The Select Case structure

- The SELECT CASE structure is another branching structure provided by VBA. It is a more elegant and transparent version of an IF-structure, which tests always the same variable. Example: write a UDF that determines the sign of a number Function sig(x As Single) As String

If $\mathrm{x}>0$ Then

$$
\text { sig }=\text { "positive" } \quad \text { Select Case } \mathrm{x}
$$

ElseIf x < 0 Then
sig $=$ "negative" =
Else
sig = "zero"

$$
\begin{aligned}
& \text { Case Is >0: sig }=\text { "positive" } \\
& \text { Case Is }<0: \text { sig }=\text { "negative" } \\
& \text { Case Else: } \quad \text { sig }=\text { "zero" }
\end{aligned}
$$

End Select

End If
End Function

Syntax: Select Case testvariable
[Case expressionlist [statements]]... can be repeated many times [Case Else [elsestatements]]

End Select

- testvariable \equiv a numeric or string expression
- expressionlist \equiv list of one or more expressions separated by a comma
- expression
- expression To expression
- Is comparisonoperator expression
- statements \equiv executed when one condition from expressionlist is true
- elsestatements \equiv executed when no previous condition is true
- Examples (Select case):
a) Function si(x)

Select Case x
Case 0: $\quad \mathrm{si}=1$
$\operatorname{Si}(x)=\left\{\begin{array}{cll}\frac{\sin x}{x} & \text { for } & x \in \mathbb{R} 10 \\ 1 & \text { for } & x=0\end{array}\right.$
Case Else: $\operatorname{si}=\operatorname{Sin}(\mathrm{x}) / \mathrm{x}$
End Select
End Function
b) Function F(x As Single) As Single

Select Case x
Case Is < 0: $\quad \mathrm{F}=0$
Case 0 To 4: $\mathrm{F}=3$ * x
$F(x)=\left\{\begin{array}{l}0 \\ 3 x \\ 12\end{array}\right.$
for $x<0$
for $0 \leq x \leq 4$ for $x>4$

End Select
End Function

- Note that "a To b" means "a $\leq \mathrm{x} \leq \mathrm{b}$ "
c) Function G(x As Single) As Single

Select Case x

$$
\begin{array}{ll}
\text { Case -4 To 4: } & \mathrm{G}=1 \\
\text { Case Else: } & \mathrm{G}=0
\end{array} \quad G(x)= \begin{cases}1 & \text { for }-4 \leq x \leq 4 \\
0 & \text { otherwise }\end{cases}
$$

End Select
End Function

- Note that "a To b" means " $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ "
d) Function entry(age As Integer) As Variant

Select Case age

$$
\begin{array}{ll}
\text { Case } 0 \text { To } 5 \text {, Is }>65: & \text { entry }=0 \\
\text { Case } 6 \text { To } 15: & \text { entry }=2 \\
\text { Case } 15 \text { To } 65: & \text { entry }=5 \\
\text { Case Else: } & \text { entry }=\text { "Age not valid!" }
\end{array}
$$

End Select
End Function
e) Function price(product As String) As Variant

Select Case product

$$
\begin{array}{lc}
\text { Case "Mangoes": } & \text { price }=2.5 \\
\text { Case "Bananas": } & \text { price }=1.8 \\
\text { Case "Pears", "Apples": } & \text { price }=0.9 \\
\text { Case Else: } & \text { price }=\text { "Fruit not in price list!" }
\end{array}
$$

End Select

End Function

- Note that the test variable can also be of string type
- Note that price is of type Variant, as it could be a number or a string
- Note that the test is case sensitive, e.g.
$=$ price("mangoes") \rightarrow "Fruit not in price list!"
- Note that when the "Case Else" line is dropped $=$ price("Papayas") $\rightarrow 0$
f) Function pricec(product As String, country As String) As Variant

Select Case country
Case "Brasil"
Select Case product
Case "Mangoes" , "Papayas": pricec $=2.5$
Case "Bananas": pricec = 1.3
Case Else: pricec = "Fruit not in the list!"
End Select
Case "Thailand"
Select Case product
Case "Mangoes": pricec = 2.2
Case "Papayas": pricec $=2.8$
Case Else: pricec = "Fruit not in the list!"
End Select
Case Else: pricec = "Country not the list!"
End Select
End Function

- One can also nest the SELECT structure similar to the IF-structure

Example from exam 2007

Use a SELECT CASE structure to produce a UDF called anniversary. The function should take a wedding date as input and produce the following output:

If the wedding falls in the first 6 months of the year the function should return the message: "the wedding was between January and June"

Otherwise it should return: "the wedding was between July and December"

Define the variable type of the input and output.

Function anniversary(x as date) as string
$y=m o n t h(x)$
Select Case y:
Case 1 To 6: anniversary="the wedding
falls between January and June"
Case Else: anniversary="the wedding falls between July and December"
End Select
End Function

- A feature of the Select Case structure is that it can only handle well three kinds of cases:
the variable is smaller than a value (Case Is < value), the variable equals a value (Case value), the variable varies between two values (those values included) (Case value 1 To value 2),
- How do we handle more general cases?

Example: the function

$$
g(x)= \begin{cases}0 & \text { for } \quad x \leq-1 \\ 1 / 2 & \text { for } \quad-1<x \leq 9 \\ 0 & \text { for } \quad 9<x\end{cases}
$$

$$
g(x)= \begin{cases}0 & \text { for } \quad x \leq-1 \\ 1 / 2 & \text { for } \quad-1<x \leq 9 \\ 0 & \text { for } 9<x\end{cases}
$$

Function $g(x$ as Single) as Single
Alternatively:

Function $g(x$ as Single) as Single Select Case x:
Case Is <=-1, Is > 9: g=0
Case Else: $\mathrm{g}=1 / 2$
End Select
End Function

Announcements:

- The Programming Part I test will take place on January the $5^{\text {th }}$ between 10:00 and 11:30. The exams timetable is available at:

http://www.city.ac.uk/exams/exam-timetables.html

- More information about the test will be given in the next lecture.
- Next week we will have our last lecture for Part I of the module. The Lab after that will also be the last Lab of the term.
- I will be at University and available for questions up until the $17^{\text {th }}$ of December. After that I will be able to reply to queries by e-mail up to the $29^{\text {th }}$ of December. Between the $30^{\text {th }}$ and the $8^{\text {th }}$ of January I will not be accessible.

