MA3615 Groups and Symmetry : Solutions to Class test B

1. [8 marks] Consider the following sets with operations.

$$A = \{1, 2\} \text{ with multiplication modulo 3,} \\ B = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \right\} \text{ with addition of matrices.}$$

Then we have that

A and B are both groups.
✓ A is a group but B is not a group.
B is a group but A is not a group.
neither A nor B is a group.

A is a group. If you write down the Cayley table you will see that the multiplication is closed, 1 is the identity and every element is its own inverse. B is not a group as the multiplication is not closed (e.g. $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \notin B$).

- 2. [4 marks] For each of the following statement, decide whether it is true or false. (Delete as appropriate, no justification required).
 - (a) $(2,5,6)(3,7,1,4) \in A_7$ False (b) $(1,4,2)(4,2) \in A_4$ False
- 3. [4 marks] Let (G, *) be an abelian group, let $g \in G$ be an element of order 4 and let $h \in G$ be an element of order 5. Simplify the following expression as much as possible.

$$[g^{3} * (h * g)^{4} * h^{3} * g^{5} * h^{3}]^{-1} = (g^{12} * h^{10})^{-1} \text{ as } G \text{ is abelian}$$

= $((g^{4})^{3} * (h^{5})^{2})^{-1}$
= $(e * e)^{-1}$ as g has order 4 and h has order 5
= e^{-1}
= $e.$

4. [8 marks] Let $G = \{a, b, c\}$. Define two different operations on G, namely * and \dagger , by giving the following tables.

*	a	b	c	†	a	b	c
a	c	a	b	 a	c	b	a
b	a	b	c	b	b	c	b
c	b	c	a	c	a	b	c

- (a) Is (G, *) a group? yes it is. From the Cayley table we see that b must be the identity and the map $\psi : G \to \mathbb{Z}_3$ given by $\psi(b) = 0$, $\psi(a) = 1$ and $\psi(c) = 2$ is an isomorphism.
- (b) Is (G, \dagger) a group? No it is not. The element b appears twice in the second row so (G, \dagger) cannot be a group.
- 5. [6 marks] Let $G = \{x, y, z, u, v, w\}$ be a group with multiplication * and let $\psi : S_3 \to G$ be an isomorphism satisfying $\psi(e) = x$, $\psi(1, 2) = v$, $\psi(2, 3) = z$ and $\psi(1, 3, 2) = y$.
 - (a) What is the identity element in G? x.
 - (b) What is z^{-1} ? z (as $z^{-1} = \psi(2,3)^{-1} = \psi((2,3)^{-1}) = \psi(2,3) = z$).
 - (c) What is z * v? y (as $z * v = \psi(2,3) * \psi(1,2) = \psi((2,3)(1,2)) = \psi(1,3,2) = y$).