MA3615 Groups and Symmetry

Exercise Sheet 4: Normal subgroups, quotient groups, homomorphisms

- 1. Prove that $H = \langle (1,2,3) \rangle$ is a normal subgroup of S_3 but not a normal subgroup of S_4 .
- 2. Prove that $N = \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$ is a normal subgroup of S_4 . Construct the Cayley table for S_4/N .
- 3. Show that \mathbb{Z}_8 has a normal subgroup N isomorphic to \mathbb{Z}_2 with $\mathbb{Z}_8/N \cong \mathbb{Z}_4$.
- 4. Let G be the group of symmetries of the square. Let r^2 be the rotation of the square by π . Show that the subgroup $\langle r^2 \rangle$ is a normal subgroup of G and that the quotient $G/\langle r^2 \rangle$ is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- 5. There is a unique homomorphism $\theta : \mathbb{Z}_6 \to S_3$ such that $\theta(1) = (1, 2, 3)$. Find $\theta(n)$ for each $n \in \mathbb{Z}_6$. Determine the kernel and the image of θ .
- 6. Show that the map $\phi : S_n \to \mathbb{Z}_2$ defined by $\phi(\sigma) = 0$ if σ is an even permutation and $\phi(\sigma) = 1$ if σ is an odd permutation is a homomorphism. What is Ker ϕ ? What can you deduce from the First Isomorphism theorem?