MA3615 Groups and Symmetry Exercise Sheet 1: Definition of a Group

- 1. Describe all the symmetries (rotations and reflections) of a square and write down the Cayley table for this symmetry group G. What is the order of G? Is G abelian? Find the inverse of each element in G.
- 2. Which of the following are groups? For those which are not group, explain why not (it is enough to show that one axiom fails); for those which are, show that all the axioms are satisfied.
 - (a) (\mathbb{Z}, \times)
 - (b) the set $2\mathbb{Z}$ of all even integers with addition
 - (c) the set of all odd integers with addition
 - (d) (\mathbb{Q}, \times)
 - (e) The set of all strictly positive rational numbers with multiplication.
 - (f) $\{1, 2, 3, 4\}$ with multiplication modulo 5
 - (g) $\{1, 2, 3, 4, 5\}$ with multiplication modulo 6
 - (h) $\{(0,0), (0,1), (1,0), (1,1)\}$ with addition of vectors modulo 2
 - (i) $\left\{ \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, m \in \mathbb{Z}_5 \right\}$ with multiplication of matrices.
- 3. For each *group* in the previous question, decide whether or not it is abelian, and find its order.
- 4. Let x and y be any elements of a group G and suppose that e is the identity of G. Prove the following statements.
 - (a) $(x * y)^{-1} = y^{-1} * x^{-1}$
 - (b) x * y = e implies y * x = e
 - (c) $(x * y)^2 = x^2 * y^2$ implies x * y = y * x
- 5. Let $G = \{e, a, b, c\}$ be a group with identity e and such that $a^2 = b^2 = c^2 = e$. Write down the Cayley table for G.
- 6. Explain why the following table cannot be the Cayley table of a group.

	е	a	b	с	d
е	е	a	b	с	d
a	a	b	е	d	с
b	b	с	d	a	е
с	с	d	a	е	b
d	d	е	с	b	a