
Dynamical Systems Coursework 3: Solutions and Feedback

1. (a) (
ẋ1

ẋ2

)
=

(
2 −µ
1 4

)(
x1

x2

)
+

(
1
0

)
.

[2]

(b) The fixed point is the solution of the equation Aa + b = 0, that is a = −A−1b. The fixed point is
simple if det(A) = 8 + µ ̸= 0, that is for all values of µ ̸= −8. In order to find the fixed point we
need to evaluate the inverse of A:

A−1 =
1

8 + µ

(
4 µ
−1 2

)
,

and multiply by b,

a = − 1

8 + µ

(
4 µ
−1 2

)(
1
0

)
= − 1

8 + µ

(
4
−1

)
.

[4]

(c) Now we have to choose a value of µ ̸= −8. Here people took different values (basically
everybody had either µ = 1 or µ = 0 with a few people taking other values). I will be
doing the case µ = 0 in detail. People who made a different choice and have questions
can ask them in the revision lecture.

For µ = 0, the eigenvalues of A are obtained by solving

|A− λI| =
∣∣∣∣ 2− λ 0

1 4− λ

∣∣∣∣ = (2− λ)(4− λ) = 0,

which gives solutions λ1 = 4 and λ2 = 2. The eigenvalues are real, positive and different from each
other, which means that the fixed point is an unstable node. [2]

We now just have to compute the eigenvectors. For E1 we solve,(
2 0
1 4

)(
a
b

)
= 4

(
a
b

)
,

which gives equations 2a = 4a and a+4b = 4b. This means that a = 0 and b can be taken to be any
value (except 0). If we take b = 1, we find

E1 =

(
0
1

)
.

[3]
For the other eigenvector we have to solve(

2 0
1 4

)(
a
b

)
= 2

(
a
b

)
,

which gives equations 2a = 2a and a + 4b = 2b. If we take a = 2, then b = −1, which gives the
second eigenvector

E2 =

(
2
−1

)
.

[3]

(d) The vector is just z = x − a, with a the fixed point computed in (b). Most people wrote more
in the section, but really what I was asking was just this! [2]

(e) The Jordan normal form is

J =

(
4 0
0 2

)
,

[2]
and the matrix P is

P = (E1, E2) =

(
0 2
1 −1

)
.
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[2]
This can be checked by computing

P−1AP = −1

2

(
−1 −2
−1 0

)(
2 0
1 4

)(
0 2
1 −1

)
= −1

2

(
−1 −2
−1 0

)(
0 4
4 −2

)
= −1

2

(
−8 0
0 −4

)
=

(
4 0
0 2

)
= J.

[2]
The relationship between y and z is

z = Py.

[2]
Surprisingly, lots of people got this wrong here, although they used the right relation
in the next section when writing the solutions. Many people wrote that x = Py. This
is true when the fixed point is at the origin. When the fixed point is not at the origin
the equation is not anymore ẋ = Ax. It changes to ẋ = Ax + b. In order to make this
equation look again like ẋ = Ax we introduce the vector z in terms of which ẋ = Ax + b
becomes ż = Az. Now we can use the relation J = P−1AP to transform this equation
into ẏ = Jy if we take z = Py.

(f) The general solution for this kind of fixed point is always

y = C1e
4t

(
1
0

)
+ C2e

2t

(
0
1

)
.

[3]
For z the solution is just P times the solution above, that is

z = C1e
4t

(
0
1

)
+ C2e

2t

(
2
−1

)
.

[3]
The solution for x is just z plus the fixed point, that is

x = −1

8

(
4
−1

)
+ C1e

4t

(
0
1

)
+ C2e

2t

(
2
−1

)
.

[2]

(g) See figures in the figures file. Note that the only difference between the picture in the z1 − z2

coordinates and the x1 − x2 coordinates is position of the fixed point a =

(
− 1

2
1
8

)
. Otherwise the

diagrams are identical. I awarded 2 points for the y1 − y2 diagram and 3 points for each of the other
two. [8]

2. (a) The change of variables is as usual x = x1 and ẋ = x2. This implies that

ẋ1 = x2 and ẋ2 = sinx1 − cosx1.

[2]

(b) The fixed points are the values of (x1, x2) for which the r.h.s. of both equations is zero. For the first
equation there is just one solution x2 = 0. When substituting into the 2nd equation we find that
for x2 = 0 we need sinx1 = cosx1, which corresponds to x1 = π

4 + nπ with n = 0,±1,±2 . . .. In
summary, there are infinitely many fixed points of the form(π

4
+ nπ, 0

)
with n = 0,±1,±2 . . .

[4]
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(c) The Jacobian matrix is

A(x1,x2) =

(
0 1

cosx1 + sinx1 0

)
(x1,x2)

.

[2]
The fixed point that has −π

2 < x1 < π
2 is just (π4 , 0). The Jacobian matrix at this point is

A(π
4 ,0) =

(
0 1√
2 0

)
(π
4 ,0)

[4]

(d) In order to classify the fixed point we have to compute the eigenvalues of the matrix above. The
eigenvalue equation is

λ2 −
√
2 = 0,

which has solutions λ1 = 21/4 and λ2 = −21/4. Therefore the eigenvalues are real with opposite
signs. The fixed point is a saddle. [6]

(e) In order to solve the equations we need first to find the eigenvectors.(
0 1√
2 0

)(
a
b

)
= 21/4

(
a
b

)
,

which gives b = 21/4a and
√
2a = 21/4b. As before, it is easy to see that both equations are in fact

equivalent. One possible choice of eigenvector is to take a = 1 and b = 21/4 so that

E1 =

(
1

21/4

)
.

Similarly, the second eigenvector can be found to be

E2 =

(
1

−21/4

)
.

This allows us to write down the linearized solution about this fixed point as

x =

(
π
4
0

)
+ C1e

21/4tE1 + C2e
−21/4tE2.

[8]

(f) The answer is that one would expect the non-linear system to be well approximated by the linearised
solutions. This is because of the linearisation theorem that we saw in the class, namely that in
two-dimensions the linear approximation is always good near a fixed point, except if the fixed point
is a centre Some people here confused the fixed point being a centre with the fixed point
being at the origin, which are entirely different things. [4]

3. (a) The fixed points are the solutions of

X1(x1, x2) = 1− x1 − x2 and X2(x1, x2) = x1(x
2
2 − 1)(1− x1 − x2) = 0,

clearly one solution to this is x1 + x2 = 1 which is the equation of a line in the x1 − x2 plane. The
second equation is also solved by x1 = 0 and x2 = ±1, but this does not solve the first equation, so
it does not correspond to any extra fixed points. Given that the question was telling you the
answer already, it is surprising how many people got this wrong. To have a fixed point
you need both equations ẋ1 = ẋ2 = 0 to be fulfilled at the same time. This happens for
example if x1 = 0 and x2 = 1, but then this point is in the line x2 = 1− x1 and therefore
you don’t need to consider it separately. If you do things carefully you will see that any
point you find has to be on the line x2 = 1− x1 and also that every point on the line is
a fixed point. [3]
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(b) The Jacobian matrix is

A(x1,x2) =

(
∂X1

∂x1

∂X1

∂x2
∂X2

∂x1

∂X2

∂x2

)
(x1,x2)

=

(
−1 −1

(x2
2 − 1)(1− 2x1 − x2) 2x1x2(1− x1 − x2)− x1(x

2
2 − 1)

)
(x1,x2)

[5]

(c) If we insert the condition x1 + x2 = 1 into the Jacobian matrix above we find

A(x1,2−x1) =

(
−1 −1

−(x2
2 − 1)(1− x2) −(1− x2)(x

2
2 − 1)

)
(x1,2−x1)

.

The determinant of this matrix is clearly zero, therefore the fixed points on the line are not simple.
[5]

(d) The new equation is
dx2

dx1
= (x2

2 − 1)x1,

this can be solved using separation of variables

dx2

x2
2 − 1

= x1dx1 ⇒
∫

dx2

x2
2 − 1

=
x2
1

2
+ C.

Integration in x2 gives∫
dx2

x2
2 − 1

=
1

2

∫
dx2

x2 − 1
− 1

2

∫
dx2

x2 + 1
= log

√
x2 − 1

x2 + 1
.

[2]
Therefore we find

log

√
x2 − 1

x2 + 1
=

x2
1

2
+ C ⇔ x2 − 1

x2 + 1
= ex

2
1+2C ⇔ x2 = −ex

2
1+2C + 1

ex
2
1+2C − 1

.

[2]
The constant C can be fixed using the initial condition x2 = 2 for x1 = 0. It gives

2 = −e2C + 1

e2C − 1
⇔ C = −1

2
log(3).

[2]
Therefore, the particular solution we were looking for is

x2 = −ex
2
1 + 3

ex
2
1 − 3

[2]

(e) Since x2 = − ex
2
1+3

ex
2
1−3

we see that when x1 → ±∞, x2 → −1. The function is also symmetric in x1,

that is it is invariant under the change x1 → −x1. [2]

The function is well defined everywhere except when ex
2
1 = 3 which corresponds to x2

1 = log(3).
Therefore there are two values of x1 for which this function is not well defined leading to the figure
we will see later. [2]
These features allow for a fairly accurate sketch of the function, as can be seen in the figure (see
pictures file). [2]
When the trajectory crosses the line x1 + x2 = 1 there should be a change in the direction of the
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arrows. This is because the sign of ẋ1 changes as we move from the region x1 + x2 < 1 to the region
x1 + x2 > 1. The first region is on the l.h.s. of the line and in there ẋ1 > 0, whereas in the second
region on the r.h.s. of the line ẋ1 < 0.

It is also possible to deduce this behaviour by looking at the equation for ẋ2. However, in this case we
must also consider the sign of the pre-factor (x2

2 − 1)x1 which makes things much more complicated.
For 1−x1−x2 > 0 (on the l.h.s. of the line), ẋ2 > 0 if x1 > 0 and x2

2 > 1. This explains the ascending
arrow on the r.h.s. of the picture. The arrow changes direction as it meets the line 1− x1 − x2 = 0
as on the r.h.s. of the line with x1 > 0 and x2

2 > 1 we have ẋ2 < 0. One can similarly explain all
other arrows in this way. [3]
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