Solutions to MA3615 Groups and Symmetry: January 2009 Exam

- 1. (a) (4 marks) A group is a set G together with an operation * which assigns to each pair (g_1, g_2) of elements in G an element $g_1 * g_2$ in G satisfying the following conditions:
 - (G1) There exists an element $e \in G$ such that e * g = g * e = g for all $g \in G$.
 - (G2) For all $g \in G$ there exists $g^{-1} \in G$ such that $g * g^{-1} = g^{-1} * g = e$.
 - (G3) For all $g_1, g_2, g_3 \in G$ we have $(g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$.
 - (b) (2 marks) $2 \times 3 = 0$ modulo 6 and $0 \notin A$.
 - (c) (4 marks) Write the multiplication into the following table:

So the multiplication is closed. Now check (G1)-(G3):

(G1) identity = 1.

(G2) $1^{-1} = 1, 2^{-1} = 3, 3^{-1} = 2, 4^{-1} = 4.$

(G3) follows from associativity for multiplication of integers.

- (d) (1 marks) Let r be the rotation anticlockwise by $\frac{\pi}{2}$ around the centre of the cube. Then $C = \{e, r, r^2, r^3\}$.
- (e) (4 marks) Note that $B = \langle 2 \rangle = \{1, 2, 2^2 = 4, 2^3 = 3\}$. Now consider the bijection $\phi : C \longrightarrow B$ given by $\phi(r^i) = 2^i$ for i = 0, 1, 2, 3. By definition, this map is an isomorphism. Alternatively, write down both Cayley tables, using the order of elements of B given above and check that these coincide.
- (f) (3 marks) In $\mathbb{Z}_2 \times \mathbb{Z}_2$ every element has order 2 (or 1 for the identity). But in *B* and *C*, there are two elements of order 4. Thus these groups cannot be isomorphic.
- (g) (2 marks) Take for example $\theta : B \to C$ defined by $\theta(g) = e$ for all $g \in B$. This is a homomorphism but not an isomorphism as it is not bijective.
- 2. (a) (2 marks) The order of an element $g \in G$ is the smallest positive integer $r \in \mathbb{N}$ satisfying $g^r = e$.
 - (b) (2 marks) The order of any $g \in G$ divides the order of the group G.
 - (c) (4 marks) Say that the order of g is equal to r. Then using (b) we know that rs = 6 for some s. So

$$g^{7} = g^{6+1} = g^{6} * g = g^{rs} * g = (g^{r})^{s} * g = e^{s} * g = e * g = g.$$

Thus if $q^7 = e$ then we have q = e.

(d) (12 marks) As G and S_3 are isomorphic, G must have one element of order 1 corresponding to e under ϕ , three elements of order 2 corresponding to (1, 2), (1, 3), (2, 3) under ϕ and two elements of order 3 corresponding to (1, 2, 3) and (1, 3, 2) under ϕ .

Using the fact that $\phi(1,2) = u$, $\phi(1,3) = v$ and w has order 2, we deduce that $\phi(2,3) = w$.

Now $u * v = \phi(1, 2) * \phi(1, 3) = \phi((1, 2)(1, 3)) = \phi(1, 3, 2) = x.$

This leaves us with $\phi(1,2,3) = y$.

Now using the composition in S_3 , we get the following Cayley table for G:

		e	u	v	w	y	x
(е	e	$egin{array}{c} u \\ e \\ y \\ x \\ v \\ w \end{array}$	v	w	y	x
1	u	u	e	x	y	w	v
1	v	v	y	e	x	u	w
ι	v	w	x	y	e	v	u
1	y	y	v	w	u	x	e
	$x \mid$	x	w	u	v	e	y

- 3. (a) (3 marks) A subset H of a group G is a subgroup of G if and only if we have (S1) $e \in H$.
 - (S2) For all $h_1, h_2 \in H$ we have $h_1 * h_2 \in H$.
 - (S3) For all $h \in H$ we have $h^{-1} \in H$.
 - (b) **(7 marks)**
 - i. Let H be a subgroup of a finite group G. Then the order of H divides the order of G.
 - ii. The only divisors of 17 are 1 and 17. Thus, using Lagrange's theorem, we get that \mathbb{Z}_{17} can only have subgroups of order 1 and 17. This means that the only subgroups are $\{0\}$ and \mathbb{Z}_{17} itself.
 - iii. The only divisors of 9 are 1, 3 and 9. So, using Lagrange's theorem, we get that \mathbb{Z}_9 can only have subgroups of order 1,3 or 9. These are $\{0\}$, $\{0,3,6\}$ and \mathbb{Z}_9 .
 - (c) **(10 marks)**
 - i. $H = \{0, 3, 6\}$ is a subgroup of \mathbb{Z}_9 of order 3. As \mathbb{Z}_9 is abelian, all subgroups are normal (as left and right cosets coincide).
 - ii. $H = \{0, 3, 6\}, 1 + H = \{1, 4, 7\}, 2 + H = \{2, 5, 8\}.$ The Cayley table for \mathbb{Z}_9/H is given by

$$\begin{array}{c|cccc} H & 1+H & 2+H \\ \hline H & H & 1+H & 2+H \\ 1+H & 1+H & 2+H & H \\ 2+H & 2+H & H & 1+H \\ \end{array}$$

iii. Consider the homomorphism

$$\phi : \mathbb{Z}_9 \longrightarrow \mathbb{Z}_3 : n \mapsto n \text{ modulo } 3$$

mapping $n \in \mathbb{Z}_9$ to its residue modulo 3.

The kernel of ϕ is given by Ker $\phi = \{0, 3, 6\} = H$. The image of ϕ is given by Im $\phi = \mathbb{Z}_3$ (as $\phi(0) = 0$, $\phi(1) = 1$ and $\phi(2) = 2$). Using the first isomorphism theorem we get that \mathbb{Z}_9 /Ker $\phi \cong \text{Im } \phi$ and so $\mathbb{Z}_9/H \cong \mathbb{Z}_3$.

4. (a) (8 marks) Rotations by $\frac{\pi}{2}, \pi, \frac{3\pi}{2}$ around an axis passing through the centre of opposite faces. We have 3 such axes, so we get 9 rotations of this type.

Rotations by $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ around an axis passing through opposite vertices of the cube. We have 4 such axes, so we get 8 rotations of this type.

Rotations by π around an axis passing through the middle of opposite edges. We have 6 such axis, so we get 6 rotations of this type.

Adding the identity e, we get 24 rotational symmetries of the cube. So the order of G is 24.

(b) (12 marks) Total number of painted cubes = 3^6 . (3 possible colours for each face, 6 faces). Let G act on the set of all painted cubes. Then two painted cubes are considered to be different if they belong to different G-orbits. So the number of different painted cubes is equal to the number of G-orbits on X (which can be calculated using Burnside Counting theorem above).

If r is a rotation by $\frac{\pi}{2}$ or $\frac{3\pi}{2}$ around an axis passing through the centre of opposite faces, then $Fix(r) = 3^3$ (and we have 6 such rotations).

If s is a rotation by π around an axis passing through the centre of opposite faces, then $Fix(s) = 3^4$ (and we have 3 such rotations).

If t is a rotation by $\frac{2\pi}{3}$ or $\frac{4\pi}{3}$ around an axis passing through opposite vertices of the cube, then $Fix(t) = 3^2$ (and we have 8 such rotations).

If u is a rotation by π around an axis passing through the middle of opposite edges, then $Fix(u) = 3^3$ (and we have 6 such rotations).

Thus we get that the number of different painted cubes is equal to

$$\frac{1}{24}(3^6 + (6 \times 3^3) + (3 \times 3^4) + (8 \times 3^2) + (6 \times 3^3)) = 57.$$

5. (a) (2 marks) Let G be a finite group acting on a set X and let $x \in X$. Denote by $Orb_G(x)$ the G-orbit of x and by G_x the stabilizer of x in G. Then we have

$$|G| = |Orb_G(x)| \cdot |G_x|$$

(b) (4 marks) Consider the action of G on the set X of black vertices of the cube. Then X consists of a single G-orbit. For $x \in X$, the stabilizer of x in G consists of the rotations around the main diagonal through that vertex x. So we get that $|G_x| = 3$. We deduce that

$$|G| = 4 \times 3 = 12.$$

(c) (3 marks) Let G be a finite subgroup of SO₃(ℝ). Then G is isomorphic to one of the following groups: C_n (n ≥ 1), D_{2n} (n ≥ 2), A₄, S₄, A₅.

- (d) (3 marks) As G has order 12, we must have $G \cong C_{12}$, D_{12} or A_4 . Now as G is not abelian, it cannot be isomorphic to C_{12} . Moreover, as G does not contain any rotation of order 6, it cannot be isomorphic to D_{12} . Hence we must have $G \cong A_4$.
- (e) (8 marks) Consider the action of G on the set X of black vertices of the cube. Numbering these vertices 1,2,3,4, this gives a homomorphism

$$\phi : G \longrightarrow S_4$$

Note that if a rotation fixes all the black vertices then it must fix all the white vertices as well and so it must fix the cube. This shows that the kernel of ϕ is given by $\{e\}$ and so ϕ is one-to-one.

Now G consists of two types of rotations: rotations by π around an axis passing through the middle of opposite faces and rotations by $\frac{2\pi}{3}$ or $\frac{4\pi}{3}$ around a main diagonal of the cube. The first type of rotation gives (under ϕ) a permutation with cycle type (a, b)(c, d) and the second gives a permutation of cycle type (a)(b, c, d). In both cases we get an even permutation. So in fact we have

$$\phi : G \longrightarrow A_4.$$

Now as ϕ is one-to-one and $|G| = |A_4| = 12$ we get that in fact ϕ is also onto and thus it is a bijection. Hence this gives the required isomorphism from G to A_4 .