
MA3615 Groups and Symmetry: Solutions to Coursework

1. (a) [5] There exists a subgroup H of A5 with |H| = 9.
This is false. We have |A5| = 60, so by Lagrange’s theorem the order of every
subgroup of A5 must divide 60. As 9 does not divide 60, we have that A5 cannot
have a subgroup of order 9.

(b) [5] Every element g ∈ S4 satisfies g48 = e.
This is true. As |S4| = 24, we know that g24 = e for every g ∈ S24. Thus
g48 = (g24)2 = e2 = e for every g ∈ S4.

(c) [5] The group Z2 × Z2 is generated by one element.
This is false. In Z2 × Z2 every element has order 2 or 1. Thus this group cannot
be generated by one element.

(d) [5] The group Z2 × Z3 is generated by one element.
This is true. This group is generated by (1, 1).

(e) [5] The group D6 has a proper non-trivial normal subgroup.

This is true. Take N = {e, r, r2}. This is clearly a subgroup and as |N | = 3 = |D8|
2

we have that N is a normal subgroup.

(f) [5] The group D6 has a subgroup which is not normal.
This is true. Take for example H = {e, s}. This is clearly a subgroup but it is
not normal as rH = {r, rs} 6= Hr = {r, sr = r2s}.

2. (a) [5] H = {0, 5}. (Check (S1)-(S3)).

(b) [5] As Z10 is abelian, every subgroup is a normal subgroup (left and right cosets
coincide).

(c) [5] H = {0, 5}, 1 +H = {1, 6}, 2 +H = {2, 7}, 3 +H = {3, 8}, 4 +H = {4, 9}.
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4 +H 4 +H H 1 +H 2 +H 3 +H

(d) [5] Define φ : Z10 → Z5 sending n ∈ Z10 to its residue modulo 5. Then φ is a
homomorphism. Moreover, as φ(i) = i for all i = 0, 1, 2, 3, 4 we have that φ is
surjective. Now Kerφ = {0, 5} = H. So using the first isomorphism theorem we
have

Z10/H ∼= Imφ = Z5.

3. (a) [10] We claim that G acts transitively on the set of faces of the cube. To see
this, start with the top face of the cube. Then, by applying the rotations around
an axis through the centre of the front and back faces, we can obtain the side
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faces and the bottom face. And, by applying rotations around an axis through
the centre of the side faces, we can also obtain the front and back faces.
This means that there is only one G-orbit on the set X. Let x ∈ X then we have
OrbG(x) = X and

|OrbG(x)| = 6.

Now the stabilizer of x consists of the identity and the rotations by π
2
, π, 3π

2
around

the axis passing through the centre of x and the centre of the opposite face. So
|Gx| = 4. Thus we get

|G| = |OrbG(x)|.|Gx| = 6× 4 = 24.

(b) [10] We claim that G acts transitively on the set of edges of the cube. To see this,
first note that starting from an edge x we always have that all the other edges on
the same face as x are in the same orbit as x (by applying the rotations around
an axis passing through the centre of that face). But now, using the argument in
part (a), we have that all the faces are in the same orbit. So we can deduce that
all the edges are in the same orbit.
So, for any x ∈ X we have OrbG(x) = X and

|OrbG(x)| = 12.

Now the stabilizer of x consists of the identity and the rotation by π around the
axis passing through the middle of x and the middle of the opposite edge. So
|Gx| = 2. Thus we get

|G| = |OrbG(x)|.|Gx| = 12× 2 = 24.

4. (a) [15] Consider the set X of all painted cubes obtained by painting each edge of a
cube red or blue (without moving the cube). There are two possible colours for
each edge, so we get |X| = 212.
The group G of all rotational symmetries of the cube acts on the set X. Painted
cubes are considered to be different if they are in different G-orbits. Thus the
number of different painted cubes is equal to the number of G-orbits on X. We
use Burnside’s Counting theorem to count the number of G-orbits. It is given by
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|G|
∑
g∈G

Fix(g)

where Fix(g) = |{x ∈ X | g(x) = x}|.

Now we have Fix(e) = 212.

Let r1 be a rotation by π
2

or 3π
2

around an axis passing through the centre of a
face and the centre of the opposite face. Then Fix(r1) = 23 as the top four edges
have to be painted in the same colour, the bottom four edges have to be painted
in the same colour and the side four edges have to be painted in the same colour.
Note that there are 6 such rotations.
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Let r2 be a rotation by π around an axis through the centre of a face and the
centre of the opposite face. Then Fix(r2) = 26 as the top four edges can be
painted in two (possibly different) colours, and similarly for the bottom and the
side edges. Note that there are 3 such rotations.

Let r3 be a rotation by 2π
3

or 4π
3

around a main diagonal of the cube (from vertex
v to vertex v′). Then Fix(r3) = 24 as the 3 edges coming out of v have to be
painted in the same colour, the 3 edges coming out of v′ must be painted in the
same colour and the remaining 6 edges can be painted in 2 (possibly different)
colours. Note that there are 8 such rotations.

Let r4 be a rotation by π around an axis through the middle of an edge and the
middle of the opposite edge. Then Fix(r4) = 27 as the edges intersecting the axis
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of rotation can be painted in any colour and the remaining 10 edges have to be
coloured in pairs. Note that there are 6 such rotations.

Putting everything together we get that the number of different painted cubes is
equal to

1

24
(212 + (23 × 6) + (26 × 3) + (24 × 8) + (27 × 6) = 218.

(b) [15] The argument is similar as the one used for part (a). Here we denote by
X the set of all cubes obtained by painting each face red, yellow or blue. We
have |X| = 36. The group G is as in part (a) and we use the same notation to
denote the rotations in G. Considering Fix(g) in each case we get Fix(e) = 36,
Fix(r1) = 33, Fix(r2) = 34, Fix(r3) = 32, Fix(r4) = 33. So we get that the total
number of painted cube is given by

1

24
(36 + (33 × 6) + (34 × 3) + (32 × 8) + (33 × 6)) = 57.
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