Curve fitting

- On many occasions one has sets of ordered pairs of data $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ which are related by a concrete function $\mathrm{Y}(\mathrm{X})$ e.g. some experimental data with a theoretical prediction
- Suppose $\mathrm{Y}(\mathrm{X})$ is a linear function

$$
Y=\alpha X+\beta
$$

- Excel offers various ways to determine α and β
i) SLOPE, INTERCEPT - functions based on the method of least square

$$
\min =\sum_{i=1}^{n}\left[y_{i}-\left(\beta+\alpha x_{i}\right)\right]^{2}
$$

$\operatorname{SLOPE}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}, \mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \rightarrow \alpha$
INTERCEPT $\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}, \mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \rightarrow \beta$

- How does Excel compute this? (see other courses for derivation)
- mean values: $\quad \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$
- slope:

$$
\alpha=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right) / \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}
$$

- intercept: $\beta=\bar{y}-\alpha \bar{x}$
- regression coefficient:

$$
r=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) / \sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}
$$

A good linear correlation between the x_{i} and y_{i}-values is $\mathrm{r} \cong 1$.
With VBA we can write a code which does the same job, see Lab-session 4 of Part II.
ii) LINEST - function
this function is more sophisticated than the previous ones
LINEST($\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$, constant,statistics $)$

- if constant = TRUE or omitted the intercept is computed otherwise it is zero
- if statistics $=$ TRUE the function returns regression statistic values with the output:

slope	intercept
standard error in the slope	standard error in the intercept
r-squared	standard error in the y estimation

- notice that LINEST is an array function, such that you have to prepare for an output bigger than one cell:
- select a range for the output, e.g. 2×3 cells
- type the function, e.g. $=\operatorname{LINEST}(. . .$.
- complete with Ctrl + Shift + Enter

	A	B	C	D	E	F	G
1	1	2					
2	2	2,3					
3	3	2,6					
4	4	3					
5	5	3,6					
6	6	8,5			1,280606	$-0,63333$	
6	7	9			0,135361	0,839895	
7	8	10,1			0,917952	1,22948	
8	9	11					
9	10	12					
10							

In the example we did $=\operatorname{linest(B1:B10;A1:A10;true;true)~}$
The value of $\mathrm{r}^{\wedge} 2$ is slightly away from 1 , which shows that the points do not really fall into a line!
iii) adding a trendline

- First we need to have a set of points that we want to plot. Type the coordinates of the points that you want to plot. For example, the yvalues in column B and the x-values in column A, as in the example before.
- Select the range containg the values you just entered and choose an XY-chart (Scatter) with the subtype which has no line joining the points

- right click on any of the plotted points
\Rightarrow Add Trendline window Linear, polynomial, ...
- in Options decide if you want to add the computed equation or the $\mathrm{r}^{\wedge} 2$ value on the chart

Line Color

Line Style
Shadow

Trendline Options
-Trend/Regression Type

\square c Linear

C Logarithmic
C Polynomial

${ }^{\circ}$ Pouer
\bigcirc Moving Average Period: $2 \quad \pm$

Forecast

Backward: 0,0
periods

```
I}\mathrm{ Set Intercept = 0,0
I Display Equation on chart
- Display R-squared value on chart
```

Example:
Consider the data:
assume linear correlation:
slope $\rightarrow 1.1903$
intercept $\rightarrow-4,4933$

2	$\mathbf{0 , 4}$
4	1,2
6	2,3
8	$\mathbf{4}$
10	5
12	8,3
14	11
16	14,1
18	17,9
20	21,8

Compute the residuals, i.e. (the predicted values - the given ones):

\ldots quadratic fit is better!

8

A simple VBA code that generates a set of points ($\mathrm{X}_{\mathrm{i}}, \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$)

P. Microsoft Yisual Basic - Book1 - [Module1 (Code)]

解: Eile Edit View Insert Format Debug Run Iools Add-In

(General)
Function $\mathrm{f}(\mathrm{x})$
$\mathrm{f}=\mathrm{x}$ ^ $2+\mathrm{x}-3$
End Function
Sub plott ()
Range("a1"). Select

A 1 is the

For $j=-5$ To 5
ActiveCell. Offset (j + 5, 0). Value $=j$
ActiveCell.Offset (j + 5, 1) .Value $=\mathrm{f}(j)$
Next j
End Sub

	A	B
1	-5	17
2	-4	9
3	-3	3
4	-2	-1
5	-1	-3
6	0	-3
7	1	-1
8	2	3
9	3	9
10	4	17
11	5	27

The loop generates 11 pairs of points (xi, $f(x i))$ and writes them in columns 0 (A) and 1 (B)

When we run this code we obtain:

We can now plot the function as before:

