
Solutions to MA3615 Groups and Symmetry: May 2010 Exam

1. Let G = {e, x, y, z, u, v} be a group with multiplication ∗ and identity element e.
Suppose that G is abelian. Suppose further that x2 = y2 = z, z2 = v2 = x, x ∗ y = v,
x ∗ z = e, u ∗ x = y and u has order 2.

(a) Using the condition given and the fact that every element occurs precisely once
in each row and column we get the following Cayley table for G.

e x y z u v
e e x y z u v
x x z v e y u
y y v z u x e
z z e u x v y
u u y x v e z
v v u e y z x

[6]

(b) The order of a group is the cardinality of the group. The order of an element g
in the group is the smallest positive integer r satisfying gr = e. The order of any
element divides the order of the group. [3]

(c) e−1 = e, x−1 = z, y−1 = v, z−1 = x, u−1 = u, v−1 = y.
e has order 1, u has order 2, x and z have order 3, y and v have order 6. [2]

(d) i. G cannot be isomorphic to S6. As |S6| = 6! 6= |G| = 6, there cannot be a
bijection from S6 to G. [1]

ii. G cannot be isomorphic to S3 as G is abelian and S3 is not (take for example
(1, 2)(2, 3) 6= (2, 3)(1, 2)). [2]

iii. G is isomorphic to Z6. As y has order 6 it generates G and so we can define an
isomorphism φ : Z6 → G by setting φ(1) = y. This gives φ(0) = e, φ(1) = y,
φ(2) = y2 = z, φ(3) = y3 = u, φ(4) = y4 = x and φ(5) = y5 = v. [3]

iv. (1, 1) is an element of order 6 in Z2 × Z3, so we can define ψ : Z2 × Z3 → G
by setting ψ(1, 1) = y. This gives ψ(0, 0) = e, ψ(1, 1) = y, ψ(0, 2) = z,
ψ(1, 0) = u, ψ(0, 1) = x and ψ(1, 2) = v. [3]

2. (a) A subset H of a group G is a subgroup of G if the following conditions are satisfied
(S1) eG ∈ H.
(S2) For all h1, h2 ∈ H we have h1h2 ∈ H.
(S3) For all h ∈ H we have h−1 ∈ H. [2]

(b) A subgroup H of G is a normal subgroup of G is gH = Hg for all g ∈ G. [2]

(c) i. H = 〈(1, 2)〉 = {e, (1, 2)}.
Left cosets:
H
(1, 3)H = {(1, 3), (1, 2, 3)}
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(2, 3)H = {(2, 3), (1, 3, 2)}
Right cosets:
H
H(1, 3) = {(1, 3), (1, 3, 2)}
H(2, 3) = {(2, 3), (1, 2, 3)}.
As left and right cosets do not coincide, the subgroup H is not normal in G.
[3]

ii. H = 〈(1, 2, 3)〉 = {e, (1, 2, 3), (1, 3, 2)}.
Left/right cosets:
H
(1, 2)H = H(1, 2) = {(1, 2), (1, 3), (2, 3)}.
As left and right cosets coincide, H is normal in G. [2]

iii. H = 〈10, 15〉 = 5Z. As 10n + 15m ∈ 5Z we have H ⊆ 5Z but also 5 =
15− 10 ∈ H, so 5Z ⊆ H.
Left/right cosets:
H = {. . .− 10,−5, 0, 5, 10, . . .}
1 +H = {. . .− 9,−4, 1, 6, 11, . . .}
2 +H = {. . .− 8,−3, 2, 7, 12, . . .}
3 +H = {. . .− 7,−2, 3, 8, 13, . . .}
4 +H = {. . .− 6,−1, 4, 9, 14, . . .}
As left and right cosets coincide (Z is abelian) the subgroup H is normal in
Z. [3]

(d) First consider G = S3 and H = {e, (1, 2, 3), (1, 3, 2)} then the Cayley table for
G/H is given by

H (1, 2)H
H H (1, 2)H

(1, 2)H (1, 2)H H

We can see from the table (or otherwise) that G/H ∼= S2 (∼= Z2
∼= C2). [3]

Next consider G = Z and H = 5Z. Then the Cayley table for G/H is given by

H 1 +H 2 +H 3 +H 4 +H
H H 1 +H 2 +H 3 +H 4 +H

1 +H 1 +H 2 +H 3 +H 4 +H H
2 +H 2 +H 3 +H 4 +H H 1 +H
3 +H 3 +H 4 +H H 1 +H 2 +H
4 +H 4 +H H 1 +H 2 +H 3 +H

We see from the Cayley table that G/H ∼= Z5. [5]
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3. (a) Let G be a finite group acting on a finite set X. For g ∈ G, define Fix(g) to be

Fix(g) = |{x ∈ X | g(x) = x}.

[2]

(b) Let G be a finite group acting on a finite set X then the number of G-orbits on
X is given by

1

|G|
∑
g∈G

Fix(g).

[2]

(c) i. Let G = D8 = {e, r, r2, r3, s, rs, r2s, r3s} be the group of all symmetries of

a square. Let X be the set of all punched cards. Then |X| =

(
9
2

)
= 36

(choose to punch 2 out of the 9 small squares). Then G acts on X and two
cards will be the same precisely if they are in the same G-orbit. So we need
to count the number of G-orbits on X. This is given by Burnside Counting
theorem. [4]
We have to find Fix(g) for each g ∈ G.
Fix(e) = 36 as e fixes everything.
Fix(r) = Fix(r3) = 0 as r and r3 don’t fix anything.
Fix(r2) = 4 as r2 fixes the following 4 cards.

Fix(s) = Fix(r2s) = 6 as s fixes the following 6 cards. (similarly for r2s).

Fix(rs) = Fix(r3s) = 6 as rs fixes the following 6 cards. (similarly for r3s).

So applying Burnside theorem we get that the number of different ID cards
is given by

1

8
(36 + 0 + 0 + 4 + 6 + 6 + 6 + 6) =

1

8
(64) = 8.
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[8]

ii. The 8 different ID cards are pictured below.

[4]

4. (a) Let G be a finite group acting on a finite set X and let x ∈ X. Denote by OrbG(x)
the G-orbit of x and by Gx the stabilizer of x in G. Then we have

|G| = |OrbG(x)|.|Gx|.

[2]

(b) Let G be the group of all rotational symmetries of a cube. Let X be the set of
faces of the cube and let x ∈ X be any face. Then |OrbG(x)| = 6 and |Gx| = 4
(4 rotations around an axis passing through the centre of x). So applying the
Orbit-Stabilizer theorem we get that |G| = 4× 6 = 24. [2]

(c) G′ is a subgroup of G. [2]

i. No, as |G| = 24 and using Lagrange’s theorem, |G′| must divide 24. [2]

ii. Yes. We can for example paint the cube as a die (numbering the faces with
the numbers 1, . . . 6). [2]

(d) i. Let x be any face of the painted cube. As G′ acts transitively on the set
of faces, we have that |OrbG′(x)| = 6. Now |G′x| = 2 as G′x consists of the
identity and a rotation by π. Thus using the Orbit-Stabilizer theorem we
have |G′| = 2× 6 = 12. [2]

ii. Let G be any finite subgroup of SO3(R) then G is isomorphic to precisely
one of the following: Cn (n ≥ 1), D2n (n ≥ 2), A4, S4, A5. [2]

iii. As |G′| = 12 we have that G′ ∼= C12, D12 or A4. Now as G′ is not abelian we
know that G′ cannot be isomorphic to C12. Morover as G′ doesn’t contain a
rotation of order 6 we know that G′ cannot be isomorphic to D12. Hence, the
group G′ must be isomorphic to A4. [6]
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