Solutions to MA3615 Groups and Symmetry: May 2010 Exam

- 1. Let $G = \{e, x, y, z, u, v\}$ be a group with multiplication * and identity element e. Suppose that G is abelian. Suppose further that $x^2 = y^2 = z$, $z^2 = v^2 = x$, x * y = v, x * z = e, u * x = y and u has order 2.
 - (a) Using the condition given and the fact that every element occurs precisely once in each row and column we get the following Cayley table for G.

	e	$\begin{array}{c} x \\ x \\ z \\ v \\ e \\ y \\ u \end{array}$	y	z	u	v
e	e	x	y	z	u	v
x	x	z	v	e	y	u
y	y	v	z	u	x	e
z	z	e	u	x	v	y
u	u	y	x	v	e	z
v	v	u	e	y	z	x

[6]

(b) The order of a group is the cardinality of the group. The order of an element g in the group is the smallest positive integer r satisfying $g^r = e$. The order of any element divides the order of the group. [3]

(c)
$$e^{-1} = e, x^{-1} = z, y^{-1} = v, z^{-1} = x, u^{-1} = u, v^{-1} = y.$$

e has order 1, *u* has order 2, *x* and *z* have order 3, *y* and *v* have order 6. [2]

- (d) i. G cannot be isomorphic to S_6 . As $|S_6| = 6! \neq |G| = 6$, there cannot be a bijection from S_6 to G. [1]
 - ii. G cannot be isomorphic to S_3 as G is abelian and S_3 is not (take for example $(1,2)(2,3) \neq (2,3)(1,2)$). [2]
 - iii. G is isomorphic to \mathbb{Z}_6 . As y has order 6 it generates G and so we can define an isomorphism $\phi : \mathbb{Z}_6 \to G$ by setting $\phi(1) = y$. This gives $\phi(0) = e, \phi(1) = y, \phi(2) = y^2 = z, \phi(3) = y^3 = u, \phi(4) = y^4 = x$ and $\phi(5) = y^5 = v.$ [3]
 - iv. (1,1) is an element of order 6 in $\mathbb{Z}_2 \times \mathbb{Z}_3$, so we can define $\psi : \mathbb{Z}_2 \times \mathbb{Z}_3 \to G$ by setting $\psi(1,1) = y$. This gives $\psi(0,0) = e$, $\psi(1,1) = y$, $\psi(0,2) = z$, $\psi(1,0) = u$, $\psi(0,1) = x$ and $\psi(1,2) = v$. [3]
- 2. (a) A subset H of a group G is a subgroup of G if the following conditions are satisfied (S1) $e_G \in H$.
 - (S2) For all $h_1, h_2 \in H$ we have $h_1 h_2 \in H$.
 - (S3) For all $h \in H$ we have $h^{-1} \in H$. [2]
 - (b) A subgroup H of G is a normal subgroup of G is gH = Hg for all $g \in G$. [2]
 - (c) i. $H = \langle (1,2) \rangle = \{e, (1,2)\}.$ Left cosets: H $(1,3)H = \{(1,3), (1,2,3)\}$

 $(2,3)H = \{(2,3), (1,3,2)\}$ Right cosets: Η $H(1,3) = \{(1,3), (1,3,2)\}$ $H(2,3) = \{(2,3), (1,2,3)\}.$ As left and right cosets do not coincide, the subgroup H is not normal in G. [3]ii. $H = \langle (1,2,3) \rangle = \{e, (1,2,3), (1,3,2)\}.$ Left/right cosets: Η $(1,2)H = H(1,2) = \{(1,2), (1,3), (2,3)\}.$ As left and right cosets coincide, H is normal in G. [2]iii. $H = \langle 10, 15 \rangle = 5\mathbb{Z}$. As $10n + 15m \in 5\mathbb{Z}$ we have $H \subseteq 5\mathbb{Z}$ but also 5 = $15 - 10 \in H$, so $5\mathbb{Z} \subseteq H$. Left/right cosets: $H = \{\ldots -10, -5, 0, 5, 10, \ldots\}$ $1 + H = \{\ldots -9, -4, 1, 6, 11, \ldots\}$ $2 + H = \{\dots - 8, -3, 2, 7, 12, \dots\}$ $3 + H = \{\ldots -7, -2, 3, 8, 13, \ldots\}$ $4 + H = \{\ldots -6, -1, 4, 9, 14, \ldots\}$ As left and right cosets coincide (\mathbb{Z} is abelian) the subgroup H is normal in $\mathbb{Z}.$ [3]

(d) First consider $G = S_3$ and $H = \{e, (1, 2, 3), (1, 3, 2)\}$ then the Cayley table for G/H is given by

$$\begin{array}{c|ccc} H & (1,2)H \\ \hline H & H & (1,2)H \\ (1,2)H & (1,2)H & H \end{array}$$

We can see from the table (or otherwise) that $G/H \cong S_2 \ (\cong \mathbb{Z}_2 \cong C_2)$. [3] Next consider $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$. Then the Cayley table for G/H is given by

				3 + H	
Н	Н	1 + H	2 + H	3 + H	4+H
1 + H	1 + H	2 + H	3 + H	$\begin{array}{c} 3+H\\ 4+H\\ H\\ 1+H\\ 2+H \end{array}$	H
2 + H	2+H	3 + H	4 + H	H	1 + H
3 + H	3+H	4 + H	H	1 + H	2 + H

We see from the Cayley table that $G/H \cong \mathbb{Z}_5$.

3. (a) Let G be a finite group acting on a finite set X. For $g \in G$, define Fix(g) to be

$$\operatorname{Fix}(g) = |\{x \in X \mid g(x) = x\}$$

[2]

(b) Let G be a finite group acting on a finite set X then the number of G-orbits on X is given by

$$\frac{1}{|G|} \sum_{g \in G} \operatorname{Fix}(g).$$

[2]

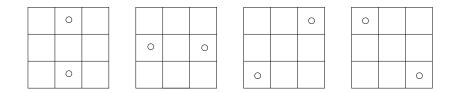
(c) i. Let $G = D_8 = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$ be the group of all symmetries of a square. Let X be the set of all punched cards. Then $|X| = \begin{pmatrix} 9\\2 \end{pmatrix} = 36$ (choose to punch 2 out of the 9 small squares). Then G acts on X and two cards will be the same precisely if they are in the same G-orbit. So we need to count the number of G-orbits on X. This is given by Burnside Counting theorem. [4] We have to find $\operatorname{Fix}(a)$ for each $a \in G$

We have to find Fix(g) for each $g \in G$.

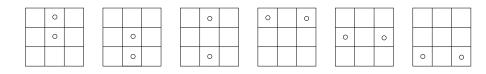
Fix(e) = 36 as e fixes everything.

 $\operatorname{Fix}(r) = \operatorname{Fix}(r^3) = 0$ as r and r^3 don't fix anything.

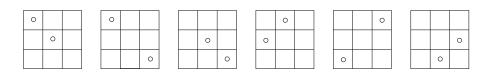
 $\operatorname{Fix}(r^2) = 4$ as r^2 fixes the following 4 cards.



 $Fix(s) = Fix(r^2s) = 6$ as s fixes the following 6 cards. (similarly for r^2s).



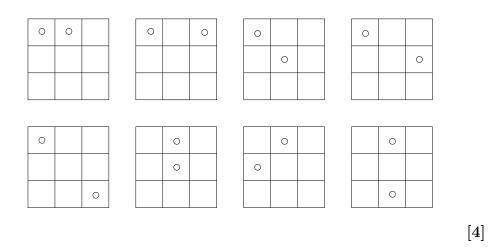
 $Fix(rs) = Fix(r^3s) = 6$ as rs fixes the following 6 cards. (similarly for r^3s).



So applying Burnside theorem we get that the number of different ID cards is given by

$$\frac{1}{8}(36+0+0+4+6+6+6+6) = \frac{1}{8}(64) = 8.$$

ii. The 8 different ID cards are pictured below.



4. (a) Let G be a finite group acting on a finite set X and let $x \in X$. Denote by $\operatorname{Orb}_G(x)$ the G-orbit of x and by G_x the stabilizer of x in G. Then we have

$$|G| = |\operatorname{Orb}_G(x)|.|G_x|.$$

[2]

[2]

(b) Let G be the group of all rotational symmetries of a cube. Let X be the set of faces of the cube and let $x \in X$ be any face. Then $|Orb_G(x)| = 6$ and $|G_x| = 4$ (4 rotations around an axis passing through the centre of x). So applying the Orbit-Stabilizer theorem we get that $|G| = 4 \times 6 = 24$. [2]

(c)
$$G'$$
 is a subgroup of G .

- i. No, as |G| = 24 and using Lagrange's theorem, |G'| must divide 24. [2]
- ii. Yes. We can for example paint the cube as a die (numbering the faces with the numbers $1, \ldots 6$). [2]
- (d) i. Let x be any face of the painted cube. As G' acts transitively on the set of faces, we have that $|Orb_{G'}(x)| = 6$. Now $|G'_x| = 2$ as G'_x consists of the identity and a rotation by π . Thus using the Orbit-Stabilizer theorem we have $|G'| = 2 \times 6 = 12$. [2]
 - ii. Let G be any finite subgroup of $SO_3(\mathbb{R})$ then G is isomorphic to precisely one of the following: C_n $(n \ge 1)$, D_{2n} $(n \ge 2)$, A_4 , S_4 , A_5 . [2]
 - iii. As |G'| = 12 we have that $G' \cong C_{12}$, D_{12} or A_4 . Now as G' is not abelian we know that G' cannot be isomorphic to C_{12} . Moreover as G' doesn't contain a rotation of order 6 we know that G' cannot be isomorphic to D_{12} . Hence, the group G' must be isomorphic to A_4 . [6]