0

s1340 0 0

s2340 0 0

Multiple possible sets of parameters 7 196

under normal approximation

The numbers in the Run 1 and Run 2 columns give the number of times

each characteristic was observed in that set of evaluations. n ¼ 10, 20, 30,

40 or 50. For Run 1 l12; l21; l31�Uð0; nÞ; l13�Uð0; 3Þ and for Run 2

l12�Uð0:5; 1:5Þ, l13; l21�Uð106; 1:0001� 1010Þ, l31�Uð0; 0:1Þ.
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distribution of the stochastic model. It is not practical to
solve these explicitly, but numerical solutions have been
obtained for many sets of parameters.

A partial differential equation for the cumulant generat-
ing function was derived for the stochastic model. A set of
five equations for the means, variances and covariance of
the number of individuals on sites 1 and 2 has been
obtained from this. These equations contain seven un-
knowns, since they also contain the cumulants k2;1 and
k1;2. The normal approximation reduces the number
of unknowns, since k2;1 and k1;2 are assumed to be
zero under this approximation. These equations are not
linear, and the solution is given in the form of a quartic
equation for m2 and expressions for m1, s

2
1, s

2
2 and s12 in

terms of m2.
The stochastic model generally gave larger numbers of

individuals on sites 1 and 2 than the deterministic model.
This corresponds to a larger number of searchers and
handlers, and a smaller number of individuals fighting.
Thus, the deterministic approximation will often over-
estimate the number of individuals involved in a con-
test, and we may expect to see less conflict than is predicted
by our models, especially in the case of small popu-
lations, where the differences with the infinite population
approximation will be largest. One possible reason
for this is as follows: if the number of individuals on S1

and S2 in equilibrium were equal, then any move-
ment between the two would reduce the product X 1X 2,
and so the rate of movement towards the fighting state S3

would generally be reduced by this variability. This
argument may still hold when X 1 and X 2 are of similar
order. The differences between stochastic and deterministic
models were always small, however, indicating the validity
of the use of the deterministic model for these kind of
systems. The difference between these values is related to
the sign of the covariance between the numbers of
individuals on sites 1 and 2 as shown in Section 3. There
were some cases for which this covariance is positive,
meaning that the deterministic model gives the larger
numbers of individuals on sites 1 and 2. These were
associated when the numbers in S1 and S2 were very
uneven (in particular X 2 was small), so the above argument
may be reversed, and variability may increase X 1X 2 on
average.
The normal approximation performs well, particu-

larly for estimating the means, where these were a lot
closer to the means given by the stochastic model than
were those given by the deterministic model. In fact the
differences between the actual means and the normal
approximations were almost zero. The approach of
using Normal approximations to simplify the analysis of
such systems seems a possible way forward. For any
such system of equations we would have a multivariate
normal random variable of dimension k, the total number
of sites. Although the quartic equation and expressions
for the variances are long, they can be evaluated
numerically much more quickly than the equilibrium
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Kolmogorov equations can be solved. This will be
especially true if, as in our kleptoparasitism model, we
are interested in the distribution of the number of
individuals involved in a particular behaviour, for an
intermediately sized population (for a very small popula-
tion, we could find numerical solutions to the Kolmogorov
equations themselves).

The deterministic nature of earlier game-theoretic
models of kleptoparasitism can thus be considered justified.
These models, starting with Broom and Ruxton (1998),
showed that stealing is optimal under certain conditions
even though this inevitably reduced the food intake of the
population. Stealing in particular was profitable when
fights were not costly, and food was hard to find. One
important prediction was that there should be a step
change in behaviour when food availability crossed a
certain threshold, so that small ecological effects would
have a dramatic effect on the behaviour of the population
and so on the food consumption rate. The potential for
kleptoparasitism can thus have a serious effect on the
fitness of a species and on its evolution; it should be noted
that many species find much of their food through
kleptoparasitism (see for example Brockmann and Barnard
1979).

The kleptoparasitism model that is our focus here is
one of several that considers competition over food
in various scenarios. Another such model is the producer–
scrounger game (for example see Caraco and Giraldeau,
1991; Dubois and Giraldeau, 2005). The producer–
scrounger model starts from rather different assumptions
to the kleptoparasitism models, for example animals
search for static food clumps which contain several food
items with negligible handling times and are either
producers or scroungers; our models assume single food
items which require a non-zero handling time once
discovered, and individuals search for both food and
stealing opportunities. The dynamic structure of the
kleptoparasitism models, with individuals being tracked
between the different states, is also absent. The solutions
from both models are influenced by similar factors
such as effectiveness of foraging and the effect of
population density, although both of these are introduced
in rather different ways. Thus the models can be thought of
as complementary. Another model of similar type is
described in Auger et al. (2006) which is a deterministic
predator–prey model. Individuals are tracked between
states as in our model, so in this sense it resembles our
model more than the producer–scrounger models. The
contests for food are different to ours, and involve
individuals changing defensive strategies but not challen-
ging ones. An interesting attempt to unify some of the
different models (but not Auger et al., 2006) is described by
Vahl (2006) who examines the assumptions, both explicit
and implicit, of the key food competition models. It would
be of interest to develop similar stochastic versions of some
of these other related models, and make similar compar-
isons as we do here.
Appendix A. Derivation of Eq. (7)

The first step in deriving this equation is to multiply
Eq. (6) by expfs1x1 þ s2x2g and add over all values of X 1

and X 2. This gives

Xn

x1¼0

Xn�x1

x2¼0

expfs1x1 þ s2x2g
d

dt
px1;x2
ðtÞ

¼
Xn

x1¼0

Xn�x1

x2¼0

expfs1x1 þ s2x2g½l13ðx1 þ 1Þðx2 þ 1Þ

�px1þ1;x2þ1
ðtÞ þ l31ðn� x1 � x2 þ 2Þpx1�1;x2�1

ðtÞ

þ l12ðx1 þ 1Þpx1þ1;x2�1
ðtÞ þ l21ðx2 þ 1Þpx1�1;x2þ1

ðtÞ

� ½l13x1x2 þ l31ðn� x1 � x2Þ þ l12x1 þ l21x2�

�px1;x2
ðtÞ�. ð18Þ

At equilibrium, the left-hand side of this equation
reduces to 0, while each sum on the right can be ex-
pressed in terms of Mðs1; s2Þ, qM=qs1, qM=qs2 and
q2M=qs1qs2. The first term on the right-hand side is
equivalent to

Xn�2
x1¼0

Xn�x1�2

x2¼0

l13ðx1 þ 1Þðx2 þ 1Þpx1þ1;x2þ1
expfs1x1 þ s2x2g

¼ l13
Xn�1
x1¼1

Xn�x1

x2¼1

x1x2px1;x2
expfs1ðx1 � 1Þ þ s2ðx2 � 1Þg.

Since

Mðs1; s2Þ ¼
Xn

x1¼0

Xn�x1

x2¼0

expfs1x1 þ s2x2gpx1;x2
,

this is equivalent to

l13 expf�ðs1 þ s2Þg
q2M
qs1qs2

.

The second term on the right-hand side of Eq. (18) is
equivalent to

Xn�1
x1¼1

Xn�x1

x2¼1

l31ðn� x1 � x2 þ 2Þpx1�1;x2�1
expfs1x1 þ s2x2g

¼ l31
Xn�2
x1¼0

Xn�x1�2

x2¼0

ðn� x1 � x2Þpx1;x2

� expfs1ðx1 þ 1Þ þ s2ðx2 þ 1Þg.

Since n� x1 � x2 ¼ 0 when x1 þ x2 ¼ n and px1;x2
¼ 0

when x1 þ x2 ¼ n� 1, the sum above is equivalent to

l31
Xn

x1¼0

Xn�x1

x2¼0

ðn� x1 � x2Þpx1;x2
expfs1ðx1 þ 1Þ þ s2ðx2 þ 1Þg

¼ l31 expfs1 þ s2g nM �
qM

qs1
�

qM

qs2

� �
.



ARTICLE IN PRESS
G.E. Yates, M. Broom / Journal of Theoretical Biology 248 (2007) 480–489488
The third term on the right-hand side of Eq. (18) is
equivalent to

Xn�1
x1¼0

Xn�x1

x2¼1

l12ðx1 þ 1Þpx1þ1;x2�1
expfs1x1 þ s2x2g

¼ l12
Xn

x1¼1

Xn�x1

x2¼0

x1px1;x2
expfs1ðx1 � 1Þ þ s2ðx2 þ 1Þg

¼ l12
qM

qs1
.

Similarly

Xn

x1¼0

Xn�x1

x2¼0

l21ðx2 þ 1Þpx1�1;x2þ1
expfs1x1 þ s2x2g ¼ l21

qM

qs2

and

Xn

x1¼0

Xn�x1

x2¼0

½l13x1x2 þ l31ðn� x1 � x2Þ þ l12x1 þ l21x2�px1;x2

� expfs1x1 þ s2x2g

¼ l13
q2M
qs1qs2

þ l31 nM �
qM

qs1
�

qM

qs2

� �
þ l12

qM

qs1
þ l21

qM

qs2
.

Inserting each of these expressions into Eq. (18) gives the
following partial differential equation for Mðs1; s2Þ:

nl31ðes1þs2 � 1ÞM þ ½l12ðes2�s1 � 1Þ þ l31ð1� es1þs2Þ�
qM

qs1

þ ½l21ðes1�s2 � 1Þ þ l31ð1� es1þs2 Þ�
qM

qs2

þ l13ðe�ðs1þs2Þ � 1Þ
q2M
qs1qs2

¼ 0. ð19Þ

Since Kðs1; s2Þ ¼ logMðs1; s2Þ,

qK

qsi

¼
1

M

qM

qsi

; i ¼ 1; 2 and

q2K

qs1qs2
¼

1

M

q2M
qs1qs2

�
1

M2

qM

qs1

qM

qs2
.

Thus

qM

qsi

¼M
qK

qsi

; i ¼ 1; 2
� ðl12 þ l31 þ l13m̂2Þŝ
2
1 þ

l13l
2
21

l212
m̂2

3
þ

l21ðl21l31 þ 2l12l31 � l12l21Þ

l212
m̂2

2

l31ðl13l21ðnþ 1Þ þ l12l13 þ l221 þ l12l21Þ � l231ðl12 þ l21Þ � l12l13l21
l13

l31ðl13 þ l21 � l31Þn
.

and

q2M
qs1qs2

¼M
q2K

qs1qs2
þ

1

M2

qM

qs1

qM

qs2

� �

�
l12
¼M
q2K
qs1qs2

þ
qK

qs1

qK

qs2

� �
.

These expressions can be substituted into Eq. (19) to give
Eq. (7).

Appendix B. Derivation of the expressions for m1, s
2
1, s

2
2 and

s12 in terms of m2 and the quartic equation for m2 under the

normal approximation

Firstly, expressions for m1 and s12 are derived from
Eqs. (8) and (9). Since neither equation includes the terms
k2;1 and k1;2, the expressions for m̂1 and ŝ12 are identical to
those for m1 and s12, except that m2 is replaced by m̂2 in
each. It is clear from Eq. (9) that

m1 ¼
l21m2
l12

.

Substitution of this expression for m1 into Eq. (8) gives

nl31 � l31
ðl12 þ l21Þ

l12
m2 �

l13l21
l12

m22 � l13s12 ¼ 0,

which can be rearranged to give

s12 ¼ �
l21
l12

m22 �
l31ðl12 þ l21Þ

l13l12
m2 þ

nl31
l13

.

Setting k2;1 ¼ k1;2 ¼ 0 in Eqs. (10)–(12), gives

nl31 � l31m̂1 þ ðl21 � l31Þm̂2 � ðl12 þ l31Þŝ
2
1 þ ðl21 � l31Þŝ12

� l13m̂1ŝ12 � l13m̂2ŝ
2
1 ¼ 0, ð20Þ

l12m̂1 þ l21m̂2 � l12ŝ
2
1 � l21ŝ

2
2 þ ðl12 þ l21Þŝ12 ¼ 0 (21)

and

nl31 þ ðl12 � l31Þm̂1 � l31m̂2 � ðl21 þ l31Þŝ
2
2 þ ðl12 � l31Þŝ12

� l13m̂2ŝ12 � l13m̂1ŝ
2
2 ¼ 0. ð22Þ

When the above expressions for m̂1 and ŝ12 are
substituted into Eq. (20) the following equation involving
m̂2 and ŝ21 is obtained:
The coefficient of ŝ21 in this equation is negative, since l12
l13 and l31 are all positive and m̂2X0. This means that the
equation can be rearranged, to give an expression for ŝ21 in
terms of m̂2. Expression (15) is the partial fraction
expansion of this.

m̂2 þ l13
¼ 0
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Similarly, substituting the expressions for m̂1 and ŝ12 into
Eq. (22) gives
� l21 þ l31 þ
l13l21
l12

m̂2

� �
ŝ22 þ

l13l21
l12

m̂32 þ
l12l31 þ 2l21l31 � l12l21

l12
m̂22

�
l31ðl12l13ðnþ 1Þ þ l212 þ l12l21 þ l13l21Þ � l231ðl12 þ l21Þ � l12l13l21

l12l13
m̂2 þ

l31ðl12 þ l13 � l31Þn
l13

¼ 0.
Since all of the lij ’s are positive and m̂2X0, this equation
can be rearranged to give ŝ22 in terms of m̂2. Expression (16)
is the partial fraction expansion of this.

Finally, the quartic equation for m̂2 is obtained by
inserting the expressions for m̂1, ŝ12, ŝ

2
1 and ŝ22 into Eq. (21).

When all terms on the left-hand side of this equation are
placed over a common denominator, we have the left-hand
side of Eq. (17) as the numerator and l12l13ðl12 þ l31 þ
l13m̂2Þðl12l21 þ l12l31 þ l13l21m̂2Þ as the denominator. This
denominator can be removed, since it is always positive.
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