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WHAT THIS TALK IS ABOUT

• A brief introduction to the theories of interest⇒ the standard formulation of non-abelian

affine Toda field theories

• The homogeneous and symmetric space sine-Gordon models⇒ the only NAAT-theories

which are expected to have a sensible QFT counter-part, to be integrable at quantum

level and to have a purely massive spectrum

• Results and open problems for both kinds of theories⇒ unstable particles and parity

breaking



I. THE NON-ABELIAN TODA FIELD THEORIES

Let g be a complex semi-simple finite-dimensional Lie algebra and σ a finite order

automorphism of g of order n. Then the automorphism induces a gradation of g of the form:

g =
⊕

j∈Z
ḡ [ḡ, gk̄] ⊂ g+k ̄ = j mod n,

where σ(a) = e2πij/na for a ∈ ḡ. The field of the theory h(x, t) takes values on the

group G0 associated to the Lie algebra g0̄ and the Toda equation also involves two

diagonalizable elements Λ+ ∈ gk̄ and Λ− ∈ gn−k for k ≥ 0.

The action can be written as:

S[h] = SWZNW [h]− m2

2πβ2

∫
d2x〈Λ+, h−1Λ−h〉,

for G0 non-abelian the coupling constant 1/β2 ∈ Z+ in the quantum theory (level).

m is a mass scale.

〈, 〉 is an invariant, non-degenerate Killing form.



See the following concerning the Wess-Zumino-Novikov-Witten action:

W. Witten, CMP92 (1984) 455; V.G. Knizhnik and A. Zamolodchikov, NPB247 (1984) 83

From this action follow the NAAT-equations:

∂−(h−1∂+h) = −m2[Λ+, h−1Λ−h]

∂+(∂−hh−1) = −m2[hΛ+h−1,Λ−]

which admit a zero-curvature form that makes integrability manifest:

[∂+ + h−1∂+h + imΛ+, ∂− + imh−1Λ−h] = 0

x± = x± t are the light-cone coordinates.

A.N. Leznov and M.V. Saveliev, CMP89 (1983) 59

D. I. Olive, M. V. Saveliev, J.W.R. Underwood, PLB311 (1993) 117; J.W.R. Underwood, hep-th/9304156

L.A. Ferreira,J.L. Miramontes and J. Sánchez Guillén, NPB449 (1995) 631



II. WHAT HAPPENS AT QUANTUM LEVEL?: THE HSG- AND SSSG-MODELS

C. R. Fernández-Pousa, M. V. Gallas, T. J. Hollowood and J. L. Miramontes, NPB484 (1997) 609.

In this paper they

• asked themselves the question: which of the above theories have a real positive action

and a mass gap?

• found that ensuring these properties implied strong restrictions on h,Λ± and σ

• consequently found that only two families of NAAT-theories were good candidates for

integrable quantum field theories with purely massive spectrum

• they called these families the homogeneous and symmetric space sine-Gordon models



III. THEORIES WITH REAL AND POSITIVE ACTION

Kinetic term real an positive⇒G0 has to be compact and the Killing form must be a

compact real form, which implies h† = h−1 and consistency with eqs. of motion implies also

that Λ†± = Λ± so that 2k = 0.

This singles out two families of models:

• k = 0 and n ≥ 1. In this case h ∈ G0 and Λ± ∈ g0̄ and the theory can be described

just in terms of g0̄ which is of the general form u(1)⊕ . . .⊕ u(1)⊕ gss where gss is

semi-simple. The complex sine-Gordon model is the simplest case with g = su(2).

• k = 1 and n = 2. In this case σ is an involution of g that induces the gradation

g = g0̄ ⊕ g1̄, where g0̄ is a compact subalgebra of g. This decomposition satisfies the

properties

[g0̄, g0̄] ⊂ g0̄, [g1̄, g1̄] ⊂ g0̄, [g1̄, g0̄] ⊂ g1̄,

which implies that these theories are associated to symmetric spaces G/G0.

• k > 1 and n = 2k. This can be included in the above class by introducing the involution

σ̂ = σk and ĝ = g0̄ ⊕ gk̄.



IV. THEORIES WITH A MASS GAP

The perturbing potential V (h) = 〈Λ+, h−1Λ−h〉 has the following symmetry:

V (α−hα+) = V (h),

for α± ∈ G± and g± = Ker(adΛ±) ∩ g0̄. V (h) has G− ×G+ left-right symmetry.

There are flat directions of the potential⇒ the corresponding QFT will not have a mass gap.

In order to avoid this we need to eliminate these flat directions by introducing the constraints:

P+(h†∂+h) = P−(∂−hh†) = 0,

where P± are projection operators into the subalgebras g±.

The idea [Q.-H. Park’94] is to gauge these symmetry transformations. It turns out that this

can only be achieved if Λ± also satisfy g+ = g− = g0
0 and g0

0 is an abelian subalgebra.

This implies introducing two gauge-fields A± ∈ g0
0 and substituting the SWZNW [h] by a

the gauged action SWZNW [h,A±] associated to the coset G0/G0
0. In the gauge A± = 0

the equations of motion for these fields reduce to the constraints of no flat directions of the

potential above.



V. THE FINAL CLASSIFICATION

The set of theories that posses both a real and positive action and a mass gap is very limited:

i) The homogeneous sine-Gordon models:

Reality condition: h ∈ G0 and Λ± ∈ g0̄.

Mass gap condition: g0
0 is a Cartan subalgebra of g0̄

The HSG-models are associated to perturbations of the WZNW-model associated to

cosets of the form Gk/U(1)rg where G is a semi-simple compact Lie group of rank rg .

A lot of work has been carried out concerned with quantum aspects of the HSG-models:

Proof of quantum integrability: C.R. Fernández-Pousa, M.V. Gallas, T.J. Hollowood and

J.L. Miramontes, NPB499 [PM] (1997) 673.

Semiclassical spectrum: C.R. Fernández-Pousa and J.L. Miramontes, NPB518 [PM] (1998) 745.

Exact S-matrices: J.L. Miramontes and C.R. Fernández-Pousa, PLB472 (2000) 392.

TBA-analysis: O.C.A, A. Fring, K. Korff and J.L. Miramontes, NPB575 (2000) 535

Form factors: O.C.A.,A. Fring and C. Korff, PLB484 (2000) 167; O.C.A. and A. Fring, NPB604

(2001) 367; PRD63 (2001) 021701; PRD64 (2001) 085007...



ii) The Symmetric space sine-Gordon models:

Reality condition: h ∈ G0, Λ± ∈ g1̄. They are in one-to-one correspondence with the

compact symmetric spaces G/G0. The perturbation 〈Λ+, h−1Λ−h〉 is a matrix

element of the WZNW-field taken in the representation of G0 provided by [g0̄, g1̄] ⊂ g1̄

Mass gap condition: Defining the rank of the symmetric space rank(G/G0) as the

dimension of the largest abelian subalgebra of g contained in g1̄, we find that:

0 ≤ rank(G)− rank(G/G0) ≤ p ≤ min[rank(G0), rank(G)− ν]

where p = dim(g0
0) and ν = 2 or 1 depending on whether or not Λ± are independent

of each other, respectively.

The SSSG-models are associated to perturbations of the WZNW-model associated to

cosets of the form (G0)k/U(1)p where g0
0 = u(1)p. The value of p varies in the range

above and depends on the choice of Λ±. The case rank(G) = rank(G/G0)
corresponds to the so-called split models. For p = 0 they have been studied in some

detail (quantum integrability proven, classical mass spectrum found...).

O.C.A. and J.L. Miramontes, NPB581 (2000) 643; V. A. Brazhnikov, NPB501 (1997) 685



VI. THE EXACT S-MATRICES OF THE HSG-MODELS: The SU(3)2-HSG model

J.L. Miramontes and C.R. Fernández-Pousa, PLB472 (2000) 392; O.C.A, A. Fring, K. Korff and

J.L. Miramontes, NPB575 (2000) 535; O.C.A. and A. Fring, NPB604 (2001) 367

This is the simplest non-trivial model of this class. It consists of two self-conjugated particles

± which can be “attached” to the vertices of the A2-Dynkin diagram:
−+ vv

σ

The two particle S-matrices are and their structure is related to the Lie-algebras A2 and A1:

S±±(θ) = −1, S±∓(θ) = ± tanh
1
2
(θ ± σ − iπ

2
)

where σ = ln
√

(~α1·Λ+)(~α2·Λ−)
(~α1·Λ−)(~α2·Λ+) plays the role of a resonance parameter (S±∓(θ) has a

pole at∓σ − iπ/2).

For σ →∞ the S-matrices S±∓ = 1, so that the theory consists of two non-interacting

copies of the Ising model. From the Dynkin diagram point of view it is like breaking the edge

connecting the two vertices!



Several interesting features:

• The particles interact to form an unstable particle characterized by a pole of the S-matrix

in the unphysical sheet. Using the Breit-Wigner formula one can show that the mass of

this particle is
√

m1m2e
|σ|/2 for σ large and m1,m2 the masses of the stable

particles,

• the S-matrix breaks parity symmetry,

• despite its simplicity this theory is a perturbation of a WZNW-model associated to the

coset SU(3)/U(1)2 and level k = 2. This theory has c = 6/5 and the perturbing field

has dimension ∆ = 3/5. The operator content of the theory is rather involved!

All the HSG-models can be regarded as rg copies of Ak−1-minimal Toda theories (the mass

spectrum of the stable particles and bound state structure is identical to that of minimal Toda!

[R. Köberle and J. A. Swieca, PLB86 (1979) 209]). These theories then interact with each

other by means of S-matrices including unstable particle poles. The structure of these

S-matrices is dictated by that of the Lie algebra g.



ln(r/2)

O.C.A, A. Fring, K. Korff and J.L. Miramontes, NPB575 (2000) 535

The emergence of plateaux, as well as their width and height can be explained systematically

thanks to the Lie algebraic structure of the models!



The particle spectrum complicates very much as the rank r increases e.g. for the

(E6)2-HSG model:

O.C.A, J. Dreißig and A. Fring, EPJC35 (2004) 393; O.C.A. and A. Fring, Prog. Math. 237 (2005) 59.

P.E. Dorey and J.L. Miramontes NPB697 (2004) 405.



VII. SSSG-THEORIES AND SYMMETRIC SPACES

They are perturbations of WZNW-models associated to a compact group G0 associated to
an algebra g0̄ and Λ± ∈ g1̄. The decomposition g = g0̄ ⊕ g1̄ together with the
commutation relations that we have seen characterize a compact symmetric space G/G0.
In particular, the symmetric spaces of maximal rank are:

Type G/G0 rank(G/G0)=rank(G) dim(G/G0)

A2 SU(n)/SO(n) n− 1 1
2 (n− 1)(n + 2)

A1 SO(2n)/SO(n)× SO(n) n n2

A1 SO(2n + 1)/SO(n)× SO(n + 1) n n(n + 1)

B Sp(n)/U(n) n n(n + 1)

A2 E6/sp(4) 6 42

A1 E7/su(8) 7 70

A1 E8/so(16) 8 128

A1 F4/Sp(3)× SU(2) 4 28

A1 G2/SU(2)× SU(2) 2 8

S. Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1990

Here we concentrate on the case when g is simple (type I symmetric spaces)



S. Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1990

V.G. Kac, Infinite dimensional Lie algebras, 3rd ed. Cambridge University Press,1990

Type I symmetric spaces can be further subdivided into three types [A1, A2, B], which

correspond to the three types of solutions to the equation [Theorem 8.6 in Kac’s book]:

2 = r
∑̀

k=0

aisi,

where s0, s1, . . . , s` is a sequence of non-negative relatively prime integers and a0, . . . , a`

are the Kac’s labels corresponding to the Dynkin diagram of the (twisted if r 6= 1)

Kac-Moody algebra g(r).

[A1] r = 1, ak = 2sk = 2 for some k and si = 0 ∀i 6= k

[A2] r = 2, ak = sk = 1 for some k and si = 0 ∀i 6= k

[B] r = 1, ak = sk = ap = sp = 1 for some k, p and si = 0 ∀i 6= k, p

This classification allows for an easy characterization of the subspaces g0̄ and g1̄ which we

need in order to evaluate the conformal dimension of the perturbing field.



VIII. SSSG-THEORIES: CHARACTERIZATION OF SYMMETRIC SPACES

Theorem [Proposition 8.6 in Kac’s book]:

(a) Let i1, . . . , ip be all indices for which si1 = . . . = sip = 0. Then ḡ0 (the

complexification of g0̄) is isomorphic to the direct sum of an (`− p)-dimensional centre

and a semi-simple Lie algebra whose Dynkin diagram if a sub-diagram of the Dynkin

diagram of ḡ(r) consisting of vertices i1, . . . , ip.

(b) Let j1, . . . , jn be all indices for which sj1 = . . . = sjn = 1. Then the representation

of ḡ0 provided by [ḡ0, ḡ1] ⊂ ḡ1̄ is isomorphic to a direct sum of n irreducible modules of

highest weights−αj1 , . . . ,−αjn .

g0̄ =





q⊕
i=1

g(i), for type A1 and A2

q⊕
i=1

g(i) ⊕ u(1), for type B

with q = 1 or 2 and g(i) compact and simple.



A1 and A2 theories are perturbations of WZNW models related to cosets of the form,

q⊗

i=1

G
(i)
ki

/U(1)p,

where ki are the levels which are quantized according to

1
~β2

=
~Ψ2

g(i)

2
ki,

where ~Ψ2
g(i) is the square length of the long roots of g(i) with respect to the bilinear form of

g0.

c =
q∑

i=1

kidim(g(i))
ki + h∨i

− p,

where h∨i is the dual Coxeter number of g(i).



The conformal dimension of the perturbing field is given by,

∆ =
q∑

i=1

C2(g(i))/~Ψ2
g(i)

ki + h∨i
,

since the field lives in the highest weight representation of G0, the quadratic Casimir is given

by

C2(g(i)) = 〈~Λ, ~Λ + 2δ(i)〉,
where ~Λ = −~αj1 (j1 was the index for which sj1 = 1) is the highest weight and δ(i) is half

the sum of the positive roots of g(i)

W. Witten, CMP92 (1984) 455

V.G. Knizhnik and A. Zamolodchikov, NPB247 (1984) 83

P. Goddard and D.I. Olive, IJMP1 (1986) 303



IX. A SIMPLE EXAMPLE: THE SYMMETRIC SPACE SU(3)/SO(3)

In this case ḡ = A2 and ḡ0 = B1. The only way to have this is to choose r = 2 and

~s = (0, 1). The Dynkin diagrams are just

From the picture we see that the Dynkin diagram of so(3) is a sub-diagram of su(3) with
~Ψ2

A2
~Ψ2

B1

= 4. The highest weight ~Λ = −~α1 = 2~α0 = 2~β1 so C2(B1)
~Ψ2

B1

= 〈2~β1,3~β1〉
〈~β1,~β1〉

= 6

∆ =
6

k + 2
and c =

3k

k + 2



I have chosen this example because this is in fact the only SSSG-model for which an attempt

to compute the exact S-matrix has been made [V. A. Brazhnikov, NPB501 (1997) 685]. In fact

only few S-matrix elements in the semi-classical approximation (k →∞) have been

computed but they reveal important information which are consistent with some general

features of these theories which we observed in [O.C.A. and J.L. Miramontes, NPB581

(2000) 643]:

• It was proven that the SSSG-theories related to the SU(3)/SO(3) are classical and

quantum integrable. We were able to prove that for all split models with p = 0
(perturbations of (G0)k-WZNW model)

• The semi-classical mass spectrum obtained by Brazhnikov for the SO(3)k SSSG theory

reveals the presence of unstable particles in the spectrum. The analysis we performed

for all split models shows that this is likely the be the case in general

• Brazhnikov noticed that at classical level the theory possesses soliton solutions similar to

those found in the sine-Gordon model. However, due to the fact that the Homotopy group

of SO(3) is Z2 these solitons carry conserved charges living in Z2 rather than Z.



X. MASS SPECTRUM OF (G0)k-SSSG models

In our work we show that for the split models the set of constant field configurations h0 that

minimize the potential are the solutions to

[Λ+, h†0Λ−h0] = 0 with (~α · Λ+)(~α · h†0Λ−h0) > 0,

for all positive roots ~α of g. For the split models, since rank(G) = rank(G/G0), one can

choose a set of generators tα associated to each positive root ~α of g and those constitute a

basis for G0. Then it is possible to show that the set of vacuum configurations is given by

M0 = {1, eπ~µ·~t|~µ =
r∑

i=1

2ni ~αi

~α2
i

, ni = 0, 1}

Putting h = h0e
φtα

into the equations of motion one finds the mass spectrum

mα = 2m
√

(~α · Λ+)(~α · Λ−)

therefore, for each positive root ~α there is a fundamental particle described by a real field

φ(x, t) with the mass above.



One can easily see that mα+β ≥ mα + mβ , which suggests that particles associated to

composite roots might be unstable (proven only for SU(3)/SO(3)!)

In particular, if we set h = eφtα/~α2
the Lagrangian becomes

L =
1

4πβ2~α2

(
1
2
∂µφ∂µφ + m2

α(cos φ− 1)
)

,

which is the well-known sine-Gordon Lagrangian. The masses of the soliton and anti soliton

are:

Ms,s̄(~α) =
2mα

~α2πβ2

and there are n breathers n < 2
β2~α2 with masses:

Ma(~α) = 2Ms(~α) sin
(

~α2πβ2a

4

)

This suggests that the quantum version of these models might be a theory consisting of

rank(G) copies of the sine-Gordon model which interact with each other by means of

unstable particles in a way which is characterized by the structure of Lie algebra g0̄.



XI. SOME CONCLUSIONS

• The HSG- and SSSG-models are QFTs whose classical version are NAAT-theories. They

can be regarded as perturbations of WZNW-models.

• The HSG-models are perturbations of the WZNW-model associated to the coset

Gk/U(1)rg for a certain level k. Their quantum integrability has been proven, the

S-matrices are known exactly and their structure is intimately linked to the Lie algebraic

structures of g and Ak−1. They have resonance poles associated to unstable particles

and break parity invariance.

• The SSSG-models are perturbations of the WZNW-model associated to cosets

(G0)k/U(1)p for a certain level k and different values of p. For p = 0 they are just

perturbations of the (G0)k WZNW-model and they belong to a sub-class of theories

known as split models. Their quantum integrability has been proven and their classical

mass spectrum studied.



• Although a lot of work needs to be done, our present knowledge supports the idea that

the S-matrices of the latter theories will be closely related to those of the sine-Gordon

model and that they will also include unstable particles in the spectrum.

• It would be nice to construct the exact S-matrices associated to the SSSG-theories.

Once those are known many other interesting quantities could be computed, in particular

form factors and correlation functions.

• The first step could be to extend the work of Brazhnikov for the symmetric space

SU(3)/SO(3). A full understanding of this case should shed light on the general

structure.
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THANK YOU VERY MUCH!

If you are interested, you will find this talk at:

http://www.staff.city.ac.uk/o.castro-alvaredo/cv/imperial.pdf


