
1

User-defined Functions (UDFs)

VBA is a powerful programmation language which allows

you to write your own programs in very much the same

way as other programmation languages (C, Fortran,

Java, Pascal etc.)

In this lecture I will be introducing the programmation

language Visual Basic for Applications (VBA) and

explaining one particular use of it: creating UDFs.

In this module we are going to learn how to use VBA in

combination with Excel, although VBA can also be

used independently from Excel.

In this module we will learn how to write UDFs and

Macros or Subroutines (see Part II).

2

What is a UDF?

Just like a built-in function, a UDF is a pre-defined formula

which can be executed in the same way. The difference is

that you design the definition using VBA.

When and why do you use a UDF?

You use a UDF for the same reason as a built-in function,

namely to make calculations (operations) which are

repeated more efficiently.

Before writing a UDF make sure that it does not already

exist as built-in Excel function!

In this way you can define functions which do not exist as

built-in functions, but which you may need to use

frequently.

Before we start writing any UDFs we need to learn how to

access the Visual Basic Editor (VBE).

The Visual Basic Editor is not directly visible from the Excel

Worksheet. Microsoft hides the VBA tools by default !

This can be changed by selecting the Office button

Then selecting “Excel Options”:

3

In the “popular options” category,

select “Show Developer Tab in the

Ribbon” and click OK.

Once you have done this, an extra Tab is going to appear

on your Excel window. The Tab is called “Developer” and it

contains several menus

It includes the “Visual Basic” buttom that takes you directly

to the VBA editor.

In the future you can access VBA even more quickly if you

now right click on the Visual Basic buttom and select “add

to quick access toolbar”

4

When you do this a new button is added to the “quick

access toolbar” which you can just click on whenever you

want to access the VBA editor:

Quick access toolbar

Visual Basic Editor

Finally, there is one last way

of accessing the VBA editor:

by using the keyboard

shortcut: Alt + F11

6

The anatomy of the VBA editor is like most other

applications. It is equipped with a menu and a toolbar at

the top of the window and has four different

subwindows:

The Project Explorer displays the hierachical structure of projects.

The Properties Window displays the properties of the projects.

The Module Window contains the VBA-code of your project. This

is the most important window and you will write your UDF codes

here.

The Immediate Window displays compiling messages (for

example, error messages).

And this is how it looks…

Project Explorer

Properties Window

Module Window

Immediate Window

7
The Excel Icon on the top left corner brings you back

to the Excel WS!

8

The Module Window might not be visible when you open

VBE. VBE menu bar: Insert  Module

The Immediate Window is made visible by VBE menu bar:

View  Immediate Window

You can also return to the Excel window by: Alt + F11

The user defined function‘s syntax:

Function name [(arguments) [As type]] [As type]

[statements]

name = expression

[Exit Function]

[statements]

[name = expression]

End Function

9

an arithmetic expression assigned to the

function name,which will be returned

· Everything in bold has to be typed exactly as above.

· Everything in squared brackets [...] is optional.

Function name [(arguments) [As type]] [As type]

[statements]

name = expression

[Exit Function]

[statements]

[name = expression]

End Function

Function’s name

Function’s input
Variable type of

function’s output

Variable type of

function’s input

Valid VBA commands

10

• Each statement has to begin in a new line.

• In case the statement is longer than the line you can split it
by typing “ _” (i.e. space and underscore). You can not split
VBA commands this way!

• A program (function) is read from top to bottom, that is
each line is executed before the next (this is called a
sequencial structure). This order can be change by using
branching and loop structures which we will study in part II.

• When End Function or Exit Function is reached the
calculation terminates and the value last assigned to the
function s name is returned.

• An assignment is done by an equation, which has to be
read from the right to the left, i.e. the value on the right
hand side of the equation is assigned to the name on the
left hand side.

11

• Examples:
a) Function F(x)

F = 2 * x + 5

End Function

- You can now use this function on an Excel

WS in the same way as you use a built-in

function, e.g. “=F(5)“ 15

b) Function FF(x)

h = 2 * x

FF = h + 5

End Function

- The variable h only exists temporarily

inside the function FF.

- Note: F(x) is the same function as FF(x)

c) Function G(x,y,z)

G = y*x + z

End Function

- As for built-in functions you can have

more than one input variable (argument).

“=G(1,2,1)” 3

d) Function Q(a,b,c,x)

' quadratic equation

Q = a*x^2 + b*x +c

End Function

- You can add comments to enhance the

readability. VBA does not execute text

following a single quote.

“=Q(2,3,10,2)”  24

12

e) Function S(x, y, z)

S = 2 * Application.WorksheetFunction.SUM(x, y, z)

End Function

- You can use Excel built-in functions inside UDF by

Application.WorksheetFunction.FunctionName, e.g.

FunctionName = SUM. “=S(1,2,3)”  12

f) Function sq(x)

sq = 2*Sqr(x)

End Function

Most Excel built-in functions are also built-in inVBA, but may
have slightly different names: for example, the excel function
SQRT is called Sqr in VBA!

Other VBA functions are: Abs, Atn, Cos, Exp, Fix, Int, Sgn, Log,
Mod, Rnd, Sin, Tan (For a list with explanations use the help
function and search for “Math Functions“.

Sqr is the

squared

root function

in VBA

Called

ATAN in

Excel

Called

SIGN in

Excel

Comments on the names of UDF

- The first character in the name has to be a letter.

- The names are not case sensitive.

- Names are not allowed to contain spaces, @, $, #,... Or

be identical to VBA commands.

A few comments on debugging

Inevitably you will make some mistakes either just typos or
structural ones and you need some strategy to eliminate them.

- Some mistakes block the entire WS, e.g. suppose you type:

Function Err(x)

Err = 2 * Sqr (Brackets missing in Sqr, should be Sqr(x))

End Function

- If you call this function on the WS you will get an error

message  LC on OK  the mistake will be highlighted

in the VBE  Correct and unlock with “Reset” 13

14

Declaration of the variable type

- Recall: Function name [(arguments) [As type]] [As type]

- The first type refers to the variable type of the arguments and

the second type to the variable type of the function.

When you do not declare the type, then VBA assumes that your
variables of the “variant” type by default.

Your functions will also work without declaring the variable type
(we just saw many examples of this) so why is it useful to
declare the type?

Declaring the type avoids that different types of data get mixed
up. You can trace systematically mistakes in long programs and
it saves the computer memory space (your programmes will run

faster!)

Declaring the variable type means that you can tell your VBA

code whether the input or output of your function is going to be a

number, text, a date, a logical value etc.

15

In VBA there are seven different types of variables: Integer,
Single, Double, String, Boolean, Variant and Date

The Integer, Single and Double types always apply to

numbers. Integer characterizes variables that take integer

number values. Single and Double are used for variables

that take real number values. I will explain the difference

between these two types next week!

Example: If we take one of the functions we defined

before, we can rewrite it as

Function F(x As Single) As Single

F = 2 * x + 5

End Function

16

The String type is used for variables that take only text

values.

Example: The function below takes a piece of text and

returns the same text in upper case

Function U(x As String) As String

U= Application.WorksheetFunction.Upper(x)

End Function

The Bolean type is used for variables that take only the

logical values TRUE or FALSE.

The Date type is used for variables that take only date or

time values.

The Variant type is used for variables that take values of

different kinds, for example a variable that is sometimes a

number and sometimes a string.

