
1

We saw last week that in VBA there are seven different
types of variables: Integer, Single, Double, String, Boolean,
Variant and Date. Today we will see in some more detail
what they are and what their values can be.

•Integer type variables are stored in memory as 16-bit
(2-byte) numbers ranging in value from -32768 to 32767.

•String can contain up to approximately 2 billion (2^31)
(letters & symbols) characters.

•Date are stored as 64-bit (8-byte) numbers that represent
dates ranging from 1 January 100 to 31 December 9999
and times from 0:00:00 to 23:59:59.

Variable Types, IF structures and Flow charts

• A bit is a basic unit of information storage and
communication (is short for binary digit).

•Boolean are stored as 16-bit (2-byte) numbers, but they can
only be True or False.

•Single (single precision) variables are stored as 32-bit (4-
byte) numbers, ranging in value from -3.402823E38 to
-1.401298E-45 for negative values and from 1.401298E-45
to 3.402823E38 for positive values.

•Double (double precision) variables are stored as 64-bit (8-
byte) numbers ranging in from -1.79769313486231E308 to
-4.94065645841247E-324 for negative values and from
4.94065645841247E-324 to 1.79769313486232E308 for
positive values.

•Variant is the data type for all variables that are not explicitly
declared as some other type.

•The more storage space (bits) a variable needs, the slower
a program using it will be!

2

3

VBA handles dates by associating each date to a number!

1-st of January 100 = -657434

……

1-st of January 1900 = 1

2-nd of January 1900 = 2

........

12-th of November 2009 = 40129

Working with dates and times in VBA

Because VBA associates dates to numbers, it makes sense
inside a VBA program to “subtract” two dates. If we do that
we will obtain the number of days that have passed
between the earlier and the later date!

4

There are several useful VBA-functions that take variables
of date type as input. You can use these functions inside
VBA programs:

· Month(date)  a number between 1 and 12 representing the month

· Weekday(date)  a number between 1 and 7 representing the day

with Sunday=1, Monday=2, …, Saturday=7

· Year(date)  a number between 100 and 9999 for the year

· Hour(date)  a number between 0 and 23 for the hour

· Minute(date)  a number between 0 and 59 for the minute

· Second(date)  a number between 0 and 59 for the second

As in Excel, the function Now() returns the current date and
time.

5

Examples:

a) Write a UDF which computes the weekday for a date

Function DD(da As Date) As Integer

DD = Weekday(da)

End Function

· Format the cell A1 as date and enter 25/10/2005

· “=DD(A1)”  3

b) Write a UDF which calculates the age in years given the

birthdate.

Function age(birthdate As Date) As Integer

age = Int((Now() - birthdate) / 365)

End Function

· (Now() - birthdate) the age in days

· Int(x) extracts the integer part of x

· age the age in integer numbers of years

6

Declaration of constants
• Constants are variables which do not change their value during

the execution of the program (UDF).

• Constants are used to keep the programming structure clear and

to avoid tedious re-typing or time consuming re-calculations.

• You can declare constants

i) such that they are only available inside the program or

ii) such that they are available in the entire worksheet.

Syntax: i) Const name [As type] = value

ii) Public Const name [As type] = value

Function

It is important to do the Public Const statement

before the Function statement.
• Expl. a) Const Pihalf = 1.570796327

b) Const Errmess as string = “Division by zero!!!”

c) Public Const Errmess as string = “Division by zero!!!”

Declaration of variables

When writing VBA programs it is often useful to define variables that are

only available inside the program. If you are dealing with long codes,

this can make the writing tidier and the code easier to understand.

In order to define such variables you have to write:

Dim Variable Name [As Type]

Inside the programs code, before the variable is used.

For example the function:

Function exa(x As Single) As Single

Dim y As Single

y=exp(x)

Exa= y+ y^2+y^3+y^4

End Function

Function exa(x As Single) As Single

Exa= Exp(x)+ Exp(2*x)+Exp(3*x)+Exp(4*x)

End Function

Could also

be written as:

7

8

• Writing any kind of computing program consists of three basic

principal steps:

i) Design an algorithm which will perform the task you want.

ii) Translate the algorithm into a computer language (code) with

a certain syntax, e.g. VBA in our case.

iii) Test (debug) your program thoroughly.

• A good way of understanding what the structure of a program

needs to be before actually writing the code is to draw a flow

chart. A flow chart is a graphic representation of the program

structure. You do not need to write all comments in detail, but it

suffices to write general statements in words.

• It looks more or less like this…

9

1

2

3............

4

3............

4

3............

4

3............

4

Flow chart

If/Case If/Case

10

• The IF-structure allows you to change the flow of your program

depending on various conditions. The logic of this structure is

very similar to the discussed Excel built-in IF-function.

The IF-structure in VBA

Syntax1: If condition Then

[statements]

[ElseIf condition Then

[elseifstatements]]...

[Else

[elsestatements]]

End If
- condition() expressions which are true of false

- statements valid VBA commands

- elseifstatements executed when condition is true

- elsestatements executed when no previous condition is true

can be repeated many times

11

- Examples:

a) Write a UDF which produces the function

Function Si(x As Single) As Single

If x = 0 Then

Si = 1

Else

Si = Sin(x) / x

End If

End Function

· Recall from Lab 2 Task 3 that this function also can be

produced by using Excel built-in functions as

=IF(x=0,1,SIN(x)/x)

Input x

Si = 1

Si = Sin(x) / x

End

x=0
TRUE

FALSE

12

b) Write a UDF which produces the function

Function F(x As Single) As Integer

If x <= -5 Then

F = 0

ElseIf x <= 5 Then

F = 1

Else

F = 0

End If

End Function

Input x

F=0

F=0

End

x<=-5
TRUE

FALSE

x<=5

FALSE

TRUE

F=1

· Recall lecture 3: =IF(A1>-5, IF(A1<=5,1,0) ,0)

13

c) Write a UDF which determines whether a certain date falls

on a weekend or not!

Function WE(x As Date) As String

Dim temp As Integer

temp = Weekday(x)

If temp = 1 Or temp = 7 Then

WE = "That day falls on a weekend."

Else

WE = "That day is a weekday."

End If

End Function

· Format the cell A1 as date and enter Now()

· “=WE(A1)“  That day is a weekday.

· Note that we declared all variable types.

14

Syntax2: If condition Then [statement1] : [statement2]: ...

· Just one line! The VBA statements are carried out when the

condition is TRUE. Several statements are separated by “:”

Syntax3: IIf (condition, value for true, value for false)

· Same syntax as for built-in functions with IF  IIF

Function Ftwo(x As Single) As Integer

Ftwo = 1

If x <= -5 Then Ftwo = 0

If x > 5 Then Ftwo = 0

End Function

· Expl.: The function F(x) can also be produced by:

Function Fthree(x As Single) As Single

Fthree = IIf(x = 0, 1, Sin(x) / x)

End Function

· Expl.: The function in Expl. a) can also be produced by:

15

 Boolean operators

· Just as for built-in functions one can use boolean operators to

create more complex conditions.

Syntax: condition1 And condition2 And condition3

condition1 Or condition2 Or condition3

· The logic is the same as for built-in functions.

Function G(x As Single) As Integer

If x > -5 And x <= 5 Then

G = 1

Else

G = 0

End If

End

· Expl.: The function F(x) can also be produced by

· We need to call it differently when it is on the same WS, e.g. G(x).

Input x

G = 1

G = 0

End

x > -5 And x <= 5
TRUE

FALSE

16

- Using “Or“ F(x) can be produced by

Function H(x As Single) As Integer

If x <= -5 Or x > 5 Then

H = 0

Else

H = 1

End If

End Function

Input x

H = 0

H = 1

End

x <= -5 Or x > 5
TRUE

FALSE

- You can also use “Not“ and produce the same logical structures

as with built-in functions, e.g.

Function Fnot(x As Single) As Integer

Fnot = IIf(Not (x <= -5 Or x > 5), 1, 0)

End Function

Example from resit exam 2007

An If structure that produces this function is the following:

Function f(x As Single) As Single

If x >= 1 Or x <= -1 Then

f = 2

Elseif x>-1 and x<-0.5 or x<0 and x>-0.5 or x<1 and x>0

f = x+4

Else

f = 0

End If

End function

17

Or Or

Or

But this is not the only solution! There are in fact many ways of

programming this function with VBA. For example:

Function f(x As Single) As Single

If x >= 1 or x <= -1 Then

f = 2

Elseif x=-0.5 or x=0 then

f = 0

Else

f = x+4

End If

End function

This is a simpler function than the one in the previous

page, but both are valid and equivalent. 18

