
MA3615 Groups and Symmetry

Solutions to Exercise Sheet 2

1. (a) α = (1, 4, 3, 2)(5, 7, 6), β = (1, 2, 6)(3, 4)(5)(6) = (1, 2, 6)(3, 4).

(b) α ◦ β = (1)(2, 5, 7, 6, 4)(3), β ◦ α = (1, 3, 6, 5, 7)(2)(4) and α2 = (1, 3)(2, 4)(5, 6, 7)

(c) α = (3, 2)(4, 2)(1, 2)(7, 6)(5, 6) is an odd permutation. β = (2, 6)(1, 6)(3, 4) is also
an odd permutation.

2.
(x1, x2, . . . xn) = (xn−1, xn)(xn−2, xn) . . . (x2, xn)(x1, xn)

can be written as a product of n − 1 transpositions. So (x1, x2, . . . xn) is an even
permutation if and only if n is odd.

(a) (1, 2) is odd, (3, 6, 8) is even and (4, 11, 10, 5, 9, 7) is odd. So (1, 2)(3, 6, 8)(4, 11, 10, 5, 9, 7)
is even (odd + even + odd = even).

(b) (1, 3, 5, 7, 9, 11, 2, 4, 6, 8) is odd.

(c) (1, 2, 3, 4)(1, 2, 4, 3)(1, 4, 2, 3) is odd (=odd + odd + odd).

3. Clearly we have
e ◦ g = g ◦ e ∈ V4 ∀g ∈ V4.

Now ((1, 2)(3, 4))2 = ((1, 3)(2, 4))2 = ((1, 4)(2, 3))2 = e ∈ V 4. Also we have
(1, 2)(3, 4) ◦ (1, 3)(2, 4) = (1, 3)(2, 4) ◦ (1, 2)(3, 4) = (1, 4)(2, 3) ∈ V4

(1, 2)(3, 4) ◦ (1, 4)(2, 3) = (1, 4)(2, 3) ◦ (1, 2)(3, 4) = (1, 3)(2, 4) ∈ V4

(1, 3)(2, 4) ◦ (1, 4)(2, 3) = (1, 4)(2, 3) ◦ (1, 3)(2, 4) = (1, 2)(3, 4) ∈ V4.
So the multiplication is closed.
Now we have
(G1) e ∈ V4.
(G2) g−1 = g ∈ V 4 for all g ∈ V4.
(G3) follows from associativity of composition of permutations.

4. x ∗ w = θ(1, 2) ∗ θ(1, 3, 2) = θ((1, 2)(1, 3, 2)) = θ(1, 3) = y,
w−1 = (θ(1, 3, 2))−1 = θ((1, 3, 2)−1) = θ(1, 2, 3) = v,
v5 = (θ(1, 2, 3))5 = θ((1, 2, 3)5) = θ(1, 3, 2) = w,

z ∗ v−1 ∗ x = θ(2, 3) ∗ (θ(1, 2, 3))−1 ∗ θ(1, 2)

= θ(2, 3) ∗ θ((1, 2, 3)−1) ∗ θ(1, 2)

= θ((2, 3)(1, 3, 2)(1, 2))

= θ(e)

= u.



5. Let G be the group of symmetries of a (non-square) rectangle. Write G = {e, s, t, r}
where s denotes the reflection through the vertical line, t denotes the reflection through
the horizontal line and r denotes the rotation by π around the centre of the rectangle.

Label the vertices of the rectangle clockwise using the numbers 1,2,3,4 where 1 is the
NW vertex. Then each symmetry of the rectangle gives rise to a permutation on
{1, 2, 3, 4} and so we get a map θ : G → V4 given by θ(e) = e, θ(s) = (1, 2)(3, 4),
θ(t) = (1, 4)(2, 3) and θ(r) = (1, 3)(2, 4). It is easy to check that this gives the required
isomorphism.

In Exercise Sheet 1, question 2(h) we have the group

H = {(0, 0), (0, 1), (1, 0), (1, 1)}

with addition of vectors modulo 2. The following map is an example of an isomorphism
between H and V4.

φ : H → V4, φ(0, 0) = e

φ(0, 1) = (1, 2)(3, 4)

φ(1, 0) = (1, 4)(2, 3)

φ(1, 1) = (1, 3)(2, 4).

6. Write

G1 = the group of rotational symmetries of an equilateral triangle.
G2 = the group of all symmetries of an equilateral triangle.
G3 = S3.
G4 = Z6 (with addition).

G5 = {
(

1 m
0 1

)
, m ∈ Z3} with multiplication of matrices.

G6 = Z2 × Z3.

Then G1 and G5 have order 3 and all the other groups have order 6. Thus G1 and G5

cannot be isomorphic to any other group.

We claim that G1 and G5 are isomorphic. Denote be r the rotation of the triangle
anticlockwise by 2π

3
. Then G1 = {e, r, r2}. Now define a map θ : G1 → G5 by

θ(e) =

(
1 0
0 1

)
, θ(r) =

(
1 1
0 1

)
, θ(r2) =

(
1 2
0 1

)
. It is easy to check that this

gives a isomorphism between G1 and G5.

Among the groups of order 6, we have that G4 and G6 are abelian but G2 and G3 are
not. So the first two cannot be isomorphic to any of the last two.

We claim that G4
∼= G6. The group G4 = Z6 = {0, 1, 2, 3, 4, 5} with addition modulo

6 and the group G6 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)} with addtion of vectors
module 2 for the first coordinate and modulo 3 for the second coordinate. Define
θ : G4 → G6 by setting θ(1) = (1, 1). Note that this completely determine the
isomorphism θ as θ(2) = θ(1 + 1) = θ(1) + θ(1) = (1, 1) + (1, 1) = (0, 2), θ(3) =
θ(2 + 1) = (1, 0), θ(4) = θ(3 + 1) = (0, 1) and θ(5) = θ(4 + 1) = (1, 2).



Finally we claim that G2
∼= G3. To see this, write G2 = {e, r, r2, s, rs, r2s} where

r denotes the rotation anticlockwise by 2π
3

and s denotes the reflection through the
vertical line. If we label the vertices of the triangle anticlockwise by 1,2,3 with 1 at
the top, then each symmetry of the triangle gives rise to a permutation of {1, 2, 3}
and so we get an isomorphism θ : G2 → G3 such that θ(e) = e, θ(r) = (1, 2, 3),
θ(r2) = (1, 3, 2), θ(s) = (2, 3), θ(rs) = (1, 2), θ(r2s) = (1, 3).

Thus we get three isomorphism classes, {G1, G5}, {G2, G3} and {G4, G6}.

7. Let G be a group of order 2, then G = {e, g}. So its Cayley table starts as

∗ e g
e e g
g g

There is only one way of completing this table, namely as

∗ e g
e e g
g g e

Thus, up to isomorphism, there is only one possible group of order 2. (In fact it is easy
to see that G ∼= C2 the cyclic group of order 2).

Let G = {e, a, b} be a group of order 3. Then its Cayley table starts as

∗ e a b
e e a b
a a
b b

Now either a2 = e or a2 = b. But if a2 = e then we must have a ∗ b = b and so, by
uniqueness of the identity, a would have to be the identity which is a contradiction.
Thus we must have a2 = b. Once this is established, there is only one way to complete
the rest of the Cayley table and we get

∗ e a b
e e a b
a a b e
b b e a

Thus, up to isomorphism, there is only one possible group of order 3. (In fact it is easy
to see that G ∼= C3 the cyclic group of order 3).

Let G = {e, a, b, c} be a group of order 4 where e is the identity. So the Cayley table
starts as

∗ e a b c
e e a b c
a a
b b
c c



We claim that at least one of a, b or c squares to e. Suppose, for a contradiction that
this is not the case, i.e. that e does not appear on the diagonal except in the 1,1
position. Now e must appear in the second row, thus either a ∗ b = e or a ∗ c = e. We
can assume without loss of generality (by swapping b and c if necessary) that a∗ b = e.
Now as e must also appear in the last column we must have b ∗ c = e, but then we
cannot have b ∗ a = e as this would produce two e’s in the same row. So we would
have a ∗ b = e and b ∗ a 6= e which is a contradiction.

We can assume, without loss of generality (relabelling if necessary), that a2 = e. Now,
as a is not the identity, we have to complete the table as follows

∗ e a b c
e e a b c
a a e c b
b b c
c c b

Now there are two ways of completing this table, giving rise to two non-isomorphic
groups. The first type has Cayley table given by

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

This group is in fact isomorphic to V4 (find an explicit isomorphism).

The second type has Cayley table given by

∗ e a b c
e e a b c
a a e c b
b b c a e
c c b e a

This group is in fact isomorphic to C4 (find an explicit isomorphism).

To see that these two groups cannot be isomorphic observe that in the first group,
every element (other than the identity) has order 2, but this is not the case in the
second group where we have elements of order 4 (for example b).


