
Solutions to MA3615 Groups and Symmetry May 2011 exam

1. (a) i. G is not a group as the matrix

(
1 0
0 0

)
has no inverse.

ii. H is a group. The multiplication is closed as 1× 1 = 1 ∈ H, 1× 2 = 2× 1 =
2 ∈ H and 2× 2 = 1 ∈ H. Now we have
(G1) identity element is 1.
(G2) inverses are given by 1−1 = 1 and 2−1 = 2.
(G3) associativity follows from associativity of multiplication of integers.

iii. K is not a group as (1, 2) ◦ (1, 3) = (1, 3, 2) /∈ K.

[6]

(b) Let G = {e, a, b} be a group of order 3 with identity element e. Then its Cayley
table starts as

∗ e a b
e e a b
a a
b b

Now either a2 = e or a2 = b. But if a2 = e then we must have a ∗ b = b and so, by
existence of b−1, a would have to be the identity which is a contradiction. Thus
we must have a2 = b. Once this is established, there is only one way to complete
the rest of the Cayley table and we get

∗ e a b
e e a b
a a b e
b b e a

Thus, up to isomorphism, there is only one possible group of order 3. (In fact it
is easy to see that G ∼= C3 the cyclic group of order 3). [8]

(c) i. ψ : Z3 → C3 given by ψ(0) = e, ψ(1) = r and ψ(2) = r2.
φ : Z3 → C3 given by φ(0) = e, φ(1) = r2 and φ(2) = r.

ii. θ : Z3 → C3 given by θ(0) = θ(1) = θ(2) = e.

[3]

(d) Let D6 be the group of all symmetries of an equilateral triangle. The group Z6 is
abelian but the groups D6 and S3 are not. So Z6 cannot be isomorphic to D6 or
S3. Now by labelling the vertices of the triangle by 1,2 and 3 we obtain a natural
homomorphism φ : D6 → S3. We need to show that φ is a bijection. Note that
|D6| = |S3| = 6 so it is enough to show that φ is one-to-one. If φ(g) = e for some
g ∈ D6 then g fixes every vertex of the triangle. But this implies that g is the
identity. So we have that Kerφ = {e} and hence φ is one-to-one as required. [8]

2. (a) A subgroup H of a group G is a normal subgroup if gH = Hg for all g ∈ G. [2]

(b) The subgroup H will have exactly two left/right cosets in G, namely H and
{g ∈ G : g /∈ H} = C. This implies that gH = Hg = C for all g /∈ H. [4]
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(c) i. H1 = 〈rs〉 = {e, rs}.
Left cosets are given by H1 = {e, rs}, rH1 = {r, r2s}, r2H1 = {r2, r3s},
r3H1 = {r3, s}.
Right cosets are given by H1 = {e, rs}, H1r = {r, rsr = s}, H1r

2 =
{r2, rsr2 = r3s}, h1r3 = {r3, rsr3 = r2s}. [3]

ii. H2 = 〈r2〉 = {e, r2}.
Left/right cosets are given by H2 = {e, r2}, rH2 = {r, r3} = H2r, sH2 =
{s, sr2 = r2s} = H2s, rsH2 = {rs, rsr2 = r3s} = H2rs.

[3]

As left and right cosets coincide we see that H2 is normal in D8.
Now the Cayley table of D8/H2 is given by

H2 rH2 sH2 rsH2

H2 H2 rH2 sH2 rsH2

rH2 rH2 H2 rsH2 sH2

sH2 sH2 rsH2 H2 rH2

rsH2 rsH2 sH2 rH2 H2

Consider the Cayley table for the group Z2 × Z2.

(0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

Take for example θ : D8/H2 → Z2×Z2 defined by θ(H2) = (0, 0), θ(rH2) = (0, 1),
θ(sH2) = (1, 0) and θ(rsH2) = (1, 1) then we see from the Cayley tables that θ is
an isomorphism. [6]

(d) Consider the action of D8 on the two diagonals of the square (labelled 1 and 2).
This gives a surjective homomorphism

φ : D8 → S2

given by φ(e) = φ(r2) = φ(rs) = φ(r3s) = e and φ(r) = φ(r3) = φ(s) = φ(r2s) =
(1, 2).
Hence we have that N = Kerφ = {e, r2, rs, r3s} is a normal subgroup and we can
deduce from the First Isomorphism Theorem that D8/N ∼= S2. [7]

3. (a) There are 8 rotations (r1) by 2π
3

or 4π
3

around axes through a vertex and the centre
of the opposite face. There are 3 rotations (r2) by π around axes through the
middle of opposite edges. Adding the identity, this gives |G| = 8 + 3 + 1 = 12.[4]

(b) G′ is a subgroup of G. We have |G′| = 3 by colouring 3 vertices in one colour and
the forth one with a different colour. In this case we have G′ ∼= C3.
It is not possible to have |G′| = 5. By Langrange’s theorem we must have that
|G′| divides |G| = 12, and 5 does not divide 12. [6]
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(c) Let G be a finite group acting on a finite set X. For g ∈ G, define Fix(g) to be

Fix(g) = |{x ∈ X | g(x) = x}|.

Then the number of G-orbits on X is given by

1

|G|
∑
g∈G

Fix(g).

[3]

(d) Let X be the set of all painted tetrahedrons. Then |X| = 34 (3 choices of colours
for each of the four vertices). Consider the action of G on X. Then the number
of different coloured tetrahedrons is equal to the number of G-orbits on X. [2]
Now we have
Fix(e) = 34

Fix(r1) = 32 (3 vertices painted in one colour, and the forth painted with any
colour)
Fix(r2) = 32 (2 pairs of vertices of the same colour)
Thus using Burnside counting theorem we get that the number of different coloured
tetrahedrons is given by

1

12
(34 + (8× 32) + (3× 32)) = 15.

[5]

Description of all different coloured tetrahedrons:
Using only one colour, we can contruct 3 different tetrahedrons.
Using two different colours, there are two possibilities. We can either colour three
vertices in one colour and one in another, this gives 3 × 2 = 6 different tetrahe-
drons. Or we can paint two vertices with one colour and the other two vertices
in another colour, this gives 3×2

2
different tetrahedrons.

Using the three colours, we have to colour two vertices with one colour and the
other two vertices with the two remaining colours, this gives 3 different tetrahe-
drons.
Thus we have 3 + 6 + 3 + 3 = 15 different tetrahedrons. [5]

4. (a) We say that the group G acts on the set X if we have a homomorphism

φ : G→ Sym(X).

The G-orbit of x is given by

OrbG(x) = {y ∈ X : y = g(x) for some g ∈ G}.

The stabilizer Gx of x in G is defined by

Gx = {g ∈ G : g(x) = x}.

[6]
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(b) (S1) e ∈ Gx as e(x) = x.
(S2) If g, h ∈ Gx, that is g(x) = h(x) = x, then (gh)(x) = g(h(x)) = g(x) = x so
gh ∈ Gx.
(S3) If g ∈ Gx, that is g(x) = x, then g−1(x) = g−1(g(x)) = (g−1g)(x) = e(x) = x
so g−1 ∈ Gx. [6]

(c) For any x ∈ X we have |G| = |OrbG(x)| × |Gx|. [2]

(d) i. The group G acts on the set X of dotted edges. Let x ∈ X, then we have
|OrbG(x)| = 2 as there is a rotation mapping x to the other dotted edge. Now
Gx consists of e and the rotation by π around the axis through the middle of
the dotted edges. Using the Orbit-Stabilizer theorem we get |G| = 2.2 = 4.
[4]

ii. Let G be a finite subgroup of SO3(R). Then G is isomorphic to one of the
following groups: Cn (n ≥ 1), D2n (n ≥ 2), A4, S4, A5. [2]

iii. As |G| = 4 we have G ∼= C4 or D4. Now G only has rotations of order 2 or
1 (rotation by π around an axis through the centre of the top and bottom
faces, rotations by π around an axis through the middle of the dotted/black
edges). However, C4 has an element of order 4. Thus G cannot be isomorphic
to C4 and hence it must be isomorphic to D4. [5]
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