MA3615 Groups and Symmetry Exercise Sheet 2: Permutation groups; Isomorphisms

1. Consider the following permutations in S_7 .

$\alpha =$	$\left[\begin{array}{c}1\\4\end{array}\right]$	2 1	$\frac{3}{2}$	$\frac{4}{3}$	$5 \\ 7$		$\begin{bmatrix} 7 \\ 6 \end{bmatrix}$
$\beta =$	$\left[\begin{array}{c}1\\2\end{array}\right]$	$\frac{2}{6}$	$\frac{3}{4}$	$\frac{4}{3}$	$5\\5$	$\begin{array}{c} 6 \\ 1 \end{array}$	$\begin{bmatrix} 7\\7 \end{bmatrix}$

- (a) Write α and β as a product of disjoint cycles.
- (b) Compute $\alpha \circ \beta$, $\beta \circ \alpha$ and α^2 giving your answer in cycle form.
- (c) Decide whether either of α or β is an even permutation.
- 2. Show that an *n*-cycle is an even permutation if and only if *n* is odd. Hence determine which of the following permutations belong to A_{11} .
 - (a) (1,2)(3,6,8)(4,11,10,5,9,7)
 - (b) (1,3,5,7,9,11,2,4,6,8)
 - (c) (1, 2, 3, 4)(1, 2, 4, 3)(1, 4, 2, 3)
- 3. Show that $V_4 = \{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$ form a group of permutations.
- 4. Let $H = \{u, v, w, x, y, z\}$ be a group (with multiplication *) and $\theta : S_3 \to H$ be an isomorphism with $\theta(e) = u$, $\theta(1, 2) = x$, $\theta(1, 3) = y$, $\theta(2, 3) = z, \theta(1, 2, 3) = v$, $\theta(1, 3, 2) = w$. Find $x * w, w^{-1}, v^5, z * v^{-1} * x$.
- 5. Show that the group V_4 described above is isomorphic to the group of symmetries of a (non-square) rectangle. Can you find another group among the examples in Exercise Sheet 1 which is also isomorphic to V_4 ?
- 6. Classify the following groups into isomorphism classes.
 - (a) the group of rotational symmetries of an equilateral triangle
 - (b) the group of all symmetries of an equilateral triangle
 - (c) S_3
 - (d) \mathbb{Z}_6 (with addition)

(e)
$$\left\{ \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, m \in \mathbb{Z}_3 \right\}$$

- (f) $\mathbb{Z}_2 \times \mathbb{Z}_3$
- 7. By analysing all possible Cayley tables show that, up to isomorphism, there is only one group of order 2, one group of order 3 and there are only two groups of order 4.