MA3615: Groups and Symmetry Mock Exam Sketch solutions

- 1. (a) i. Not a group (justify)
 - ii. Not a group (justify)
 - iii. It is a group (justify)
 - (b) bookwork
 - (c) \mathbb{Z}_4 and C_4 (all rotational symmetries of a 4-pyramid) are isomorphic (give explicit isomorphism).

But these are not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ (justify).

- 2. (a) bookwork
 - (b) i. order 6
 - ii. order 4
 - (c) i. element of oder 1: e. elements of order 2: s, rs, r^2s . elements of order 3: r, r^2 .
 - ii.

	u	v	w	x	y	z
u	u	v	w	x	y	z
v	v	u	y	z	w	x
w	w	z	u	y	x	v
x	x	y	z	u	v	w
y	y	x	v	w	z	u
z	z	w	$egin{array}{ccc} w & y \ y & u \ z & v \ x \end{array}$	v	u	y

3. (a) bookwork.

Check (S1)(S2)(S3) for H_1 and H_2 .

(b) Bookwork.

For H_1 in S_3 find right and left cosets and check that they coincide. For H_2 in S_3 either show that left and right cosets do not coincide or find $g \in S_3$ and $h \in H_2$ with $ghg^{-1} \notin H_2$. H_1 and H_2 are not normal in S_4 . The easiest way to show that is to find in each

case a $g \in S_4$ and a $h \in H_i$ with $ghg^{-1} \notin H_i$. (can also show that left and right cosets do not coincide but it is much longer).

- (c) $H_1, (1,2)H_1 = \{(1,2), (1,3), (2,3)\}$. Write down Cayley table for S_3/H_1 . Explicit isomorphism with \mathbb{Z}_2 given by $\phi(H_1) = 0, \phi((1,2)H_1) = 1$.
- (d) See exercise sheet 4, question 6.
- 4. (a) bookwork
 - (b) bookwork
 - (c) 15. (Add justification using Burnside counting theorem.)

5. (a) bookwork

- (b) check (S1)(S2)(S3).
- (c) bookwork
- (d) i. Take for example action of G on the set X of dotted edges. Then using Orbit-Stabilizer theorem we get that $|G| = 4 \times 2 = 8$. (give details).
 - ii. bookwork.
 - iii. From classification, $G \cong C_8$ or D_8 . Rule out C_8 as G is not abelian (or by considering order of elements in G).