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I.WHAT ARE QUANTUM SPIN CHAINS?

• The best known cases are the spin 1/2 XXX and XXZ chains

(W. Heisenberg ’28, H. Bethe ’31)

H =
N∑

m=1

{
σx

mσx
m+1︸ ︷︷ ︸

X

+ σy
mσy

m+1︸ ︷︷ ︸
X

+∆
(
σz

mσz
m+1 − 1

)
︸ ︷︷ ︸

Z

}

∆ ≡ anisotropy parameter (∆ = 1 corresponds to the XXX chain)
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II.WHY STUDY THEM?

• Even though materials are 3-dimensional sometimes a 1-dimensional

approximation can be quite accurate.
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• They are 1-dimensional models, therefore easier to study than more realistic

(3-dimensional) theories. In addition, the advance of nanotechnology makes it

now possible to identify and study quasi-one-dimensional systems in the lab.

• Despite their simplicity (integrability) they are able to reproduce some realistic

features of one-dimensional magnetic material.

• The property of integrability makes it possible (a priori) to compute all relevant

physical quantities exactly.

• These computations are in general highly non-trivial mathematical problems.

For this reason lots of work have been done (especially in the last 30 years) to

develop new analytical methods.

• The development of these methods has revealed very beautiful underlying

mathematical structures (for example, quantum groups). The study of these has

become a research subject in itself.
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III.WHY CORRELATION FUNCTIONS?

• Everything that can be measured is related to correlation functions. The

knowledge of all correlation functions is the solution of any physical theory.

• For instance, quantities that are easily accessible experimentally and that

characterize well the magnetic properties of a material are the so-called structure

factors:

σαβ(q, w) =
1
N

N∑

j,j′=1

eiq(j−j′)
∫ ∞

−∞
dt eiwt〈σα

j (t)σβ
j′(0)〉.

• Correlation functions can be expressed in terms of form factors by means of an

expansion of the form

〈σα
j σβ

j′〉 ∼
∑

n

〈vac|σα
j |n〉〈n|σβ

j′ |vac〉

• Expanding correlation functions in terms of form factors has proven to be very

efficient from a numerical point of view ( J.-S. Caux, J.-M. Maillet et al. 2005).

Hence obtaining simple formulae for the form factors is essential.



'

&

$

%

IV. FORM FACTORS AND CORRELATION FUNCTIONS

OF QUANTUM SPIN CHAINS

• The objects we are interested in are correlation functions and form factors

(expectation values) of local operators, sayO = σα
j orO = σα

j σβ
k at zero

temperature.

〈O〉 =
trH(Oe−H/kT )

trH(e−H/kT )
=

T→0

〈Ψg|O|Ψg〉
〈Ψg|Ψg〉

• Here |Ψg〉 is the ground state of the system.

• In the context of integrable quantum spin chains, two main approaches exist to

compute correlation functions and form factors. They were initiated in M. Jimbo

and T. Miwa ’95 and N. Kitanine, J.-M. Maillet and V. Terras ’99 respectively, and

are both still actively pursued today. Here I will concentrate on the second one.
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• The approach (N. Kitanine, J.-M. Maillet and V. Terras ’99) combines the

algebraic Bethe ansatz technique (which provides a construction scheme for the

quantum states) and the solution of the inverse scattering problem (which allows

to write local operators on the chain in terms of the same objects the quantum

states are made of).

N. Kitanine, J.-M. Maillet and V. Terras (1999); J.-M. Maillet and V. Terras (2000) [solution

of the inverse scattering problem].

N. Kitanine, J.-M. Maillet, N.A. Slavnov and V. Terras (1999-2005) [integral representations

for correlation functions and form factors of the spin 1/2 XXZ chain (dynamical correlation

functions, roots of unity...)].

J.-S-Caux, J.-M. Maillet et al. (2005) [numerical applications].

F. Göhmann, A. Klümper et al. (2004, 2005) [correlation functions at finite T].

• Our main contribution has been the use of this technique for the computation of

form factors of mixed spin chains (different spin representations at different sites),

e.g. impurity systems and alternating spin chains.
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V. ALGEBRAIC BETHE ANSATZ

• The algebraic Bethe ansatz technique (L.D Faddeev, E.K. Sklyanin and

L.A. Takhtajan ’79) provides a closed algebraic setup which allows the

simultaneous construction of the conserved charges of a quantum spin chain

(including the Hamiltonian), and of its eigenstates.

• The starting point of this construction is a so-called R-matrix,

R
( 1
2 , 1

2 )
XXX (λ) =




λ− i
2 (σz+1)

λ−i − i
λ−iσ

−

− i
λ−iσ

+ λ− i
2 (1−σz)

λ−i


 ∈ C2 ⊗ C2

• R-matrices are solutions of the Yang-Baxter equations. These equations are a

consequence of integrability.

R
(s1,s2)
12 (λ)R

(s1,s3)
13 (λ+µ)R

(s2,s3)
23 (µ) = R

(s2,s3)
23 (µ)R

(s1,s3)
13 (λ+µ)R

(s1,s2)
12 (λ)
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• The quantum monodromy matrix is then defined as

T
( 1
2 )

0;1...N (λ; {ξ}) = R
( 1
2 , 1

2 )

0N (λ− ξN ) · · ·R( 1
2 , 1

2 )
01 (λ− ξ1)︸ ︷︷ ︸

∈ V0⊗V1⊗...⊗VN with V0=C2 and Vj=C2

=


 A(λ) B(λ)

C(λ) D(λ)


 ; t(1/2)(λ, {ξ}) = (A + D)(λ)

•We can regard the algebraic Bethe ansatz as providing a highly non-trivial map

σα
j 7→ {A,B, C, D}

The inverse scattering problem consists of finding the inverse of this map.

• Here ξ1 . . . ξN are the inhomogeneity parameters. Their presence simplifies

certain computations. However a local Hamiltonian is only obtained for

ξj = −i/2 ∀ i.
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• The transfer matrix t(1/2)(λ, {ξ}) generates the Hamiltonian of the model

H ∼
d log(t(1/2)(λ, {ξ}))

dλ

∣∣∣∣
λ=−i/2=ξ1...ξN

• For the best known cases of the spin 1/2 XXX and XXZ chains

(W. Heisenberg ’28, H. Bethe ’31)

H =
N∑

m=1

{
σx

mσx
m+1︸ ︷︷ ︸

X

+ σy
mσy

m+1︸ ︷︷ ︸
X

+∆
(
σz

mσz
m+1 − 1

)
︸ ︷︷ ︸

Z

}
acting on

H ≡ V1 ⊗ · · · ⊗ VN with Vi ≡ C2 and σα
a = σα

N+a

∆ ≡ anisotropy parameter (∆ = 1 corresponds to the XXX chain)
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• The matrices above are the Pauli matrices, which provide a 2-dimensional

representation of the su(2) algebra

σx
m =


 0 1

1 0




m

σy
m =


 0 −i

i 0




m

σz
m =


 1 0

0 −1




m

[σ+, σ−] = σz and [σz, σ±] = ±2σ± , σ± = σx ± iσy

• Since [H, t(λ)] = 0, the eigenstates of H are those of t(λ) and have the form

|Ψ({λ})〉 = B(λ1) · · ·B(λ`)|0〉 with

∏̀
k=1

λk − λj − i

λk − λj + i
= −d(λj) Bethe ansatz equations
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• Here |0〉 denotes the completely ferromagnetic reference state (all spins up)

and d(λ) is the eigenvalue of D(λ) on that state

D(λ)|0〉 = d(λ)|0〉 =
N∏

j=1

(
λ− ξj

λ− ξj − i

)
|0〉

A(λ)|0〉 = |0〉

• The knowledge of the ground state is the first step for the computation of

correlation functions and form factors.
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VI.THE INVERSE SCATTERING PROBLEM

• The next step in our problem is that of finding a realization of states and fields in

terms of the same objects {A,B, C,D}.

• For XXX quantum spin chains such realization has been found. In particular, for

the spin 1/2 case:

J.M. Maillet, V. Terras and N. Kitanine (1999); J.M. Maillet and V. Terras (2000)

σα
j =

[
j−1∏
k=1

t(
1
2 )(ξk)

]
Λ( 1

2 )
α (ξj)

[
j∏

k=1

t(
1
2 )(ξk)−1

]
α = ±, z

Λ( 1
2 )

α (u) := Tr0
[
σα

0 T
( 1
2 )

0;1...N (u)
]
, t(

1
2 )(u) := Tr0

[
T

( 1
2 )

0;1...N (u)
]
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• The traces Λ( 1
2 )

α (u) are:

Λ( 1
2 )

α (u) =





(A−D)(u)
2

, α = z

C(u), α = +

B(u), α = −

• How do we generalize this program for higher spins? There is a well understood

procedure for doing this which allows us to do the same analysis above for a

chain having arbitrary spins sj at every site j = 1, . . . , N .

• The main ingredient needed in this generalization is the fusion mechanism

developed in P.P. Kulish, N. Yu. Reshetikhin and E.K. Sklyanin ’81, A.N. Kirillov

and N. Yu. Reshetikhin ’87 which allows to construct higher spin R-matrices,

monodromy and transfer matrices in terms of their spin 1/2 counterparts.
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VII. FORM FACTORS

•We would like to compute the form factors (for spin sj )

F z,±
` (j, {µ}, {λ}) = 〈ψ({µ})|Sz,±

j |ψ({λ})〉 = 〈0| Q̀
k=1

C(µk)Sz,±
j

˜̀Q
k=1

B(λk)|0〉

• There are two basic results we need to use: the action of operators A,D on a

Bethe state

A(x) |Ψ({λ})〉 =

"Ỳ

k=1

λk − x− i

λk − x

#
|Ψ({λ})〉

| {z }
direct term

+
X̀
p=1

i

λp − x

2
4Y

k 6=p

λk − λp − i

λk − λp

3
5B(x)

Y

k 6=p

B(λk) |0〉
| {z }

indirect term

(similarly for D(x)).
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•We will also need the expression of the scalar product of an arbitrary state

〈ψ({µ})| and a Bethe state |ψ({λ})〉:

V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum inverse scattering method and

correlation functions. Cambridge University Press (1993)

A.G. Izergin ’87, V.E. Korepin ’82, N.A. Slavnov ’89.

〈ψ({µ})|ψ({λ})〉 =
det H({µ}, {λ})Q

i<j

(λi − λj)(µj − µi)

Hab =
−i

(λa − µb)

2
4Y

i6=a

(λi − µb − i)−d(µb)
Y

i6=a

(λi − µb + i)

3
5



'

&

$

%

• Employing these formulae and the reconstruction of Sz,±
j in terms of

{A,B, C,D} we have found (work in collaboration with J.-M. Maillet)

F z
` (j, {µ}, {λ}) =

φj({µ})
φj({λ})

sj det H − P̀
p=1

Q̀
k=1

(µk − µp − i) detZ(p)(ξj)

Q
i<j

(λi − λj)(µj − µi)

φj({µ}) =
jQ

k=1

Λ(sk)(ξk, {µ}); ξ±j = ξj ∓ i/2

with

Z(p)(ξj)ab = Hab for b 6= p

Z(p)(ξj)ap =

"Ỳ

k=1

λk − ξ−j − isj

µk − ξ−j − isj

#"
−2isj

(µa − ξ−j + isj)(µa − ξ−j − isj)

#
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F+
` (j, {λ}, {µ}) =

φj−1({λ})
φj−1({µ})

`+1Q
k=1

(µk − ξ−j − isj)

Q̀
k=1

(λk − ξ−j − isj)

det C(ξj)Q
i<j

(λi − λj)(µj − µi)

F−` (j, {µ}, {λ}) =
φj({µ})φj−1({µ})
φj−1({λ})φj({λ})F+

` (j, {µ}, {λ})

with

Cab(ξj)=





Hab for b 6= ` + 1
−2isj

(µa − ξ−j + isj)(µa − ξ−j − isj)
for b = ` + 1
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• This are closed formula for all non-vanishing form factors of spin operators in an

arbitrary spin sj representation.

• It holds for XXX spin chains, irrespectively of the spin representations sitting at

other sites of the chain (those only enter the functions φj−1).

• In order to obtain these formulae, highly non-trivial algebraic identities involving

the functions Λ(s)(u, {λ}) (eigenvalue of a spin s transfer matrix t(s)(u)) need

to be proven.
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VIII. CONCLUSIONS AND OUTLOOK

• The Algebraic Bethe ansatz technique, together with the solution of the inverse

scattering problem can be successfully employed to compute form factors of spin

operators for higher spins and mixed spin chains.

• Our results can be used for the study of specially interesting models, such as

impurity systems and alternating chains.

• Finally, we expect these results to be eventually useful for numerical

computations. Recent results for the spin 1/2 case (J.-S. Caux, J.-M. Maillet et al.

2005) give us strong hope that this could be the case.

• The next natural step in this direction is to compute correlation functions (work

in progress at the moment).
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2sX

k=1

h
Λ(s− k

2 ) (ξj − ik/2, {λ}) Λ( k−1
2 )

“
ξ−j − i(k − 2s)/2, {λ}

”

×
2
4Ỳ

p=1

b−1(λp − ξ−j + i(k − s))− d(ξ−j − i(k − s))
Ỳ

p=1

b−1(ξ−j − i(k − s)− λp)

3
5
3
5

= 2sΛ(s)(ξj , {λ})

where

b(λ) =
λ

λ− i
and ξ−j = ξj + i/2
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2sP
k=1

h
Λ(s−k/2) (ξj − ik/2, {λ}) Λ((k−1)/2)

“
ξ−j − i(k − 2s)/2, {µ}

”

×
"
Q

p6=a
b−1(µp − ξ−j + i(k − s))− d(ξ−j − i(k − s))

Q
p6=a

b−1(ξ−j − i(k − s)− µp)

#

× −i

(µa − ξ−j + i(k − s))2

˜̀Q
p=1

(µp − ξ−j + i(k − s))

Q̀
p=1

(λp − ξ−j + i(k − s))

3
77775

=

˜̀Q
p=1

(µp − ξ−j − is)

Q̀
p=1

(λp − ξ−j + is)

(−2is)

(µa − ξ−j + is)(µa − ξ−j − is)

• The proof can be carried out by using the explicit formulae for Λ(s)(u, {λ}) obtained

from fusion and certain properties of the function d(x).

• These complicated expressions appear as a direct consequence of the reconstruction

formulae for the operators Sz,±
j .


