MA3615 Groups and Symmetry : Solutions to Class test A

1. [8 marks] Consider the following sets with operations.

$$A = \{1, 2, 3\} \text{ with multiplication modulo } 4,$$

$$B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \text{ and } a + b = c + d \right\} \text{ with addition of matrices.}$$

Then we have that

A and B are both groups.
A is a group but B is not a group.
✓ B is a group but A is not a group.
neither A nor B is a group.

A is not a group as the multiplication is not closed (e.g. $2 \times 2 = 0 \notin A$). B is a group with the identity being the zero matrix, and the inverse of a matrix X being -X (note that adding two matrices in B still gives a matrix in B).

2. [4 marks] For each of the following statements, decide whether it is true or false. (Delete as appropriate, no justification required).

(a)	$(5,7)(6,7,5,2) \in A_7$	True
(b)	$(3,2,1)(3,2,1) \in A_3$	True

3. [4 marks] Let (G, *) be an abelian group, let $g \in G$ be an element of order 5 and let $h \in G$ be an element of order 3. Simplify the following expression as much as possible.

$$\begin{array}{rcl} [(g*h)^3*g^9*h*g^3*h^5]^{-1} &=& (g^{15}*h^9)^{-1} & \text{ as } G \text{ is abelian} \\ &=& ((g^5)^3*(h^3)^3)^{-1} \\ &=& (e^3*e^3)^{-1} & \text{ as } g \text{ has order 5 and } h \text{ has order 3} \\ &=& e^{-1} \\ &=& e. \end{array}$$

4. [8 marks] Let $G = \{a, b, c\}$. Define two different operations on G, namely * and \dagger , by giving the following tables.

*	a	b	c	†	a	b	c
a	b	c	a	a	a	b	С
b	c	a	b	b	b	a	b
c	a	b	c	С	c	b	a

- (a) Is (G, *) a group? Yes it is. From the Cayley table we see that c must be the identity. The map $\psi : G \to \mathbb{Z}_3$ given by $\psi(c) = 0$, $\psi(a) = 1$ and $\psi(b) = 2$ is an isomorphism.
- (b) Is (G, \dagger) a group? No it is not. The element b appears twice in the second row, so (G, \dagger) cannot be a group.
- 5. [6 marks] Let $G = \{x, y, z, u, v, w\}$ be a group with multiplication * and let $\psi : S_3 \to G$ be an isomorphism satisfying $\psi(e) = z, \psi(1, 2) = u, \psi(2, 3) = y$ and $\psi(1, 2, 3) = w$.
 - (a) What is the identity element in G? z
 - (b) What is u^{-1} ? u (as $u^{-1} = \psi(1,2)^{-1} = \psi((1,2)^{-1}) = \psi(1,2) = u$).
 - (c) What is u * y? w (as $u * y = \psi(1, 2) * \psi(2, 3) = \psi((1, 2)(2, 3)) = \psi(1, 2, 3) = w$).