MA3615 Groups and Symmetry Solutions to Exercise Sheet 4

1. $H = \{e, (1, 2, 3), (1, 3, 2)\}$. We have |H| = 3 and $|S_3| = 6$, so $[S_3 : H] = 2$ and hence we know that H is normal in S_3 .

However, as a subgroup of S_4 , H is not normal. Take for example g = (1, 4), then $g(1, 2, 3)g^{-1} = (1, 4)(1, 2, 3)(1, 4) = (2, 3, 4) \notin H$.

2. Note that for $\{a, b, c, d\} = \{1, 2, 3, 4\}$ and $g \in S_4$ we have

$$g^{-1}(g(a), g(b))(g(c), g(d))g = (a, b)(c, d)$$

so we have

$$g(a,b)(c,d)g^{-1} = (g(a),g(b))(g(c),g(d)).$$

(More generally, for any permutation σ and g we have that $g\sigma g^{-1}$ has the same cycle type as σ .)

Thus for any $g \in S_4$ we have that $g(a, b)(c, d)g^{-1}$ is a product of two disjoint transpositions. This implies that $g(a, b)(c, d)g^{-1} \in N$ and hence N is normal in S_4 .

Let us now calculate the cosets of N in S_4 : $N = \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}.$ $(1, 2)N = \{(1, 2), (3, 4), (1, 3, 2, 4), (1, 4, 2, 3)\}.$ $(1, 3)N = \{(1, 3), (1, 2, 3, 4), (2, 4), (1, 4, 3, 2)\}.$ $(2, 3)N = \{(2, 3), (1, 3, 4, 2), (1, 4), (1, 2, 4, 3)\}.$ $(1, 2, 3)N = \{(1, 2, 3), (1, 3, 4), (2, 4, 3), (1, 4, 2)\}.$ $(1, 3, 2)N = \{(1, 3, 2), (1, 4, 3), (2, 3, 4), (1, 2, 4)\}.$

The Cayley table for S_4/N is given by

	N	(1,2)N	(1, 3)N	(2,3)N	(1, 2, 3)N	(1, 3, 2)N
N	N	(1,2)N	(1,3)N	(2,3)N	(1, 2, 3)N	(1,3,2)N
(1,2)N	(1,2)N	N	(1, 3, 2)N	(1, 2, 3)N	(2,3)N	(1,3)N
(1,3)N	(1,3)N	(1, 2, 3)N	N	(1, 3, 2)N	(1,2)N	(2,3)N
(2,3)N	(2,3)N	(1, 3, 2)N	(1, 2, 3)N	N	(1, 3)N	(1,2)N
(1, 2, 3)N	(1, 2, 3)N	(1, 3)N	(2, 3)N	(1,2)N	(1, 3, 2)N	N
(1, 3, 2)N	(1, 3, 2)N	(2,3)N	(1, 2)N	(1, 3)N	N	(1, 2, 3)N

Note that we can see from the Cayley table that $S_4/N \cong S_3$.

3. As \mathbb{Z}_8 is abelian, every subgroup is normal. Take $N = \{0, 4\}$. This is a subgroup (see Exercise sheet 2). Let us compute the cosets:

 $N = \{0, 4\}.$ 1 + N = $\{1, 5\}.$ 2 + N = $\{2, 6\}.$ $3 + N = \{3, 7\}.$ The Cayley table for \mathbb{Z}_8/N is given by

We can see from the Cayley table that the map $\phi : \mathbb{Z}_8/N \to \mathbb{Z}_4$ given by $a + N \mapsto a$ is an isomorphism.

Alternatively, define θ : $\mathbb{Z}_8 \to \mathbb{Z}_4$ sending n to its residue modulo 4. Then θ is a homomorphism, and θ is onto as we have $\theta(n) = n$ for n = 0, 1, 2, 3. Moreover, $\operatorname{Ker} \theta = \{0, 4\} = N$. Thus from the first isomorphism theorem we get that $\mathbb{Z}_8/N \cong \mathbb{Z}_4$.

4. $G = D_8 = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}.$ $N = \{e, r^2\}.$ $rN = \{r, r^3\} = Nr.$ $sN = \{s, r^2s\} = Ns.$ $rsN = \{rs, r^3s\} = Nrs.$

As left and right cosets coincide we see that N is normal in G.

Let us compute the Cayley table for G/N:

	N	rN	sN	rsN
N	N	rN	sN	rsN
rN	rN	N	rsN	sN
sN	sN	srN	N	rN
rsN	rsN	sN	rN	N

Let us compute the Cayley table for $\mathbb{Z}_2 \times \mathbb{Z}_2$:

	(0, 0)	(1, 0)	(0, 1)	(1, 1)
(0,0)	(0,0) (1,0)	(1, 0)	(0, 1)	(1, 1)
(1, 0)	(1,0)	(0, 0)	(1, 1)	(0, 1)
(0, 1)	(0, 1)	(1, 1)	(0, 0)	(1, 0)
(1,1)	(1, 1)	(0,1)	(1, 0)	(0,0)

Comparing these two Cayley tables we see that the map $\phi : G/N \to \mathbb{Z}_2 \times \mathbb{Z}_2$ given by $\phi(N) = (0,0), \ \phi(rN) = (1,0), \ \phi(sN) = (0,1)$ and $\phi(rsN) = (1,1)$ is an isomorphism.

5. θ : $\mathbb{Z}_6 \to S_3$ is a homomorphism with $\theta(1) = (1, 2, 3)$. Then we must have $\theta(2) = \theta(1+1) = \theta(1) \circ \theta(1) = (1, 2, 3)(1, 2, 3) = (1, 3, 2).$ $\theta(3) = \theta(2+1) = \theta(2) \circ \theta(1) = (1, 3, 2)(1, 2, 3) = e.$ $\theta(4) = \theta(3+1) = \theta(3) \circ \theta(1) = e(1, 2, 3) = (1, 2, 3).$ $\theta(5) = \theta(4+1) = \theta(4) \circ \theta(1) = (1, 2, 3)(1, 2, 3) = (1, 3, 2).$ $\theta(0) = e.$

Now the kernel of θ is given by Ker $\theta = \{0, 3\}$ and the image of θ is given by Im $\theta = \{e, (1, 2, 3), (1, 3, 2)\}.$

6. We need to check that $\phi(\sigma \circ \tau) = \phi(\sigma) + \phi(\tau)$ for all $\sigma, \tau \in S_n$.

If σ and τ are both odd permutations, then $\sigma \circ \tau$ is an even permutation and we get $\phi(\sigma \circ \tau) = 0$ and $\phi(\sigma) + \phi(\tau) = 1 + 1 = 0$ (modulo 2) as required.

If precisely one of σ and τ are odd then $\sigma \circ \tau$ is odd and we get $\phi(\sigma \circ \tau) = 1$ and $\phi(\sigma) + \phi(\tau) = 1 + 0 = 1$ as required.

If σ and τ are both even permutations then $\sigma \circ \tau$ is even and we get $\phi(\sigma \circ \tau) = 0$ and $\phi(\sigma) + \phi(\tau) = 0 + 0 = 0$ as required.

Now the kernel of ϕ is given by Ker $\phi = A_n$. As ϕ is onto we get from the first isomorphism theorem that $S_n/A_n \cong \mathbb{Z}_2$.