Curve fitting

On many occasions one has sets of ordered pairs of data (x1, y1),...,(xn,yn) which are related by a concrete function Y(X) e.g. some experimental data with a theoretical prediction
Suppose Y(X) is a linear function

$$\mathsf{Y} = \alpha \ \mathsf{X} \ + \ \beta$$

- Excel offers various ways to determine α and β
 - i) SLOPE, INTERCEPT functions based on the method of least square

$$\min = \sum_{i=1}^{n} [\mathbf{y}_{i} - (\beta + \alpha \mathbf{x}_{i})]^{2}$$

SLOPE $(y_1,...,y_n,X_1,...,X_n) \rightarrow \alpha$ INTERCEPT $(y_1,...,y_n,X_1,...,X_n) \rightarrow \beta$ - How does Excel compute this? (see other courses for derivation)

• mean values:
$$\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$$
 $\bar{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i}$

· slope:
$$\alpha = \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{y}_i - \bar{\mathbf{y}}) / \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})^2$$

- · intercept: $\beta = \bar{y} \alpha \bar{x}$
- regression coefficient:

$$r = \sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y}) / \sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

A good linear correlation between the x_i and y_i -values is $r \cong 1$. With VBA we can write a code which does the same job, see Lab-session 4 of Part II.

ii) LINEST - function

- this function is more sophisticated than the previous ones
 - LINEST(y₁,...,y_n,x₁,...,x_n, constant, statistics)
 - if *constant* = TRUE or omitted the intercept is computed

otherwise it is zero

- if *statistics* = TRUE the function returns regression

statistic values with the output:

slope	intercept
standard error in the slope	standard error in the intercept
r-squared	standard error in the y estimation

- we restrict ourselves here to

- notice that LINEST is an array function, such that you have to prepare for an output bigger than one cell:
 - \cdot select a range for the output, e.g. 2×3 cells
 - \cdot type the function, e.g. =LINEST(....)
 - \cdot complete with (Ctrl) + (Shift) + (Enter)

In the example we did =linest(B1:B10;A1:A10;true;true)

The value of r^2 is slightly away from 1, which shows that the points do not really fall into a line!

iii) adding a trendline

• First we need to have a set of points that we want to plot. Type the coordinates of the points that you want to plot. For example, the y-values in column B and the x-values in column A, as in the example before.

• Select the range containg the values you just entered and choose an XY-chart (Scatter) with the subtype which has no line joining the points

6											Book1 -	Microsoft	Excel
	Home	Insert	Page	Layout	Form	ulas [Data	Review	Vie	w			
Pive	otTable Table	Picture	Clip Art	C Shapes	SmartArt	Column	Line	Pie	Bar	Area	Scatter	Other Charts *	Hyperlin
	Tables		Illust	rations				C	harts		Scatte	r	
	🛃 🍤 - 🝽 - 🔜 🛅 🖓 😤 💷 🗹 📑 🛄 🖊 🗛 🖽 💿 🚆 曼 abl 🔻								0 0	19	8		
	A1	•	0	f_x	1						• ° ° •	100	2
	A	В	С		D	E	F		G	Н		In	
1	1	2											
2	2	4							-			-	
3	3	6							l	Ъ	1.		
4	4	8									X	2	
5	5	10										_	
6											A di	ll Chart Ty	pes

- right click on any of the plotted points
 - \Rightarrow Add Trendline window opens
- select the type of correlation, e.g. Linear, polynomial, ...
- in Options decide if you want to add the computed equation or the r^2 value on the chart

renaline Options	Trendline Options
ine Color	Trend/Regression Type
ine Style	C Exponential
	🖉 🤄 Linear
	C Logarithmic
	C Polynomial Order: 2
	C Power
	C Moving Average Period: 2
	Trendline Name • <u>A</u> utomatic : Linear (Series 1) • <u>C</u> ustom:
	Forecast <u>F</u> orward: 0,0 periods <u>B</u> ackward: 0,0 periods
	Set Intercept = 0,0
	Eorward: 0,0 periods Backward: 0,0 periods Set Intercept = 0,0

Example: Consider the data:

assume linear correlation: slope $\rightarrow 1.1903$

intercept \rightarrow -4,4933

2	0,4
4	1,2
6	2,3
8	4
10	5
12	8,3
14	11
16	14,1
18	17,9
20	21,8

A simple VBA code that generates a set of points (x_i, f(x_i))

When we run this code we obtain:

9

В С Е F G A D Н J Κ -5 -4 quadratic polynomial -3 -2 -1 -3 -3 -1 -1 у Ð -3 -5 х

We can now plot the function as before: