MA3615 Groups and Symmetry: Solutions to Coursework 1

- 1. (a) A is not a group as $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ has no inverse.
 - (b) *B* is a group. $3n + 3m = 3(n + m) \in 3\mathbb{Z}$. Moreover we have (G1) identity $0 = 3.0 \in 3\mathbb{Z}$. (G2) inverse $(3n)^{-1} = -3n = 3(-n) \in 3\mathbb{Z}$. (G3) 3n + (3m + 3l) = (3n + 3m) + 3l.
 - (c) C is a group. In fact C is isomorphic to the group C_4 of all rotational symmetries of the square (to see this label the vertices of the square clockwise by 1,2,3 and 4).

Can check that C is a group directly: First check that C is closed under multiplication:

 $e^{2} = e \in C, (1, 2, 3, 4)^{2} = (1, 3)(2, 4) \in C, ((1, 3)(2, 4))^{2} = e \in C, (1, 4, 3, 2)^{2} = (1, 3)(2, 4) \in C.$ $(1, 2, 3, 4) \circ (1, 3)(2, 4) = (1, 3)(2, 4) \circ (1, 2, 3, 4) = (1, 4, 3, 2) \in C.$ $(1, 2, 3, 4) \circ (1, 4, 3, 2) = (1, 4, 3, 2) \circ (1, 2, 3, 4) = e \in C.$ $(1, 3)(2, 4) \circ (1, 4, 3, 2) = (1, 4, 3, 2) \circ (1, 3)(2, 4) = (1, 2, 3, 4) \in C.$ Moreover we have (G1) identity e. $(G2) e^{-1} = e, (1, 2, 3, 4)^{-1} = (1, 4, 3, 2), ((1, 3)(2, 4))^{-1} = (1, 3)(2, 4).$ (G3) follows from associativity of composition of maps.

B and C are both abelian.

- 2. (a) Let r be the rotation by $\frac{\pi}{2}$ around the axis passing through the top vertex and the centre of the square base of the pyramid. Then $G = \{e, r, r^2, r^3\}$.
 - (b) The map $\phi : G \to H$ given by $\phi(e) = 1$, $\phi(r) = 2$, $\phi(r^2) = 4$ and $\phi(r^3) = 3$ is an isomorphism. (Note that this map is completely determined once we set $\phi(r) = 2$. We could also have chosen $\phi(r) = 3$ as 3 is also an element of order 4.)
 - (c) Label the vertices of the square base of the pyramid by 1,2,3 and 4. This defines an isomorphism $\theta : G \to C$ given by $\theta(e) = e, \ \theta(r) = (1, 2, 3, 4), \ \theta(r^2) = (1, 3)(2, 4)$ and $\theta(r^3) = (1, 4, 3, 2)$.
 - (d) No as in $\mathbb{Z}_2 \times \mathbb{Z}_2$ every element (other than (0,0)) as order 2, but in G we have two elements of order 4, namely r and r^3 .
- 3. (a) As |G| = 6 we have that $g^6 = e$. Now $g^{13} = g^6 * g^6 * g = e * e * g = g$. So if $g^{13} = e$ then we must have g = e.
 - (b) As |G| = 17 is prime, using Lagrange's theorem we know that subgroups of G can only have order 1 or 17. So the only subgroups of G are $\{e\}$ and G itself.
- 4. (G, \dagger) cannot be a group as the last row of the Cayley table contains the entry *a* twice. This contradicts Corollary 1.5 from the lecture which says that in the Cayley table of a finite group every element appears precisely once in each row and column.

(G, *) is a group as we have an isomorphism with $\mathbb{Z}_2 \times \mathbb{Z}_2$ given by (for example) $\phi : G \to \mathbb{Z}_2 \times \mathbb{Z}_2$ with $\phi(a) = (1, 0), \ \phi(b) = (0, 0), \ \phi(c) = (0, 1)$ and $\phi(d) = (1, 1)$.

Note that the Cayley table for (G, *) forces b to be the identity, and so we must have $\phi(b) = (0, 0)$, but in fact a, c, d could be mapped to anything, it would always give an isomorphism.

 (G, \times) is also a group as we have an isomorphism $\psi : G \to \mathbb{Z}_4$ with $\psi(a) = 1, \psi(b) = 2, \psi(c) = 0$ and $\psi(d) = 3$.

Here again, the Cayley table for (G, \times) forces c to be the identity. Now we also see from the Cayley table that G has two elements of order 4, namely a and d, and one element of order 2, namely b. So a could be mapped to 1 or 3 in \mathbb{Z}_4 . If we say that $\psi(a) = 1$ then as ψ is an isomorphism, everything else is automatically determined as $\psi(b) = \psi(a^2) = \psi(a)^2 = 1 + 1 = 2$, $\psi(d) = \psi(a^3) = \psi(a)^3 = 1 + 1 + 1 = 3$.

- 5. Note that the assumptions given and the fact that ϕ is an isomorphism determine ϕ completely:
 - $g^2 = i$ implies that $\phi(1,2)^2 = \phi((1,2)^2) = \phi(e) = i$.

g * h = j implies that $\phi(1, 2) * \phi(2, 3) = \phi((1, 2)(2, 3)) = \phi(1, 2, 3) = j$.

As k has order 3, it must be the image of an element of order 3, but there is only one such element left, namely (1,3,2). Thus we must have $\phi(1,3,2) = k$.

This leaves $\phi(1,3) = l$. Now using the multiplication in S_3 and the isomorphism ϕ we get that the Cayley table for (K, *) is given by

	$\mid i$	g	h	l	k	j
i	i	g	h	l	k	j
g	g	i	j	k	l	h
h	h	k	i	j	g	l
l	l	j	k	i	h	g
k	k	h	l	g	j	i
j	j	l	g	h		k

- 6. Subgroup of order 1: {0}.
 Subgroup of order 2: {0,6}.
 Subgroup of order 3: {0,4,8}.
 Subgroup of order 4: {0,3,6,9}.
 Subgroup of order 6: {0,2,4,6,8,10}.
 Subgroup of order 12: Z₁₂.
- 7. (a) $H = \langle r^3 \rangle = \{e, r, r^2, r^3\}$ $sH = Hs = \{s, rs, r^2s, r^3s\}.$
 - (b) $H = \langle r^2 s \rangle = \{e, r^2 s\}$ The left cosets are H, $rH = \{r, r^3 s\}$, $r^2 H = \{r^2, s\}$ and $r^3 H = \{r^3, rs\}$. The right cosets are H, $Hr = \{r, rs\}$, $Hr^2 = \{r^2, s\}$ and $Hr^3 = \{r^3, r^3 s\}$.
 - (c) $H = \langle r^2, s \rangle = \{e, r^2, s, r^2s\}$ $rH = Hr = \{r, r^3, rs, r^3s\}.$
 - (d) $H = \langle r^3, s \rangle = D_8$ (only one coset).