Cell references

- A cell reference is the letter of the column followed by the number of the row where the cell is located. Example: A2, B5.
- There are several default assumptions made by Excel when you enter a cell reference:
a) Excel assumes the cell is on the same WS and in the same WB as the cell in which you enter the formula.
b) Excel assumes the reference is a relative reference, that means the cell reference changes when you copy the contents of a cell refering to it into another cell.
- You copy a cell or a range by RC on the cell or range and selecting: Copy \rightarrow select the destination cell(s) \rightarrow Paste

Example 1:

E1					
,	A	B	C	D	E
1	1	2	3		6
2	2	4	6		
3	3	6	9		
4	4	8	12		
5	5	10	15		
6	6	12	18		
7					

Copy the content of cell E1 and paste into cell E2

All cell references have changed by 1 row. We get a different result!

E2		-	$f_{x}=\mathrm{A} 2+\mathrm{B} 2+\mathrm{C} 2$			
4	A	B	C	D	E	F
1	1	2	3		6	
2	2	4	6		12	
3	3	6	9			[
4	4	8	12			
5	5	10	15			
6	6	12	18			

2

Example 2:

E1		- (3) $\begin{aligned} & \text { fx }\end{aligned}$			
\triangle	A	B	C	D	E
1	1	2	3		6
2	2	4	6		
3	3	6	9		
4	4	8	12		
5	5	10	15		
6	6	12	18		
7					

All cell references have

 changed by 2 rows and 2 columns!

Example 3:

Copy the content of cell E1 and paste into cell D1

We get an error message, because the row number can not be reduced by 1 !

D1		-		=\#REF!+A1+B1	
4	A	B	C	D	E
1	1	2	(1) 3	\#REF!	6
2	2	4	6		[运
3	3	6	9		
4	4	8	12		
5	5	10	15		
6	6	12	18		
7					

- Can we avoid that cell references change when we copy-paste them?

Yes! By adding a"\$"-symbol before the column letter and/or the row number!

There are four possibilities:
= A1 \equiv changeable column and row (relative reference)
$=\mathrm{A} \$ 1 \equiv$ changeable column, fixed row (mixed reference)
$=\$ \mathrm{~A} 1 \equiv$ fixed column, changeable row (mixed reference)
$=\$ \mathrm{~A} \$ 1 \equiv$ fixed column and row (absolute reference)

E1		-		$=\$ 4 \$ 1+\$ B \$ 1+\$ C 1$	
4	A	B	C	D	E
1	1	2	3		6
2	2	4	6		
3	3	6	9		
4	4	8	12		
5	5	10	15		
6	6	12	18		

If you paste the content of E1 into any cell now, the value and content of the cell will remain unchanged!

- Examples (check these out!)

copy cell reference	paste cell reference	relative difference	formula being copied	final formula pasted cell
C5	D6	add one column add one row	$\begin{aligned} & =\mathrm{F} 4 \\ & =\$ \mathrm{~F} \$ 4 \\ & =\$ \mathrm{~F} 4 \end{aligned}$	$\begin{aligned} & =\text { G5 } \\ & =\$ F \$ 4 \\ & =\$ F 5 \end{aligned}$
C5	D3	add one column subtract 2 rows	$\begin{aligned} & =\mathrm{K} 7 * \mathrm{~B} \$ 7 \\ & =\mathrm{A} 3+\$ \mathrm{~B} 7 \end{aligned}$	$\begin{aligned} & =\mathrm{L} 5^{*} \mathrm{C} \$ 7 \\ & =\mathrm{B} 1+\$ \mathrm{~B} 5 \end{aligned}$
C5	F11	add 3 columns add 6 rows	$\begin{aligned} & \mathrm{f}(\mathrm{~A} 1: \mathrm{B} 5) \\ & \mathrm{f}(\mathrm{~A} \$ 3: \mathrm{A} 7) \end{aligned}$	$\begin{aligned} & \mathrm{f}(\mathrm{D} 7: \mathrm{E} 11) \\ & \mathrm{f}(\mathrm{D} \$ 3: \mathrm{D} 13) \end{aligned}$
C5	F1	add 3 columns subtract 4 rows	$\begin{aligned} & =\mathrm{A} 3 \\ & =\mathrm{Z5} \end{aligned}$	$\begin{aligned} & =\# R E F! \\ & =A C 1 \end{aligned}$

- $f(\ldots)$ indicates some function see below
$=\# R E F!$ is an error message \equiv cell reference not valid

Naming cells or ranges:

- You can attach a name of your choice to a cell or a range and then use it as variable in a formula instead of a lengthy reference:
- Select the cell or range to which you want to give a name.
-Select the Formulas tab and there select \quad Define Name v

Examples: if we now write

$$
=\operatorname{Sum}(\mathrm{M}) \longrightarrow 18
$$

it will return the value 18 , which is the sum of cells A1:C2!

Built-in Excel Functions I

- Excel is equipped with over 300 built-in functions.
- They are divided into 10 groups: logical, statistical, mathematical and trigonometric, date and time, financial, text, cube, lookup and reference, information and engineering.

- You can see all the different types by going to the Formulas tab!

8

- A Excel built-in function normally takes "something" as input and returns "something" as output.
- Notice that the "something" can be any kind of variable (text, number, date, time ...)
- A function can also take several variables as input and may return several values as output.
- Syntax: =name(argument1;argument2;)
"name" is the name of the function
"argument1, argument2..." is a list of cells, ranges, other functions or formulae
- the number of arguments can vary, e.g. zero arguments:

$$
\begin{aligned}
\text { zero arguments: } & =\mathrm{PI}() \rightarrow 3.1415926535898 \ldots \\
& =\mathrm{TODAY}() \rightarrow 2010-10-12 \\
\text { one argument: } & =\operatorname{SQRT}(\mathrm{B} 5) \equiv \sqrt{ } \mathrm{B} 5 \rightarrow 2 \text { for } \mathrm{B} 5=4 \\
& =\operatorname{SIN}(\mathrm{PI}() / 2) \rightarrow 1
\end{aligned}
$$

two arguments: $=\operatorname{ROUND}(\mathrm{PI}(), 3) \rightarrow 3.142$

$$
=\operatorname{POWER}(2,2) \rightarrow 2 * 2=4
$$

variable number: $=\mathrm{SUM}(\mathrm{C} 1: \mathrm{C} 10, \mathrm{~B} 12, \mathrm{~B} 5) \rightarrow$ sums up the values of the cells $\mathrm{C} 1, \mathrm{C} 2, \ldots, \mathrm{C} 10, \mathrm{~B} 12, \mathrm{~B} 5$

$$
=\text { AVERAGE }(2,4,7,9,5,1) \rightarrow 4,6667
$$

- For functions that can have many arguments (like the SUM function), the maximum number of allowed arguments is 255 .
A range counts as one argument.
- When you use a function, you can either type the function's name directly on the WS or you can use the help that is provided in the Functions tab.
- For example, if you didn't know exactly how to use the function SUM from the previous page and wanted to find out more about it....
example3 [Compatibility Mode]

Date \& Time, Financial and Logical Functions

- Date \& Time Functions

These are functions which deal with times and dates:
$=$ TODAY () \equiv returns todays date
$=\mathrm{NOW}() \equiv$ returns todays date and the current time

- Financial Functions

These are functions with some financial applications, e.g.
$=\mathrm{FV}($ rate, np, pmt,pv,type) \equiv future value of an investment rate \equiv interest rate per period np \equiv total number of payments pmt \equiv payment made each period pv \equiv initial lump-sum, (optional, default is 0) type \equiv indicates when payments are due, it is 1 if at the beginning of the period and 0 if at the end of the period (optional, default is 0)

Expl.: You deposit $£ 1,500$ into a savings account at a monthly interest rate of 0.6%. You plan to deposit $£ 150$ at the beginning of every month for the next 2 years.
How much money will be in the account after 2 years?

These functions handle boolean values, i.e. TRUE or FALSE. There are 7 functions of this type, IF, IFERROR, NOT, AND, OR, FALSE() and TRUE().

The IF-function is used when you want to define a function that returns a different result depending on whether or not a condition is satisfied (see exercises 3, 4 of Lab Sheet 2).
Syntax: =IF(condition, value for true, value for false) condition $=$ expression 1 comparison operator expression 2 comparison operators: $=\equiv$ equal to
<> \equiv not equal to
$>\equiv$ greater than
$>=\equiv$ greater than or equal to
$<\equiv$ less than
$<=\equiv$ less than or equal to

Example: $=\mathrm{IF}(\mathrm{B} 3>0$, "positive", "negative")
returns the text value "positive" if the value in the cell B3 is positive and otherwise the text value "negative".

If we now change the value of $B 3$ to -6 , the value of the function will automatically change to "negative".

More examples:

$=\mathrm{IF}((\mathrm{A} 1-\mathrm{B} 2)>=0, \mathrm{SQRT}(\mathrm{A} 1-\mathrm{B} 2)$, "complex value")
$=\mathrm{IF}(\mathrm{SUM}(\mathrm{A} 1: \mathrm{A} 9)>0,1,0)$
=IF(D6, "true", "false")

IF-functions can be nested up to seven times, which means that inside the argument of an IF-function (as condition or returned value) you can have further IF-functions.

Example: $=\operatorname{IF}(\mathrm{A} 1>-5, \operatorname{IF}(\mathrm{~A} 1<=5,1,0), 0)$ produces the function:

$$
f(A 1)= \begin{cases}0 & \text { for } A 1 \leq-5 \\ 1 & \text { for }-5<A 1 \leq 5 \\ 0 & \text { for } A 1>5\end{cases}
$$

