MA3615 Groups and Symmetry Solutions to Exercise Sheet 3

- 1. (a) $H = \{0, 2, 4, 6\}$ is a subgroup of \mathbb{Z}_8 of order 4. $H' = \{0, 4\}$ is a subgroup of \mathbb{Z}_8 of order 2.
 - (b) $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}.$ If *n* is divisible by *m*, then n = mk for some $k \in \mathbb{N}$. Consider $H = \{0, k, 2k, ..., (m-1)k\}.$ This is a subgroup of \mathbb{Z}_n as we have (S1) $0 \in H.$ (S2) $ik + jk = \begin{cases} (i+j)k \in H & \text{if } i+j \leq m-1\\ (i+j-m)k \in H & \text{if } i+j > m \end{cases}$ (S3) $(ik)^{-1} = (m-i)k \in H$ as ik + (m-i)k = mk = 0.
 - (c) As \mathbb{Z}_8 is abelian, left and right cosets coincide. We have

$$H' = \{0, 4\},\$$

$$1 + H' = H' + 1 = \{1, 5\},\$$

$$2 + H' = H' + 2 = \{2, 6\},\$$

$$3 + H' = H' + 3 = \{3, 7\}.$$

- 2. $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$. Any subgroup must have order dividing $|S_3| = 6$, so any subgroup must have order 1,2,3 or 6. Order 1: $\{e\}$. Order 2: $\{e, (1, 2)\}, \{e, (1, 3)\}, \{e, (2, 3)\}$. Order 3: $\{e, (1, 2, 3), (1, 3, 2)\}$. Order 6: S_3 .
- 3. (a) $5\mathbb{Z} = \{ \text{all integer multiples of } 5 \}.$
 - (b) This subgroup is equal to $H = \{4n+6n : n, m \in \mathbb{Z}\} \subseteq 2\mathbb{Z}$. But $2 = 4(-1)+6 \in H$ As 2 generates $2\mathbb{Z}$ we must have $2\mathbb{Z} \subseteq H$. Thus $H = 2\mathbb{Z}$.
 - (c) $H = \{2n + 3m : n, m \in \mathbb{Z}\} \subseteq \mathbb{Z}$. But $1 = 2(-1) + 3 \in H$ and as 1 generates \mathbb{Z} we have $\mathbb{Z} \subseteq H$. Thus $H = \mathbb{Z}$.
- 4.

So \mathbb{Z}_7^* is cyclic generated by 3 (or 5).

- 5. Let s be the reflection through the vertical axis, t be the reflection through the horizontal axis and r be the rotation by π around the centre of the figure. Then $G = \{e, s, t, r\}$. (Note that this group is isomorphic to the group of symmetry of a rectangle, and also isomorphic to the group V_4 introduced in Exercise Sheet 2.) Now we have $G \subseteq D_8$ and $G \subseteq D_{12}$. In fact we have $G = D_8 \cap D_{12}$ as G has to preserve both the square and the hexagon.
- 6. Let H, K be subgroups of a group G. We need to show that $H \cap K$ is also a subgroup of G.

(S1) $e \in H$ and $e \in K$ so $e \in H \cap K$. (S2) If $g_1, g_2 \in H \cap K$ then $g_1, g_2 \in H$ and so $g_1 * g_2 \in H$, also $g_1, g_2 \in K$ so $g_1 * g_2 \in K$. Thus $g_1 * g_2 \in H \cap K$. (S3) For each $g \in H \cap K$, we have $g^{-1} \in H$ (as $g \in H$) and $g^{-1} \in K$ (as $g \in K$) and so $g^{-1} \in H \cap K$.

7. $D_8 = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$ Note that for $1 \le i \le 3$ we have $sr^i = r^{4-i}s$.

(a)
$$H = \{e, s\}$$

 $rH = \{r, rs\}, Hr = \{r, r^3s\}$
 $r^2H = \{r^2, r^2s\} = Hr^2$
 $r^3H = \{r^3, r^3s\}, Hr^3 = \{r^3, rs\}.$

- (b) $H = \{e, r, r^2, r^3\}$ $Hs = \{s, r^3s, r^2s, rs\} = Hs.$
- 8. We have $|S_4| = 4.3.2.1 = 24$, so using Lagrange's theorem we know that any subgroup of S_4 has order 1,2,3,4,6,8,12 or 24. Thus if H is a subgroup with |H| > 8 then we know that $|H| \ge 12$.