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Chapter 1

Introduction

1.1 Introduction

The course is split into two distinct parts, initially looking at first order or one dimensional systems
and then moving on to two and possibly higher dimensional systems. In the introduction we give
examples where we introduce first order systems in their own right as well as use the solution of a first
order system to investigate a second order one.

The first natural question to ask is what is a Dynamical System.
We will start by defining a Nonlinear System. A Nonlinear System is a set of (one or more)

nonlinear equations. Nonlinear equations are equations where the unknown quantity that we want to
solve for appears in a nonlinear fashion. For example, if the quantity in question is a function y(t),
then terms such as y2, y dy

dt or sin y etc. would be nonlinear. More precisely, a nonlinear equation
is one where a linear combination of solutions is not a new solution. If we denote ẏ = dy

dt , then the
equation

ẏ = y(y − 1), (1.1)

is clearly nonlinear because of the y2-term.
A nonlinear system may depend on one or several parameters (such as t in our example).
There are two main types of nonlinear systems: differential equations and iterated maps. You are

already familiar with differential equations from previous years and equation (1.1) is an example of
this type. In this module we will concentrate on nonlinear differential equations (although before that
we will review a lot of results for linear equations!).

Differential equations describe nonlinear systems where the unknown function or functions depend
on continuous variables (such as t ∈ R in (1.1)). In contrast, iterated maps arise in problems where
the variables on which the solutions of the system depend take only discrete values. For example the
equation:

xn+1 = xn(xn − 1), with n = 0, 1, 2... (1.2)

is an iterated map, since it depends on a discrete variable n. If we know the value of x0 we can obtain
x1 by substituting x0 on the r.h.s. of (1.2). Once we know x1 we can find out x2 by repeating the
same “iterated” process.

A dynamical system is the same as a nonlinear system where the nonlinear equations represent the
evolution of a solution with time or some variable that may be interpreted as time. For example, if
we look at our equations (1.1) and (1.2) and interpret the variables t and n as time respectively, then
we can think of these two equations as describing a dynamical system. Indeed, if we just think of the

1



CHAPTER 1. INTRODUCTION 2

word dynamical, it suggests to us movement or change in time. The name dynamical originated in
the context of physics, where nonlinear equations are very common.

Dynamical systems and nonlinear equations describe a great variety of phenomena, not only in
physics, but also in economics, finance, chemistry and biology.

In this module we will mostly concentrate in learning the mathematical techniques that allow us
to study and classify the solutions of dynamical systems. When possible, we will also emphasize the
context in which the equations arise, namely, their interpretation.

Another way of defining a dynamical system is to say that it consists of a set of things called States
and some Rule that takes us from one state to another in some prescribed way. In the examples (1.1)
and (1.2) we can think of a “state” as the solution to the equations at a given time (e.g. a fixed value
of t or n). Once we know such solution, we can use the equations to find out what the solution is for
a later (or earlier) time.

Nonlinear equations are generally much harder to solve that linear ones. Most techniques for
solving differential equations which you have seen in the last two years only really hold for linear
equations. In fact, for many nonlinear equations it is not possible to find an explicit, analytic solution.
They can only be solved numerically.

The additional complexity of nonlinear equations often leads to extremely interesting behaviour,
such as the appearance of chaos and the relationship between nonlinear equations and fractals. For
example, the fractal that you can find at http://en.wikipedia.org/wiki/Mandelbrot set is called the
Mandelbrot set and its picture can be generated by iterating the simple map xn+1 = x2

n + c, where c
is a constant.

In this first chapter I will introduce by means of examples some of the main definitions/techniques
that are used to study dynamical systems: the definition of phase space and how to draw phase space
diagrams.

Example 1.1 - State of a system (1 dimensional)

Consider a population p governed by the differential equation

dp

dt
= p(1− p), (1.3)

where t represents time1. Given the population at some time t0 then the equation can be used to
predict the population at some later (or even earlier) time t. This problem is one dimensional with a
single state variable p, the rule that tell us how to move to another state is the differential equation
Eq 1.3. Thus the time variable t is just a parameter that traces a path from one state to another.
The set of all states is called the phase space or state space. A diagram of all the states indicating
a direction corresponding to increasing t (the independent variable) is called a phase diagram.

The phase diagram for this problem is given in Fig 1.1 where we have only shown the region p ≥ 0
1This is in fact a very famous equation known as Logistic Equation. It provides the most simple realistic model for

a population, as it accounts both for deaths and births. If we consider the simpler linear equation

dp

dt
= p,

we will quickly see that it is solved by p(t) = p0e
t, where p0 represents the initial population. Such as solution represents

a population that grows exponentially in time. Any population with infinite resources and no predators would do so,
but in most cases resources are limited and there are also predators, so it is sensible to modify the equation to account
for this. This is achieved by introducing the term −p2 on the r.h.s. This term represents a kind of competition between
individuals of the same population which tends to decrease the population in time.
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0 1
p

Figure 1.1:

since the system refers to a population which cannot realistically be negative. However a complete
analysis of the system may well include all values of p. The direction of the arrows have been as-
signed to the diagram using the fact that if the derivative of a function is positive then the function
is increasing with respect to its variable and similarly if the derivative is negative it is decreasing.
Additionally if the derivative is zero then the function is said to be stationary. At such points we
have constant (or fixed point) solutions. Indeed p = 0 and p = 1 are constant solutions to the problem.

To sketch the diagram:

• First identify and insert the stationary (fixed)points as follows.

dp

dt
= 0 ⇒ p(1− p) = 0 ⇒ p = 0, p = 1

Thus we draw a line with the two points p = 0 and p = 1 indicated. (usually with a full dot)

• In the region 0 < p < 1 we can see that
dp

dt
= p(1 − p) > 0 thus p is increasing in this region.

Hence the direction of the arrow in this region is from left to right.

• In the region 1 < p we can see that
dp

dt
= p(1− p) < 0 thus p is decreasing in this region. Hence

the direction of the arrow in this region is reversed.

The diagram reveals, without any further attempt to solve Eq 1.3, that for any initial population the
long term trend is for the population to either increase or decrease to p = 1. This is an example
of a limited growth model and the point p = 1 is called an attractor (we will see a proper definition
of this later on). The interpretation of this is that if the initial population is small it will grow
until a maximum is reached, which corresponds to an equilibrium between the amount of births and
deaths. On the other hand, if the starting population is too large, they will compete with each other
for resources, which will be scarce, so that for a while deaths will dominate births, until again an
equilibrium is reached.

As you can see, one can actually say quite a lot about the solutions to a differential equation
without necessarily solving it!

In this case, it is actually very easy to solve the equation, since we can completely separate variables
p(t) and t

dp

dt
= p(1− p) ⇔ dp

p(1− p)
= dt ⇔

∫
dp

p(1− p)
=

∫
dt = t + c, (1.4)

where c is an integration constant. Using partial fractions we have
∫

dp

p(1− p)
=

∫ (
1
p

+
1

1− p

)
dp = log p− log(1− p) = log

p

1− p
. (1.5)
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Therefore
log

p

1− p
= t + t0 ⇔ p

1− p
= et+c, (1.6)

which gives

p(t) =
1

1 + (p−1
0 − 1)e−t

, (1.7)

where p0 is the population at time t = 0 which is given by p0 = ec/(1 + ec) in terms of the original
integration constant.

Figure 1.2: The figure on the l.h.s. represents the solution p(t) for p0 = 1/2. As expected p(t) increases
with time in this case until reaching the maximum value of 1. The figure on the r.h.s. corresponds to
initial condition p0 = 2. In this case the behavior is the opposite. The function p(t) decreases with
time until reaching the asymptotic value 1.

Let us introduce the following definition:

Definition
The equation

dy

dx
= X(y)

is said to have a fixed point at y = a if and only if X(a) = 0.
Clearly y = a is also a solution of the equation.

Fixed points are also referred to as critical points.

Example 1.2 - 2-dimensional problem - Competition

Consider the following two dimensional problem that is used to model the advertising budgets of two
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competing companies2; company X spending x per year and company Y spending y per year.

dx

dt
= x(a− x) + by (1.8)

dy

dt
= y(c− y) + dx (1.9)

The equations are of course an over simplification however they contain some of the basic ideas of
modelling. We note that in the absence of the Y company the advertising budget of the X company
is given by Eq1.8 with b set equal to zero. This is precisely the type of problem we had for the single
population p in Example 1.1. Thus for a single company the advertising budget would stabilise. The
introduction of the by term in Eq(1.8) has the tendency to increase the rate of change of x. This is as
one would expect, the X company will start to spend more on advertising due to the appearance of a
competitor in the market. Similar remarks apply to the Y company.

The question we now ask is what happens to the two budgets as time evolves and what are the
affects of a, b, c and d on this behaviour. This question is quite difficult to answer, however theoreti-
cally we could produce a phase diagram in two dimensions, that is a plot of y against x, by carrying
out the following steps:

By dividing Eq(1.9) by Eq(1.8) and using
dy
dt
dx
dt

=
dy

dx
we obtain:

dy

dx
=

y(c− y) + dx

x(a− x) + by
(1.10)

Unfortunately this first order equation is quite difficult to solve. To see in detail how this works
consider the following simple example.

Example 1.3 - Phase diagram for a simple 2-dimensional system

We now consider a system whose phase diagram can be obtained using the method described in Ex(1.2).

Given:

dy

dt
= −x (1.11)

dx

dt
= y (1.12)

and applying the above method gives:

dy

dx
=

dy

dt
dx

dt

= −x

y

2It can also be interpreted as modelling competition between two populations. In that case it is a generalization of
the equation of the first example to the case a two competing species. Now the population x is not only affected by
competition amongst its members but also by the presence of y.
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Hence:

dy

dx
= −x

y
⇒

∫
y dy =

∫
−x dx ⇒ y2

2
= −x2

2
+ C ⇒ y2 + x2 = 2C

If we now consider the phase path through the point P given by x = 1, y = 2 then C = 5/2 and the
phase path is given by x2 + y2 = 5 which is a circle centered at the origin with radius

√
5 (See Fig

1.3). The trajectories in the phase diagram should also indicate the direction of increasing t. We can
do this by looking at either of the original equations Eq 1.11 or Eq 1.12. Considering Eq 1.12 at P,

we see that since y = 2,
dx

dt
= 2, which is positive. Thus x is increasing at P. This fact is indicated

on the diagram Fig 1.3(a) by the direction of the arrow. The complete phase diagram consists of the

1

2
P(1,2)

x

y

x

y

(a) (b)

Figure 1.3: (a) Single phase path (trajectory) through P(1,2) (b) Phase diagram showing several such
trajectories The arrows indicate the direction of increasing t.

set of all concentric circles centered at the origin. In other words, for any initial values of x and y we
can always find a circle (a value of the constant C) that contains the point (x, y). See Fig 1.3(b).

There are quite a lot of things that we can say about the solutions to equations (1.11)-(1.12) as
functions of t, just by looking at the phase diagram. Since all trajectories are circles we can see that
both x(t) and y(t) are periodic function of t. The reason is that no matter where we start in the circle,
as time progresses we will always eventually come back to the same point. We also see that whenever
x reaches its maximum or minimum value we have y = 0 and, similarly, y is maximum or minimum
when x = 0. This behaviour clearly reminds us of the periodic functions sine and cosine.

Indeed the solutions to equations (1.11)-(1.12) are

x(t) = A sin t, y(t) = A cos t, (1.13)

where A is a constant that is fixed by the initial conditions. Clearly x2 + y2 = A2 = constant as
we have already seen from our phase space analysis. In order for the point P = (1, 2) to be part of
the phase space trajectory we need A2 = 2C = 5, which fixes A =

√
5. The value of t for which the

solutions x(t) and y(t) pass by the point (1, 2) can be obtained by solving:
√

5 sin t = 1
√

5 cos t = 2,
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which gives

tan t =
1
2
,

that is t = 0.463648.

Example 1.4 - Second Order Differential System

We consider now a simple problem of a pendulum swinging about a smooth pivot. To simplify things
the only mass in the problem is that of the bob at the end of the pendulum arm; the arm itself is
considered to be rigid and have negligible mass compared with that of the bob. Gravity is considered
to be the only force in the problem; friction due to the pivot and air resistance are ignored. (see Fig
1.4) The equation governing the motion of the pendulum can be written as:

d2θ

dt2
= − sin θ (1.14)

where t represents time.
The position of the pendulum is clearly given by the value of θ, however this alone is not sufficient
to determine the state of the system. We would not say that a stationary pendulum with θ = π/4,
say, was in the same state as a moving pendulum with θ = π/4. We thus need to introduce the speed
at which the pendulum is swinging to completely describe the state of the system. This makes the

problem a two dimensional system with two suitable state variable being θ for position and
dθ

dt
for

speed.

To make this problem fit into the general first order approach we set x = θ and y = θ̇. The sin-
gle second order equation Eq(1.14) can then be written as two first order equations as follows:

dx

dt
=

dθ

dt
= y and

dy

dt
=

d2θ

dt2
= − sin θ = − sinx ⇒

dx

dt
= y

dy

dt
= − sinx (1.15)

Dividing the equations in Eq(1.15) gives:

y
dy

dx
= − sinx ⇒

∫
y dy = −

∫
sinx dx ⇒ y2 − 2 cos x = C (1.16)

The phase diagram for the system therefore consists of a two dimensional plot of y against x given
by Eq(1.16). Although quite difficult to produce the details are given in Fig 1.5

With reference to the phase diagram, if we trace the path of the point P as time evolves, P will
in fact move round the path in a clockwise direction. At P, x = θ = −π/2 and y = θ̇ = 1, which
represents the pendulum at the three o’clock position moving in a clockwise direction. Other points
on this curve will represent other positions and speeds of the pendulum. At the point (−π/2, 1) the
integration constant in equation (1.16) gets fixed to C = 1 and the phase space trajectory is a closed
trajectory corresponding to joining together the two functions:

y = ±√1 + 2 cosx.
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θ

smooth pivot

light rod

heavy bob

Figure 1.4: The pendulum swings under the influence of gravity, no other forces, such as friction, are
considered. The angle theta is measured as positive in the clockwise direction

Each of these trajectories ends when y = 0, which in this case corresponds to x = ±2π/3. For larger
values of x the function under the square root becomes negative and therefore there is no solution y
for such values of x. As in the previous example, when we had circular trajectories in phase space, we
find once again that if our system starts at initial conditions corresponding to point P in the figure, it
will eventually return to the same point (that is the original position and angular speed), representing
a cyclic or swinging motion of the pendulum3

In contrast if the system starts at the point Q, θ does not return to it original value, indeed it
continues to increase. This will represent a start up situation where the pendulum is given a sufficiently
large value of θ̇ (hit really hard to set it in motion) to make it continually rotate about its pivot rather
than just swing. In terms of the function (1.16) what this means is that the integration constant C is
now sufficiently large so that the function y never becomes zero. An example would be to take again
x = θ = −π/2 and y = θ̇ = 3. In this case C = 3 and we have again two solutions:

y = ±√3 + 2 cosx.

Now the function under the square root is never zero and never negative. This means that in Fig. 1.5
the two solutions for y (with the plus and minus sign) do not meet anymore. Physically this means
that if the pendulum starts with positive velocity θ̇ (clockwise direction) it will always have positive
velocity (it will always move in the clockwise direction). If it starts with negative velocity it will
always have negative velocity (anticlockwise direction).

Although the trajectories do not seem closed anymore, there is still periodicity in the sense that if
we keep drawing our solution for larger or smaller values of x it will keep repeating itself (it oscillates
periodically).

The phase diagram again gives us qualitative information regarding the system without actually
solving the equation fully. Indeed obtaining θ in terms of t is not possible using elementary functions

3You will see that the smaller the initial value of y = θ̇, the more the trajectories look like a perfect circle. This
can be explained by noticing that for x = θ small, the original equation can be approximated by approximating the
sine function as sin θ ≈ θ (1st term in the Taylor expansion about θ = 0). If we do this the system of equations (1.15)
becomes exactly the same as in the previous example.



CHAPTER 1. INTRODUCTION 9

(θ)

(θ̇)

P

π−π

Q

x

y

dx
dt = y ⇒ x increasing when y > 0

Figure 1.5: Phase diagram for θ̈ = − sin θ; arrows indicate direction of increasing t

General Result

Given:
dx

dt
= X1(x, y) and

dy

dt
= X2(x, y)

the phase diagram for this system can be constructed by solving the first order equation:

dy

dx
=

X2(x, y)
X1(x, y)

Whether we are considering a one dimensional system given by a single first order differential equation
or whether we are considering a genuine second order system it will be essential that we can solve
simple first order differential equations. The next section reviews two of the most common methods.

1.2 First Order Differential Equations

This section is split into three parts, namely the definition of what is meant by a solution to a
differential equation, how to obtain a rough sketch of the solution and finally how to solve exactly two
type of first order differential equation.

1.2.1 Definition of Solution

Definition
Let X(x, y) be a real valued continuous function of the real variables x and y defined in some open
4 domain D of R2. A continuously differentiable function y(x) with x in some interval I such that

4In R2 this can be thought of as an area that does not include its boundary
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dy(x)
dx

= X(x, y(x)) is said to be a solution of the equation
dy

dx
= X(x, y).

Perhaps one of the most important facts to note is that even if X(x, y) is a reasonable function a
solution to the differential equation may, if it exists, only be defined on some interval of R rather than
for all values of x. This definition always assumes that we are using the maximum possible interval
when considering a solution.

As an example of this definition consider the problem solved in Eg 1.3, namely:

dy

dx
= −x

y
x = 1, y = 2

• Here X(x, y) = −x

y
, hence a suitable domain is any set excluding y = 0. Indeed the largest

possible domain is the set D =
{
(x, y) ∈ R2 : y 6= 0

}
.

• As we saw the solution was y2 + x2 = 5 hence y = ±√5− x2 The definition of the solution
requires that y(x) is a function, which means that given x we must only have one value of y.
Thus we cannot have a ± sign in the solution. Clearly y = +

√
5− x2, since with the negative

sign y will not equal +2 at x = 1.

• Since y = +
√

5− x2, x is restricted to the range given by 0 ≤ (5−x2) in order for the square root
to be valid. Since y 6= 0, x is restricted further to 0 < (5− x2), that is to say, −√5 < x <

√
5.

The interval I therefore is given by I = (−√5,
√

5). 5

Thus graphically the solution to this problem is the part of the circle in Fig 1.3(a) above the x-axis.

Example 1.5

Consider:
dy

dx
= −y

x
y = 1 and x = 1 (1.17)

Solving gives: ∫
dy

y
= −

∫
dx

x
⇒ ln y = − lnx + C

⇒ ln(xy) = C ⇒ xy = eC = A

Applying the conditions x = 1, y = 1 gives the solution as y =
1
x

. The graph of y =
1
x

is in two

halves, see Fig 1.6, however the only portion that gives a solution through (1, 1) is the one defined on
the interval I = (0,∞).

5The open brackets ( ) are used to indicate that the end points of the interval are omitted. To include the end point
we use the square brackets [ ]. eg (1, 2) stands for the interval 1 < x < 2 and [1, 2] for 1 ≤ x ≤ 2
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1

1
x

y

solution through (1, 1)
y =

1
x

Figure 1.6: The solution to Eq 1.17 is the portion in the positive quadrant defined on the interval
I = (0,∞)

1.2.2 Solution by sketching

This is a method of obtaining a very rough sketch of the solutions to the equation
dy

dx
= X(x, y).

Recalling that
dy

dx
is the gradient of the tangent to y(x), we can use X(x, y) to construct a line

segment with gradient equal to that of a solution through any considered point. Consider the lattice
of points {(xi, yi) ∈ R2 : i = 0, 1 . . . n} and at each point construct a small line segment with gradient
equal to X(xi, yi) and centred on the point. It therefore follows that each line segment is a small
tangent to the solution through each point. Fig 1.7 shows the construction of such line segments

x

y

Figure 1.7: Velocity/vector field generated from dy/dx = −x/y. The trajectories can clearly be seen
to be concentric circles about the origin as in Fig 1.3

for the system considered in Example 1.3 and illustrated in Fig 1.3. It is clear that from Fig 1.7 it
is possible to sketch freehand the trajectories, ensuring at all times that the curves run in the same
direction as nearby line segments. A good strategy for constructing the sketch is to start at the edge
of the diagram between two line segments, drawing each curve with a slope somewhere between the
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slopes of each pair of segments.
Producing a diagram such as that on Fig 1.7 is a rather painstaking process and therefore is not

very practical to do this by hand. That is why I will be providing you with an Excel Macro that is
going to do such drawings for you (see the module’s web-site).

1.2.3 Exact solution of first order differential equations

In this section we consider two elementary methods for solving first order differential equations.
Namely the methods of separation of variable and integrating factor. As we shall see these
can only be applied to a restricted set of equations but nevertheless prove to be extremely useful.

Separation of Variable We have already encountered this method above in Example1.1 and Ex-
ample 1.3. The general result is given by:

dy

dx
= h(x)g(y) then

∫
dy

g(y)
=

∫
h(x) dx (1.18)

Clearly to obtain an exact solution to the problem it is now necessary to carry out the integration,
this we know may not be a trivial task.

Example 1.6

Given
dy

dx
= x tan y D = {(x, y) ∈ R2 : y 6= (2n + 1)π/2, n = 0,±1,±2 . . . }

find the solution such that y = π/4 at x = 0, carefully specifying its interval I of definition. Since
the righthand side of the equation is the product of two functions, one in x and one in y we use the
method of separation of variable to give:

∫
dy

tan y
=

∫
x dx ⇒ ln(sin y) =

x2

2
+ C ⇒ y = sin−1(Aex2/2)

The condition y = π/4 at x = 0 gives the solution y = sin−1

(
ex2/2

√
2

)
where we have assumed the

principal value of sin−1 in order to give y = π/4 at x = 0.

We now ask the question: is this expression valid for all values of x? The function sin−1 has do-
main equal to the interval [−1, 1] which implies that:

−1 ≤ ex2
/2√
2
≤ 1 ⇔ ex2

/2√
2
≤ 1 ⇔ ex2/2 ≤

√
2 ⇔ x2 ≤ 2 ln

√
2 = ln 2

Hence:
−
√

ln 2 ≤ x ≤
√

ln 2

Finally we note that since y = ±π/2 is not in the domain of the problem we need to exclude the
possibility of x = ±

√
ln 2.
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x

y

π
2

( )

+
√

ln 2−
√

ln 2

Figure 1.8:

Thus I = (−
√

ln 2, +
√

ln 2). See Fig 1.8

Integrating factor
We now consider the first order linear differential equation in the standard form: 6

dy(x)
dx

+ P (x)y(x) = Q(x) (1.19)

From Elementary Calculus we have that if we multiply this equation by R(x) = exp(
∫

P (x) dx) then
we obtain:

d R(x)y(x)
dx

= R(x)Q(x)

Hence

R(x)y(x) =
∫

R(x)Q(x) dx + C ⇒ y(x) =
1

R(x)

{∫
R(x)Q(x) dx + C

}

After carrying out the integration the arbitrary constant C is calculated using a given initial condition
such as y = y0 at x = x0 that is to say y(x0) = y0.

An alternative method of automatically including the initial condition in the calculation rather
than applying it later in order to determine C is to carry out a definite integral with the lower limit
equal to x0 and the upper limit set to the x. Doing this we obtain:

d R(x)y
dx

= R(x)Q(x) ⇒
x∫

x0

d R(x)y
dx

dx =

x∫

x0

R(x)Q(x) dx

Hence

[R(x)y(x)]xx0
=

x∫

x0

R(x)Q(x) dx ⇒ R(x)y(x)−R(x0)y0 =

x∫

x0

R(x)Q(x) dx

Thus

y(x) =
1

R(x)



R(x0)y0 +

x∫

x0

R(x)Q(x) dx





6to emphasise the dependence on x we have denoted y as y(x)
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The following example will be used to demonstrate both these methods;

Example 1.7

Given y = π at x = π solve the following differential equation:

dy

dx
− y

x
= x cosx x 6= 0 (1.20)

Calculating the integrating factor:

R(x) = exp
{∫

−1
x

dx

}
= exp{− ln x} =

1
x

Thus multiplying Eq 1.20 by R(x) gives:

d

dx

(
1
x

y

)
=

1
x

x cosx = cosx

Thus
y

x
=

∫
cosx dx + C ⇒ y = x sinx + Cx

The condition y(π) = π implies that C = 1, thus the solution is given by y = x(sinx + 1). It appears
that this solution is defined for all x, however the domain does not contain x = 0, thus for the solu-
tion to be defined on an interval that excludes x = 0 but includes x = π we are restricted to I = (0,∞).

Using the alternative method:

x∫

π

d

dx

(
1
x

y

)
dx =

x∫

π

cosx dx ⇒
[
y(x)
x

]x

π

= [sinx]xπ

Thus
y

x
− π

π
= sinx− sinπ ⇒ y = x(sinx + 1)

which is the same result as before.

1.2.4 Existence and uniqueness

We end this section with a short statement regarding the existence and uniqueness of our solution.
Given an equation solutions may not always exist and if they do there may be more than one solution
satisfying a given initial condition. A first order differential equation with the condition y(x0) = y0

is referred to as an initial value problem. The following theorem provides a set of sufficient condi-
tions for the initial value problem to have a unique solution. The conditions of the theorem are not
necessary, that is to say there may well be equations with unique solutions that do not satisfy all the
conditions.

Theorem
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Let X(x, y) be defined on some open 7 domain D ⊆ R2 such that both X(x, y) and
∂X(x, y)

∂y
are

continuous on D with the point (x0, y0) ∈ D. In such a case there exists a unique solution y(x) of
dy

dx
= X(x, y) defined on some interval I with x0 ∈ I such that y(x0) = y0.

We will not pursue this further but always assume that there does exist a unique solution to all
our problems. As one would expect this theorem can be extended into higher dimensions.

7Roughly speaking we should think of an open set in R2 to be a region of R2 without its boundary eg x2 + y2 < 1 is
the open set represented by the interior of a unit circle centred at the origin



Chapter 2

First Order Autonomous Dynamical
Systems

2.1 Introduction

In chapter 1 we saw that a first order differential equation could either be used to describe a one
dimensional problem such as the population model or be used to create a phase diagram for a two
dimensional system as found in Example 1.3. In this chapter we look at the one dimensional systems
in their own right and concentrate our attention to systems that do not depend explicitly on the
independent variable. Such systems are referred to as autonomous.

Definition
The equation

dy

dx
= X(y) is said to be autonomous as its righthand side does not depend explicitly on x.

Example 2.1

Consider the equation:
1
k

dy

dx
= a2 − y2 k > 0 (2.1)

This equation can be used to model the free fall of an object through the air taking into account
gravity and air resistance. In such a case y would stand for the speed of the object and x time of fall.
Before trying to solve the equation we will construct its phase diagram by identifying regions where
y is increasing , decreasing or neither. From such a diagram we are able to make certain qualitative
statement about the system, such as given the value of y at some value of x what happens to y as x
increases. The system is one dimensional thus the phase diagram is just a straight line. The phase

a−a
y

(1) (2) (3)

0

Figure 2.1: a is assumed to be positive. The three regions y < −a, −a < y < a and y > a are labelled
(1), (2) and (3) respectively.

16
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diagram Fig 2.1 is constructed as follows:

• mark on the diagram the points where y is stationary. This occurs where 1
k

dy
dx = a2 − y2 = 0.

Thus we mark y = +a and y = −a

• In region (1) y < −a thus dy/dx < 0 and hence y is decreasing with respect to x. This is
indicated on the diagram by the first arrow.

• In region (2) −a < y < a thus dy/dx > 0 and hence y is increasing with respect to x. Again
this is indicated using an arrow

• Similarly in region (3) y is decreasing which again is indicated by the arrow.

Fig 2.1 is the phase diagram for the system. We see that if the system starts with any value of y greater
than −a the system will tend to the fixed value y = a, either monotonically increasing or decreasing
to this value as appropriate. With an initial value of y less than −a the system moves away from −a
towards −∞. The precise interpretation of the diagram will always depend on the physical situation
being modelled. For the falling object problem the equation is actually only valid for y ≥ 0 thus the
fact that all starting values greater or equal to zero tend to +a is interpreted physically as the terminal
velocity of a falling object. ie all falling objects reach a maximum speed known as the terminal velocity.

The phase diagram can also be helpful in sorting out the different types of solutions obtained by
starting in each of the three regions. In this problem we can actually obtain the exact solution to
the differential equation, though in most realistic problems this is not possible and we need to resort
to a numerical method. In such a case the phase diagram is then useful in providing us with prior
knowledge of the solution.

Exact solution
Using the general starting condition y(x0) = y0 and the method of separation of variables, integrating
Eq 2.1 gives:

y∫

y0

dy

a2 − y2
=

x∫

x0

k dx ⇒ 1
2a

y∫

y0

(
1

a− y
+

1
a + y

)
dy =

x∫

x0

k dx

Which on integration gives: [
1
2a

ln
(

a + y

a− y

)]y

y0

= [kx]xx0

Hence

ln
(

a + y

a− y

)
− ln

(
a + y0

a− y0

)
= 2ka(x− x0)

⇒ ln
{(

a + y

a− y

) (
a− y0

a + y0

)}
= 2ka(x− x0)

⇒ a + y

a− y
=

(
a + y0

a− y0

)
e2ka(x−x0)

After some manipulation this gives:

y = a

{
(a + y0)e2ka(x−x0) − (a− y0)

}
{
(a + y0)e2ka(x−x0) + (a− y0)

} (2.2)
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Our task now is to plot the solution obtained in Eq 2.2 for values of y0 in each of the three regions
identified in Fig 2.1.

First however note the following:

• The solution depends on (x − x0), ie the difference between x and its starting value. If in an
example x represented time, the solution is seen to only depend on the amount of time elapsed
from the beginning and not the actual time on your clock or date on your calendar. This property
is a consequence of the problem being autonomous, indeed it can be proved that all solutions
of an autonomous system can be expressed in terms of (x − x0). Graphically this means that
all the solutions will essentially be the same; in each of the three regions any one solution is a
translation of the other.

• With k and a assumed to be greater than zero the formula in Eq(2.2) implies that y tends to +a
as x tends to infinity and to −a as x tends to minus infinity for all values of y0, with of course
the exception of y0 = ±a, which are constant solutions. However as seen below since a solution
of a differential equation can only be defined on an interval it may not be meaningful to carry
out these limits for some starting values y0.

Graph in region (2) −a < y0 < +a
With y0 in this range the denominator of the solution in Eq 2.2 can never be zero as it consists of the
sum of two positive terms for all values of x. Thus the interval of definition in this range is given by
I = (−∞,+∞). The graph is given in Fig 2.2; we note that the solution has the expected behaviour
as x → ±∞.

+a

−a

x....
....
...................

x0

y0

Figure 2.2: Solution of Eq 2.2 for −a < y0 < a; I = (−∞, +∞)

Graph in region (3) a < y0

In this region (a − y0) is negative and (a + y0) is positive, hence the denominator of the solution in
Eq 2.2 will vanish at some value of x. Denoting this value of x as x∞ it is given by:

(a + y0)e2ka(x∞−x0) + (a− y0) = 0

Solving for x∞ this gives:

x∞ = x0 +
1

2ak
ln

(
y0 − a

y0 + a

)
(2.3)
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Also in this range we observe that y0−a < y0 +a thus
y0 − a

y0 + a
< 1 which means that the ln term in Eq

2.3 is negative and hence we can deduce that x∞ is to the left of x0. The interval of definition can not
include x∞ but must include x0, therefore I = (x∞,∞).(see Fig 2.3) With this interval of definition it
is not meaningful to consider the limit of Eq(2.2) as x → −∞. Indeed as x decreases from x0 towards
x∞ the solution y tends to +∞ and not −a. The limit of Eq(2.2) as x → +∞ is meaningful. As
expected, and as can be seen in Fig.(2.3), y tends to +a as x tends to ∞.

....

....

....

....

.....................

x∞ x0

a

y0

y

x

Figure 2.3: Solution of Eq 2.2 for a < y0; I = (x∞,∞)

Graph in region (1) y0 < −a
In this region (y0 +a) is negative and (a− y0) is positive, hence the denominator of the solution in Eq
2.2 will again vanish for some value of x. As before, denoting it as x∞, it is given by Eq 2.3. However

this time
y0 − a

y0 + a
> 1 and hence the ln term in Eq 2.3 will be positive and hence x∞ will be to the

right of x0. In this case the interval of definition is given by I = (−∞, x∞) See Fig 2.4.

....

....

....

....

....

.......................

x0 x∞

y0

−a

y

x

Figure 2.4: Solution of Eq 2.2 for y0 < −a; I = (−∞, x∞)

We now make the following observations:
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• The starting value y0 clearly influences the solution greatly, changing its shape and interval of
definition.

• The solution depends on (x − x0) which means that the solutions do not change shape as we
vary x0 but simply translate to the right or left. This property is common to all autonomous
systems. Physically, treating x as time, it is saying that the system performs in an identical
manner no matter when you start.

• The points y = −a and y = +a are special to this problem. Not only are they the values of y at

which
dy

dx
= 0 but they are also constant (fixed) solutions of the equation. Clearly the original

equation Eq 2.1 is satisfied by substituting y = ±a into both sides.

x

y

y = a

y = −a

........................... ................................................................

...

...

...

...

...

.............................y0

y0

y0

x0 x∞x∞

Figure 2.5: Complete Solution of Eq 2.2 with y0 shown in each of the three regions.

2.2 Classification of Fixed Points

In the introduction, Sec.2.1, we considered an example which demonstrated two different types of fixed
point. The one at y = a attracted solutions, in this sense it is considered as stable. The other fixed
point at y = −a repelled solutions and will be thought of as unstable. To consolidate these ideas we
make the following definitions.

Definition - stable
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A fixed point P 1 is stable if all trajectories2 that start close to P stay close to P as x increases.

Additionally a fixed point is asymptotically stable if all trajectories close to P tend to P as x →∞.

Definition - unstable
A fixed point is unstable if it is not stable.

The above definitions are not rigorous but they are applicable to fixed points of any dimensional
autonomous system.

Definition - attractor

For a one dimensional system an asymptotically stable fixed point is called an attractor.

Definition - repellor
For a one dimensional system a fixed point P such that all trajectories close to P move away from P ,
as x increases, is called a repellor.

Definition - shunt
For a one dimensional system a fixed point P such that in every neighbourhood of P some trajectories
are attracted to P and some are repelled by P is called a shunt

In the final example of Sec. 2.1 the fixed point at y = +a is an attractor and is therefore stable;
the fixed point at y = −a is a repellor and therefore unstable.

Example 2.2

Obtain and classify the fixed points of
dy

dx
= y2(y2 − 1). Hence draw the phase diagram.

• The fixed points are located by solving y2(y2 − 1) = 0 which gives y = 0, y = +1 and y = −1.
Enter these onto the phase diagram in Fig 2.6. This splits the phase diagram into four distinct
regions.

• In region (1) dy/dx = y2(y2 − 1) > 0, thus y is increasing. This is indicated by the direction of
the arrow from left to right.

• In regions (2) and (3) dy/dx = y2(y2 − 1) < 0, thus y is decreasing in both these regions. This
is indicated by the direction of the arrows from left to right.

• In region (4) dy/dx = y2(y2 − 1) > 0, thus y is again increasing and indicated by the direction
of the arrow.

Thus we see from the direction of the arrows that y = −1 is an attractor and therefore stable;
y = +1 is a repellor and therefore unstable. The fixed point at y = 0 is a mixture of attractor and

1P is a point in the phase plane; in 1-dimension P is a point on the straight line, in two dimensions it is a point in a
plane.

2a trajectory is a path in the phase plane; in 1-dimension a trajectory is a part of the real line, in 2-dimensions it is
a curve, both depend on the independent variable in the problem.
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attractor

+10−1

shunt repellor
(1) (2) (3) (4)

Figure 2.6: Phase diagram for dy/dx = y2(y2 − 1)

repellor in all its neighbourhoods, therefore it is a shunt. A shunt is not stable since not all trajec-
tories close to it stay close. Indeed as we see, if y is to the left of 0 it will move way from 0 towards −∞.

Additionally we remark that y = 0, y = 1 and y = −1 are solutions of the equation.

2.3 Linearisation of a 1-dimensional systems

Classifying fixed points and obtaining solutions to a given problem can in general be quite difficult.
We look now at a method that enables us to consider the system in the neighbourhood of its fixed
points. By considering a simplified version of the problem in each of these neighbourhoods we can
classify the fixed points and obtain approximations to the solutions.

2.3.1 The Linear Equation

Consider the equation:
dy

dx
= X(y) (2.4)

and let y = a be a fixed point; ie X(a) = 0. Let us introduce a new variable z = y − a, that is
y = z + a. We can now rewrite the original differential equation in terms of this new variable z as:

dz

dx
= X(z + a). (2.5)

Since we are interested in studying the behaviour of the system near the fixed point (y very close to
a), this means that the values of z we are interested in are very small (since z = y − a). Therefore, it
makes sense to expand X(z + a) using Taylor’s expansion about z = 0.

Thus:
dz

dx
= X(z + a) = X(a) + zX ′(a) +

z2

2
X ′′(a) + . . .

Since we wish to look at the problem close to y = a we will ignore terms in powers of z2 and above.
Also since a is the fixed point X(a) = 0. Thus the linearisation of Eq 2.5 about y = a becomes:

dz

dx
= zX ′(a) (2.6)

This differential equation has a solution which is defined for all x, that is to say the interval of definition
for the linearised case is (−∞, +∞). This may be different from the original problem where solutions
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may have only been defined on some interval I of the real line. The general solution to (2.6) is simply:

z = AeX′(a)t, (2.7)

where A is a constant that depends on the initial conditions of the problem.
Once we have the solution for z we can find the solution for y by simply using the definition

y = z + a, so
y = a + AeX′(a)t. (2.8)

Example 2.3

As a first example consider the Eq. (2.1) at the beginning of this chapter with a = 2 and k = 1,

namely,
dy

dx
= 4 − y2. It has two fixed points at y = ±2. Consider now the linearisation of this

equation about each of these points in turn. With reference to Eq. (2.5), in this example X(y) =
4− y2 ⇒ X ′(y) = −2y. Thus at each of the two fixed points we have:

• About y = 2.

About this point y = 2 + z and the linearisation is given as:

z′ = X(2)z ⇒ z′ = −4z ⇒ z = Ae−4x ⇒ y = 2 + Ae−4x

Introducing the initial condition y = y0 at x = x0 and calculating A gives:

y = 2 + (y0 − 2)e−4(x−x0)

Consider now the point P in Fig.(2.7). The curves that go by P represent the exact and linearised
solutions to the equation for (y0 − 2) > 0. In this region the linearised solution approaches 2
from above as x →∞ and tend to +∞ as x → −∞. Note that as stated above this is defined for
all x. Similar remarks apply if the linear solution is started in either of the other two regions.

• At y = −2

About this point y = −2 + z and the linearisation is given as:

z′ = X(−2)z ⇒ z′ = 4z ⇒ z = Ae4x ⇒ y = −2 + Ae4x

Introducing the initial condition y = y0 at x = x0 and calculating A gives:

y = −2 + (y0 + 2)e4(x−x0)

We now consider this solution for the case y0 < −a, the point Q in Fig.(2.7). As (y0 + 2) < 0
the solution approaches −2 from below as x → −∞ and tend to −∞ as x → +∞.

Note that both these curves are shown plotted in Fig.(2.7). The important thing to note is that a
linear solution is only close to an exact solutions when it is close to its associated fixed point. For
example the linear solution about y = 2 through P is seen only to be close to the exact solution near
y = 2.
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x

y

y = 2

y = −2

........................... ................................................................

..

..

..

..

..

..

..

..

............................y0

y0

y0

x0 x∞x∞

linearisation about y = 2

*

linearisation about y = −2
1

P

Q

initially through P

initially through Q

Figure 2.7: Solutions of dy/dx = 4− y2; 3 starting values for y(x0) = y0 in the three regions y0 < −2,
−2 < y0 < 2 and 2 < y0 ; two linearisations, one about y = 2 initially passing through P and one
about y = −2 initially passing through Q; Exact solution shown in thick line, linear approximations in
thin line, asymptotes in dashed line.

Example 2.4

As a second problem consider the population model from Chapter 1, namely
dp

dt
= p(1 − p). If all

values of p are considered this has an attractor at p = 1 and a repellor at p = 0. The phase diagram
is given by Fig 2.8 The phase diagram for this problem is the same as Fig 2.1, the phase diagram
for the problem considered in Ex(2.3). If the differential equation is solved in the three regions p < 0,
0 < p < 1 and 1 < p, three different solutions are obtained. Again not all the solutions are defined for
all values of t.

The solution satisfying the general initial condition p(t0) = p0 is given by:

p =
p0e

(t−t0)

(1− p0) + p0e(t−t0)

Again we see that the solution depends on (t − t0), a property of the equation being autonomous.
Values of t∞ are found by equating the denominator equal to zero for p0 in each of the three regions.
The graph of all the solutions is given in Fig 2.9

Let us now consider the linearisation of this problem about its two fixed points. In this example
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attractorrepellor

0 1
p

Figure 2.8: Phase diagram for dp/dt = p(1− p)

X(p) = p(1−p) thus X ′(p) = 1−2p and hence X ′(0) = 1 and X ′(1) = −1. From the sign of X ′(p) we
can say immediately that p = 0 is a repellor and p = 1 is an attractor. We now look at the solutions
of the linearised problem:

• About the point p = 0:

z′ = X ′(0)z = z ⇒ z = Aet

Given that p = p0 at t = t0 and remembering that in this case p = z , we get the linearised
solution:

p = p0e
(t−t0)

This is plotted in Fig 2.9 with the initial point being at Q (R or P could equally well been
chosen as the initial point to illustrate this solution). Note that the exact solution and this
linear approximation get closer as p approaches zero.

• About the point p = 1:

z′ = X ′(1)z = −z ⇒ z = Ae−t

Given that p = p0 at t = t0 and remembering that in this case p = z + 1 , we get the linearised
solution:

p = 1 + (p0 − 1)e−(t−t0)

This is plotted in Fig 2.9 where, in this case, the initial point is taken to be at P . Note that the
exact solution and this linear approximation get closer as p approaches 1.
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t

p

t0

...........................................................................................

.........................

(p0)

(p0)

(p0)

t∞t∞

p = 1

linear approximation about p = 1

1

linear approximation about p = 0

I

P

Q

R

initially through Q

initially through P

Figure 2.9: Solutions of dp/dt = p(1− p); 3 starting values for p(t0) = p0 in the three regions p < 0,
0 < p < 1 and 1 < p ; two linearisations, one about p = 1 initially passing through P and one about
p = 0 initially passing through Q; Exact solution shown in thick line, linear approximations in thin
line, asymptotes in dashed line.

2.3.2 Classification using linearised equation

An interesting further use of the linearisation about a fixed point is that it can also be employed to
classify the corresponding fixed point. Consider again an equation dy

dx = X(y) and let y = a be a fixed
point.

The linearisation equation:
dz

dx
= zX ′(a). (2.9)

can be written in terms of the variable y as

dy

dx
= (y − a)X ′(a). (2.10)

As we know, classifying the fixed point a means looking at the sign of dy
dx in the regions y > a and

y < a. After linearisation, this sign is determined by the term (y − a)X ′(a).

• If X ′(a) > 0, then dy
dx > 0 for y > a and dy

dx < 0 for y < a. Therefore the fixed point y = a is a
repellor.
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• If X ′(a) < 0, then dy
dx > 0 for y < a and dy

dx < 0 for y > a. Therefore the fixed point y = a is an
attractor.

• If X ′(a) = 0 this means that linearisation is not a good enough approximation in this case. The
nature of the fixed point can not be determined from the linearised equation.



Chapter 3

Solution of Second Order Linear
Systems

3.1 Introduction

In Chapter 2 we considered a general 1-dimensional autonomous system which we investigated using
the method of linearisation. This enabled us to classify the fixed points using just the linearisation,
provided the fixed points were repellors or attractors, and additionally find good approximate solu-
tions to the equation close to the fixed points. For the 1-dimensional system there is very little to
say, however the methodology can be extended into higher dimensions. We now look at 2-dimensional
systems and as before we will start by considering the linear autonomous systems. First however we
review the types of 2-dimensional systems we might consider:

Review of types of 2-dimensional problems

The general format of the 2-dimensional systems we are considering is:

dx1

dt
= X1(x1, x2, t)

dx2

dt
= X2(x1, x2, t) (3.1)

and using a vector notation we write:
dx

dt
= X(x, t)

where x =
(

x1

x2

)
and X(x, t) =

(
X1(x1, x2, t)
X2(x1, x2, t)

)
.

Example 3.1

dx1

dt
= 33− 10x1 − 3x2 + x2

1 + t = X1(x1, x2, t)

dx2

dt
= −18 + 6x1 + 2x2 − x1x2 + t2 = X2(x1, x2, t)

28
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Example 3.2

d2θ

dt2
= − sin θ

Setting x1 = θ and x2 = dθ/dt this equation can be rewritten as:

dx1

dt
= x2 = X1(x1, x2, t)

dx2

dt
= − sinx1 = X2(x1, x2, t)

Example 3.3

dx1

dt
= 33− 10x1 − 3x2 = X1(x1, x2)

dx2

dt
= −18 + 6x1 + 2x2 = X2(x1, x2)

In the above we see that in Example 3.1 t is contained explicitly in the righthand side of both the
equations whereas in the other two examples t does not appear. We make the following definition:

Definition
The system

dx

dt
= X(x)

is said to be autonomous since t (the independent variable) is not contained explicitly in the right-
hand side.

Note:

• Example 3.1 is non-autonomous and non linear. It is said to be non-linear due to the x2
1 term

and the x1x2 term, though just one of these terms would have been sufficient to make the system
non-linear.

• Example 3.2 is autonomous and non-linear. The non-linearity is due to the sinx1 term.

• Example 3.3 is autonomous and linear and can be written in the form



dx1

dt

dx2

dt


 =



−10 −3

6 2







x1

x2


 +




33

−18
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We make the following definition:

Definition
The system:

dx

dt
= A(t)x + b(t),

where x and b are in R2 and A(t) is a 2× 2 matrix is called an 2nd order linear system

If in addition A and b are constant the system is also autonomous. Example 3.3 is an autonomous
linear system.

Fixed points
As with the one dimensional system we define the idea of a fixed point of the autonomous equations

as follows:

Definition
A fixed point of the system:

dx

dt
= X(x) (3.2)

is a constant vector a such that X(a) = 0. We note that x = a is also a solution of Eq 3.2.

• In Example 3.2 the fixed points occur at x2 = 0 and − sinx1 = 0 ⇒ x1 = nπ. Thus the
fixed points are on the x1-axis at multiples of π.

• In Example 3.3 the fixed points are found by solving:

33− 10x1 − 3x2 = 0 and − 18 + 6x1 + 2x2 = 0

which gives x1 = 6 and x2 = −9. Thus this system has only one fixed point at (2,−9).

• We will not consider fixed points of non-autonomous systems.

3.2 Linear autonomous second order systems

So far in this chapter we have been looking at systems of two first order linear equations. For
those systems using a vector notation as above is useful. It turns out that every second order linear
differential equation can be re-written as a system of two first order linear equations as follows: consider
the general equation

a
d2x

dt2
+ b

dx

dt
+ cx = 0, (3.3)

where a, b, c are constants.

If we define x = x1 and
dx

dt
= x2 then Eq 3.3 gives:

dx1

dt
= x2 and

dx2

dt
= − c

a
x1 − b

a
x2
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Which can be written in the standard ẋ = Ax form as:

ẋ =

(
0 1

− c

a
− b

a

)(
x1

x2

)
(3.4)

Here ẋ = dx
dt .

Thus we are able to obtain a solution of Eq 3.4 by solving Eq 3.3. Rather than do this in general
consider the following example

d2x

dt2
+ 3

dx

dt
+ 2x = 0.

You have learned last year how to solve this kind of equation. We try an exponential type solution
eλt, substitute into the equation and get an equation for λ. In this case the equation is λ2 +3λ+2 = 0
which gives two solutions λ1 = −1 and λ2 = −2. Therefore, the general solution to this equation
would be x = αe−t + βe−2t where α and β are arbitrary constants.

Let us now try to solve the same equation d2x
dt2

+ 3dx
dt + 2x = 0 by rewriting it first in matrix form. As

before we define x1 = x and x2 = ẋ1. We then have equations

ẋ1 = x2, ẋ2 = −3x2 − 2x1. (3.5)

In matrix form, the equation can be written as

ẋ =
(

ẋ1

ẋ2

)
=

(
0 1

−2 −3

) (
x1

x2

)
(3.6)

The new equations (3.5) and their matrix form can now be solved by using properties of the matrix

A =
(

0 1
−2 −3

)
.

The main properties which will play a crucial role are the eigenvalues and eigenvectors of A. The
eigenvalues can be found by computing the determinant

|A− λI| =
∣∣∣∣
−λ 1
−2 −3− λ

∣∣∣∣ = λ(3 + λ) + 2 = λ2 + 3λ + 2 = (λ + 1)(λ + 2). (3.7)

The determinant has zeros at λ1 = −1 and λ2 = −2. The corresponding eigenvectors associated to
these eigenvalues are obtained by solving the equations

AE1 = −E1 AE2 = −2E2. (3.8)

Explicitly, for the 1st eigenvalue,
(

0 1
−2 −3

)(
a
b

)
= −

(
a
b

)
, (3.9)

which gives equations b = −a and −2a− 3b = −b. Both equations are in fact equivalent so that any
vector with a = −b is an eigenvector of A. We will choose a = −b = 1, although any other choice
would also work. This fixes

E1 =
(

1
−1

)
. (3.10)
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Performing a similar calculation it is possible to show that

E2 =
(

1
−2

)
. (3.11)

You also know from Linear Algebra, that the matrix P = (E1, E2) whose columns are the eigenvectors
above, diagonalizes A. That is,

P−1AP = J =
( −1 0

0 −2

)
. (3.12)

Notice that this also implies A = PJP−1. All these Linear Algebra results allow us to transform the
equation (3.6) into a simpler equation that we can easily solve1. If we write (3.6) as

ẋ = Ax ⇔ ẋ = PJP−1x. (3.13)

Multiplying both sides of the last equation by P−1 we have

P−1ẋ = JP−1x, (3.14)

which means that we just got a new equation ẏ = Jy for the vector y = P−1x. The advantage of this
is that the equation for y is very simple to solve. In components, it is

ẏ = Jy ⇔
(

ẏ1

ẏ2

)
=

( −1 0
0 −2

)(
y1

y2

)
. (3.15)

Equivalently we have equations ẏ1 = −y1 and ẏ2 = −2y2. These equations can be easily solved because
they are independent from each other, that is the equation for y1 only involves y1 and the same for y2.
They have the standard solutions y1 = αe−t and y2 = βe−2t, where α and β are arbitrary constants.

Once we have y we can get x simply by

x =
(

x1

x2

)
= Py =

(
1 1

−1 −2

)(
αe−t

βe−2t

)
=

(
αe−t + βe−2t

−αe−t − 2βe−2t

)
. (3.16)

If we look at the solution for x1 = αe−t +βe−2t we see that it is exactly the same solution we obtained
above for x = x1 by the usual method. The solution for x2 = −αe−t− 2βe−2t is nothing but ẋ1 as we
expected from our original definition.

We can further look at the structure of (3.16) and draw some general conclusions. We have

x =
(

αe−t + βe−2t

−αe−t − 2βe−2t

)
= αe−t

(
1
−1

)
+ βe−2t

(
1
−2

)
= αeλ1tE1 + βeλ2tE2. (3.17)

General solution
From the example above we can deduce some general results. First, given a linear equation of the

1Recall that, given a general 2× 2 matrix

P =

(
a b
c d

)
,

its inverse is simply given by

P−1 =
1

ad− bc

(
d −b
−c a

)
.



CHAPTER 3. SOLUTION OF SECOND ORDER LINEAR SYSTEMS 33

form ẋ = Ax, its general solution is in general a linear combination of fundamental solutions of the
form eλitEi, with i = 1, 2 and λi, Ei being the eigenvalues and eigenvectors associated to the matrix
A, respectively. It is quite easy to show that this is true in general.

Let us substitute the solutions eλitEi directly onto the equation ẋ = Ax. We find,

ẋ = Ax ⇒ deλitEi

dt
= A

(
eλitEi

)
⇒ λie

λitEi = eλitAEi ⇒ λEi = AEi

Thus we deduce that if:
AEi = λiEi (3.18)

then
x = eλitEi is a solution of ẋ = Ax.

It can be shown that if E1 and E2 are two independent solutions of AE = λE, with λ = λ1 and λ2

respectively, then the general solution of the 2-dimensional system ẋ = Ax is given by:

x = C1e
λ1tE1 + C2e

λ2tE2 (3.19)

where C1 and C2 are arbitrary constants.

Unfortunately it is not always possible to find two vectors, E1 and E2, that are both
independent and real. We therefore need to study the solutions of Eq. (3.18) and their relationship
to the solution of ẋ = Ax in more detail.

3.3 Linear Algebra - eigenvalues and eigenvectors

We now take time out to review some of the basic results from Linear Algebra that are relevant to
our problem. Namely the solutions of Eq. (3.18) and the subsequent idea of reducing A to a Jordan
canonical form (in the previous example this would be the matrix J obtained by diagonalising A).

How to work out the eigenvectors and eigenvalues of a matrix should be familiar to
you from the Linear Algebra module and I will probably not go through the example
below in the class. Questions are welcome in case any difficulties arise.

Predominantly A will be a real constant 2× 2 matrix, however most of the definitions and results
are applicable to the n-dimensional case.
Definition
Given an n× n real matrix A then a non-zero vector E such that:

AE = λE (3.20)

is called an eigenvector corresponding to the eigenvalue λ. Equation 3.20 is called the eigenvalue
equation for A.

Note:

• In this definition E 6= 0 however λ may be zero.

• From equation 3.19 we see how the eigenvalues and vectors may feature in our solution.
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3.3.1 Evaluation of eigenvalues and eigenvectors

Consider the following example:

Given A =
(

4 −6
3 −5

)
find E =

(
a
b

)
6= 0 and λ such that A

(
a
b

)
= λ

(
a
b

)

Thus we are required to find a, b (not both zero) and λ such that:
(

4 −6
3 −5

)(
a
b

)
= λ

(
a
b

)

In terms of simultaneous equations this gives:

4a− 6b = λa ⇒ (4− λ)a− 6b = 0

3a− 5b = λb ⇒ 3a + (−5− λ)b = 0

Writing this in matrix form we have;
(

4− λ −6
3 −5− λ

)(
a
b

)
= 0

or even more concisely:

(A− λI)
(

a
b

)
= 0 (3.21)

where I is the usual 2× 2 identity matrix. To obtain a, b and λ we argue as follows:

• If (A − λI) has an inverse then
(

a
b

)
= (A − λI)−10 = 0 Thus the only solution is a = b = 0

which is not permissible for an eigenvector.

• Thus we require λ such that (A−λI) has no inverse. The condition that a matrix has no inverse
is that its determinant is zero. Thus we require λ such that

det(A− λI) = 0 (3.22)

Equation 3.22 is called the characteristic equation for A.

General result
The eigenvalues of A are given by the roots of the characteristic equation:

det(A− λI) = 0

In general when A is n×n this is an nth degree polynomial equation. In our example, as we see below,
it is a quadratic.

To find the eigenvalues
Returning to our problem:

det
(

4− λ −6
3 −5− λ

)
= 0 ⇒ (4− λ)(−5− λ)− (−6)(3) = 0 ⇒
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λ2 + λ− 2 = 0 ⇒ λ1 = +1 and λ2 = −2

labelling the two values of λ as λ1 and λ2.

To find the eigenvectors
For each value of λ we need to find a and b (not both zero) such that:

(
4− λ −6

3 −5− λ

)(
a
b

)
= 0

λ1 = 1 (
4− 1 −6

3 −5− 1

)(
a
b

)
= 0 ⇒

(
3 −6
3 −6

)(
a
b

)
= 0 ⇒ 3a− 6b = 0

3a− 6b = 0
⇒ a = 2b

Thus corresponding to λ1 = 1 we have
(

a
b

)
=

(
2b
b

)
= b

(
2
1

)

λ2 = −2 (
4 + 2 −6

3 −5 + 2

)(
a
b

)
= 0 ⇒

(
6 −6
3 −3

)(
a
b

)
= 0 ⇒ 6a− 6b = 0

3a− 3b = 0
⇒ a = b

Thus corresponding to λ2 = −2 we have
(

a
b

)
=

(
a
a

)
= a

(
1
1

)
.

In each case we see that we do not obtain a unique eigenvector but linear multiple of a vector.
If we draw a line through the origin along the direction of an eigenvector, this is called the eigenline
corresponding to the eigenvector. In the above we set

E1 =
(

2
1

)
and E2 =

(
1
1

)

These eigenvectors alone define two eigenlines (the lines that go by the origin and the points (2, 1) and
(1, 1), respectively) . These eigenlines will play an important role later on when we draw the phase
diagrams associated to systems of equations like the one of section 3.2.
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3.3.2 Canonical Forms

Let us think again about the example of section 3.2. A crucial step in our solution procedure was the
fact that we could diagonalise the matrix A by multiplying it by the matrix P = (E1, E2). When
doing this we got a diagonal matrix J = P−1AP in terms of which the system of equations simplified
considerably.

A very special feature of the matrix A in section 3.2 is that it had two different, real eigenvalues
λ1 = −1, λ2 = −2. Because of this, it also had two linearly independent eigenvectors in terms of
which we could construct the matrix P .

In order to be able to solve any systems of two linear equations we need to answer the question:
how can we solve such a system if the eigenvalues are equal to each other or non real? How can we
construct the matrices P and J in such a case?

The general result goes as follows:

Theorem

Given a 2× 2 real matrix A there exists a non-singular real matrix P such that:

A = PJP−1

where J is one of the four matrices:

• If the eigenvalues of A are λ1 and λ2 with λ1 6= λ2 and λ1, λ2 ∈ R then J =
(

λ1 0
0 λ2

)
.

• If the eigenvalues of A are λ1 = λ2 with λ1 ∈ R then J =
(

λ1 1
0 λ1

)
.

• If the eigenvalues of A are λ1 = α + iβ and λ2 = α − iβ with α, β ∈ R and β > 0 then

J =
(

α β
−β α

)
.

• If A =
(

λ1 0
0 λ1

)
with λ1 real, then J = A.

J is called the canonical or Jordan Normal form of A.
We will now analyise these four cases in more detail. We need to answer two questions: first, how to
find the matrix P that relates A to J in each of the four cases above and second, once we have found
P and J , how to solve the resulting system of equations.

Case 1 λ1 and λ2 real and different

As we saw in the example discussed earlier, the matrix P which relates A to its Jordan Normal
form J in this case is simply

P = (E1, E2), with E1, E2 eigenvectors of A, (3.23)

and

J =
(

λ1 0
0 λ2

)
. (3.24)
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If we want to solve the equation ẋ = Ax we just have to follow the following steps:

ẋ = Ax ⇔ ẋ = PJP−1x ⇔ P−1ẋ = JP−1x. (3.25)

Defining now the vector y = P−1x, we see that the original equation ẋ = Ax has been transformed
into the new equation

ẏ = Jy, (3.26)

which is the Canonical form of the original equation. This equation does not look too different, but it
is much easier to solve because J is the diagonal matrix (3.24). We have,

ẏ = Jy ⇔
(

ẏ1

ẏ2

)
=

(
λ1 0
0 λ2

) (
y1

y2

)
⇔ ẏ1 = λ1y1, ẏ2 = λ2y2, (3.27)

therefore
y1 = C1e

λ1t and y2 = C2e
λ2t, with C1, C2 arbitrary constants. (3.28)

This can also be written as
(

y1

y2

)
= C1e

λ1t

(
1
0

)
+ C2e

λ2t

(
0
1

)
.

Having now solved the Canonical form of the system of equation we still need to find the solution
for x. From before we have that

x = Py = (E1, E2)y = C1e
λ1tP

(
1
0

)
+ C2e

λ2tP

(
0
1

)
= C1e

λ1tE1 + C2e
λ2tE2. (3.29)

Example: Here is a concrete example of a system belonging to case 1. As an exercise work out the
solutions below.
Consider the system of equations

ẋ1 = 7x1 − 2x2, ẋ2 = 2x1 + 2x2.

• In matrix form this is ẋ = Ax with

x =
(

x1

x2

)
, A =

(
7 −2
2 2

)
.

• The matrix A has the following eigenvalues and eigenvectors (check this!):

λ1 = 6, λ2 = 3 and E1 =
(

2
1

)
, E2 =

(
1
2

)
.

Notice that if you multiply these eigenvectors by a real number you will still get an eigenvector.
Any choice is allowed!

• The matrix P is given by

P =
(

2 1
1 2

)
,
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and therefore, its inverse is

P−1 =
1
3

(
2 −1

−1 2

)
.

You can check that

P−1AP = J =
(

6 0
0 3

)
.

• The vector y which solves the system of equations in its Canonical form is

y =
(

y1

y2

)
=

(
C1e

6t

C2e
3t

)
= C1e

6t

(
1
0

)
+ C2e

3t

(
0
1

)
,

which gives the final solution

x = Py = C1e
6tP

(
1
0

)
+ C2e

3tP

(
0
1

)
= C1e

6tE1 + C2e
3tE2 = C1e

6t

(
2
1

)
+ C2e

3t

(
1
2

)
,

or, in components,
x1 = 2C1e

6t + C2e
3t x2 = C1e

6t + 2C2e
3t.

Case 2 λ1 = λ2, one real eigenvalue.

When both eigenvalues are equal it is not possible to find two independent eigenvectors as in the
previous case. This means that in order to construct the matrix P we need the eigenvector E1 asso-
ciated to the single eigenvalue λ1 and one other vector which we will call J1. The matrix P is then
constructed as before

P = (E1, J1), (3.30)

where J1 is a vector which can be constructed as follows: Linear algebra guarantees that in this case
there will exist a vector J1 such that

(A− λ1I)J1 = E1. (3.31)

Therefore, once we have computed the eigenvector E1, we just have to substitute in (3.31) and solve
for the vector J1. Once this has been done, the solution procedure is very similar to that for case 1.
The equations (3.25) and (3.26) hold as before with P given by (3.30) and J given by

J =
(

λ1 1
0 λ1

)
.

This means that the equation for the vector y in this case is

ẏ = Jy ⇔
(

ẏ1

ẏ2

)
=

(
λ1 1
0 λ1

)(
y1

y2

)
,

or, in components,
ẏ1 = λ1y1 + y2, ẏ2 = λ1y2.

The second equation is of the same type as for case 1 and is solved by y2 = C2e
λ1t, where C2 is an

arbitrary constant. Substituting into the first equation we have,

ẏ1 = λ1y1 + C2e
λ1t,
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which we can rewrite as
ẏ1 − λ1y1 = C2e

λ1t.

This is the typical equation that is solved by using an integrating factor. We multiply the equation
by a function R(t),

R(t)ẏ1 −R(t)λ1y1 = R(t)C2e
λ1t.

If
R(t)ẏ1 −R(t)λ1y1 =

d(R(t)y1)
dt

,

then
R(t) = e−

∫
λ1dt = e−λ1t+C = Ae−λ1t,

with C an arbitrary constant and A = eC . Once we have fixed R(t) we can write the equation as

d(R(t)y1)
dt

= R(t)C2e
λ1t ⇔ d(Ae−λ1ty1))

dt
= Ae−λ1tC2e

λ1t = AC2,

therefore
e−λ1ty1 = C2

∫
dt ⇔ y1 = eλ1t(C2t + C1),

where C1 is an arbitrary constant. Therefore the final solutions are

y1 = (C1 + tC2)eλ1t and y2 = C2e
λ1t.

To obtain the solutions in the original coordinates we have to compute

x = Py = (C1 + tC2)eλ1tE1 + C2e
λ1tJ1.

Example: Consider

A =
(

0 4
−1 4

)

We calculate the eigenvalues and vectors in the usual way,

• |A− λI| =
∣∣∣∣

0− λ 4
−1 4− λ

∣∣∣∣ = −λ(4− λ) + 4 = λ2 − 4λ + 4 = (λ− 2)2 = 0

Thus we have a single eigenvalue λ1 = 2.

• Set E1 =
(

a
b

)
hence AE1 = 2E1 ⇒

(
0− 2 4
−1 4− 2

)(
a
b

)
= 0

Thus
(

a
b

)
=

(
2b
b

)
= b

(
2
1

)
and we take E1 =

(
2
1

)

• We now introduce a new vector to form the second axis. Linear algebra guarantees that in this
case there will exist a vector J1 such that

(A− λ1I)J1 = E1 (3.32)

where I is the identity matrix. To calculate J1 we substitute J1 =
(

m
n

)
into Eq. (3.32) to

give: ( −2 4
−1 2

)(
m
n

)
=

(
2
1

)
⇒ m = 2n− 1
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Thus (
m
n

)
=

(
2n− 1

n

)
= n

(
2
1

)
+

( −1
0

)

Again we have an infinite choice of vector, thus we make the simplest choice with n = 0 and

take J1 =
( −1

0

)
. Any other value of n would have been equally valid.

• The matrix P is given by:

P = (E1, J1) =
( −2 −1

1 0

)

and it relates the matrix A above to its Jordan form

J =
(

2 1
0 2

)
= PAP−1.

Following the general construction above, the solution for the vector y is

y =
(

y1

y2

)
=

(
(C1 + C2t)e2t

C2e
2t

)
= (C1 + C2t)e2t

(
1
0

)
+ C2e

2t

(
0
1

)
,

and therefore, the solutions for x = Py are

x = (C1 + C2t)e2tP

(
1
0

)
+ C2e

2tP

(
0
1

)
= (C1 + C2t)e2tE1 + C2e

2tJ1,

or, in components,

x1 = 2(C1 + C2t)e2t − C2e
2t and x2 = (C1 + C2t)e2t.

Case 3 λ1 and λ2 complex

The eigenvalues of A are complex if when solving the characteristic polynomial the roots of the
quadratic are complex.

|A− λI| = 0 ⇒ λ1 = α + iβ, λ2 = α− iβ

Without loss of generality we will always assume that β > 0.

In general, for the n × n case, provided A is real any complex roots of the characteristic equation
will appear in conjugate pairs, as above.

Furthermore since A is real:

If AE1 = λ1E1 ⇒ AE1 = λ1E1 ⇒ A(Ē1) = λ̄1Ē1

Where the over bar represents the complex conjugate. Thus we see that not only do the eigenvalues
occur in conjugate pairs but so do the corresponding eigenvectors.
ie if (λ1, E1) is an eigenvalue/vector pair then so is (λ̄1, Ē1).
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As in case 1, we could use the eigenvectors E1 and E2 to construct the matrix P that transforms A
to its Jordan Normal form. However, the eigenvectors E1 and E2 are now complex, which would lead
to a complex matrix P . We are interested however in working always with real quantities. Therefore
to avoid this problem we can instead choose a different pair of vectors, which is real to construct our
matrix P . The vectors we will use are not E1 and E2 but the real and imaginary parts of E1 instead.
It turns out that the real and imaginary parts of E1 are real vectors and furthermore it can be shown
that they are independent.

We define,
e1 = Re(E1) and e2 = Im(E1)

e1 and e2 are used now to construct the matrix

P = (e1, e2)

which transforms A to its Jordan Normal form

J = PAP−1 =
(

α β
−β α

)
, (3.33)

and performs the change of coordinates by the usual formula x = Py.
We now have to use these results to solve the equation ẋ = Ax, when A has complex conjugated
eigenvalues. In its canonical form the equation becomes,

ẏ = Jy ⇔
(

ẏ1

ẏ2

)
=

(
α β

−β α

)(
y1

y2

)
⇒ ẏ1 = αy1 + βy2

ẏ2 = −βy1 + αy2

To solve these equations we transform to polar coordinates using the substitutions
y1 = r cos θ and y2 = r sin θ with r ≥ 0 to obtain:

ẏ1 = ṙ cos θ − rθ̇ sin θ = αr cos θ + βr sin θ (i)
ẏ2 = ṙ sin θ + rθ̇ cos θ = −βr cos θ + αr sin θ (ii)

To eliminate θ̇ we form (i)× cos θ + (ii)× sin θ to give:

ṙ = αr ⇒ r = r0e
αt where r0 is an arbitrary constant

Similarly (i)× sin θ - (ii)× cos θ gives:

−rθ̇ = βr ⇒ θ̇ = −β ⇒ θ = −βt + θ0 where θ0 is an arbitrary constant

Thus
y1 = r0e

αt cos(−βt + θ0) y2 = r0e
αt sin(−βt + θ0), (3.34)

or, in vector form
(

y1

y2

)
= r0e

αt cos(−βt + θ0)
(

1
0

)
+ r0e

αt sin(−βt + θ0)
(

0
1

)
.

Thus

x = Py = (e1, e2)
(

y1

y2

)
= y1e1 + y2e2 = r0e

αt cos(−βt + θ0)P
(

1
0

)
+ r0e

αt sin(−βt + θ0)P
(

0
1

)
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= r0e
αt { cos(−βt + θ0)e1 + sin(−βt + θ0)e2 }

Example: Given A =
(

6 −13
2 −4

)
find the eigenvalues of A and hence write down its canonical

form. Find the eigenvectors of A and hence construct a non-singular matrix P such that Eq. (3.33)
holds.

• We first find the eigenvalues in the usual way

|A− λI| =
∣∣∣∣

6− λ −13
2 −4− λ

∣∣∣∣ = (6− λ)(−4− λ) + 26 = λ2 − 2λ + 2 = 0

Solving this quadratic gives λ1 = 1 + i and λ2 = 1− i, hence α = 1 and β = 1 and the canonical
form is given by: (

1 1
−1 1

)

• With λ1 = 1+i we now compute the corresponding eigenvector. Let E1 =
(

a
b

)
the eigenvector

is given by:
(

6− (1 + i) −13
2 −4− (1 + i)

)(
a
b

)
= 0 ⇒ (5− i)a− 13b = 0 (i)

2a− (5 + i)b = 0 (ii)

The two equation can be shown to be dependent with (5 + i)× (i) = 13× (ii), thus we can use
either (i) or (ii) to form our eigenvector.

From (ii)
a

b
=

5 + i

2
⇒ E1 =

(
5 + i

2

)

where we have made the most straightforward choice of a and b to give a value of E1. As usual
any non-zero multiple of this E1 would have been just as good. The other eigenvector would
just be the complex conjugate of E1, that is

E2 = E1 =
(

5− i
2

)
,

and we do not need to compute it.

• In order to construct the matrix P we have to obtain the two vectors given by the real and
imaginary parts of E1, that is

e1 = Re
(

5 + i
2

)
=

(
5
2

)
and e2 = Im

(
5 + i

2

)
=

(
1
0

)

Thus P =
(

5 1
2 0

)
and by direct calculation you can verify that :

A =
(

6 −13
2 −4

)
=

(
5 1
2 0

)(
1 1

−1 1

)(
5 1
2 0

)−1
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• So far we have found,

A =
(

6 −13
2 −4

)
, α = 1, β = 1, e1 =

(
5
2

)
, e2 =

(
1
0

)
,

therefore, following the general steps above, the solution of ẋ = Ax is given by

x = r0e
t

{
cos(−t + θ0)

(
5
2

)
+ sin(−t + θ0)

(
1
0

) }

In terms of components this breaks down into:

x1 = r0e
t{ 5 cos(−t + θ0) + sin(−t + θ0) } and x2 = 2r0e

t cos(−t + θ0)

Case 4 A = λ1I

This is a trivial case since if A is a multiple of the identity then the equation ẋ = Ax can be solved
directly and the matrix A can be considered to be already in canonical form. The equation to be
solved is

ẋ = Ax ⇔
(

ẋ1

ẋ2

)
=

(
λ1 0
0 λ1

)(
x1

x2

)
,

which in components becomes
ẋ1 = λ1x1, ẋ2 = λ1x2,

which are solved by
x1 = C1e

λ1t and x2 = C2e
λ1t. (3.35)



Chapter 4

Phase Diagrams for Second Order
Linear Systems

4.1 Simple fixed points

This section deals with the classification of fixed points of the linear system ẋ = Ax + b and the
construction of the phase diagrams about the fixed points. For most of the section, we will be
concentrating on the case when the vector b = 0 (as we did in the previous chapter).

Recall that for one-dimensional systems (or systems of one equation) there were only three types
of fixed points: attractors, repellors and shunts. For systems of two equations there are many more
possibilities, as the phase diagram is two dimensional. There are in fact ten different types of fixed
points which we will be classifying and studying in this chapter!

The fixed points of the system are given by the solutions of the equation Ax+ b = 0. If A−1 exists,
then there exists a unique fixed point given by x = −A−1b. Thus, if b = 0 the fixed point is at the
origin.

We will restrict our attention to the case where A−1 exists, ie A is non-singular. We already know
that A−1 exists if and only if det(A) 6= 0, however we now show that this is equivalent to A not having
a zero eigenvalue.
Consider the characteristic polynomial det(A− λI) and assume that λ1 and λ2 are the eigenvalues of
A. (λ1 and λ2 may be real and different, equal or complex) Thus we can write:

det(A− λI) = (λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ + λ1λ2

Since this equality is true for all λ, setting λ = 0 gives the result that det(A) = λ1λ2. Thus det(A) 6= 0
if and only if neither λ1 nor λ2 are equal to zero. Since we are only going to consider the case when
A is non-singular we make the following definition:

Definition
x = a is a simple fixed point of ẋ = Ax + b if:

• it is a solution of the equation Aa + b = 0

• A is non-singular. Equivalently this is det(A) 6= 0, A−1 exists, no eigenvalue of A is zero.

The fixed point is unique and given by a = −A−1b

44
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In the case b = 0, that is to say if the equation is ẋ = Ax, the only simple fixed point is at the
origin.

Initially we restrict our attention to the problem ẋ = Ax and then later look at the more general
problem with b 6= 0.

4.2 Classification of Simple Fixed Points

Before developing the phase diagrams we first write down the classifications of the simple fixed point
of the system ẋ = Ax + b. These are listed according to the eigenvalues of A.

1. Eigenvalues real and different

• saddle λ1 and λ2 different signs: take λ1 > 0 > λ2

• unstable node λ1 and λ2 both positive: take λ1 > λ2 > 0

• stable node λ1 and λ2 both negative: take 0 > λ2 > λ1

2. Single eigenvalue (λ1 = λ2)

• unstable improper node λ1 > 0

• stable improper node λ1 < 0

3. Complex eigenvalues α± iβ with β > 0

• unstable focus α > 0

• stable focus α < 0

• centre α = 0

4. A = λ1I

• unstable star node λ1 > 0

• stable star node λ1 < 0

4.3 Phase Diagram Type l: λ1 6= λ2, real and non-zero

In order to obtain the phase diagram for ẋ = Ax we first obtain the phase diagram for the canonical
system ẏ = Jy. In this case the canonical form is given by

ẏ =
(

λ1 0
0 λ2

)
y ⇒ y1 = C1e

λ1t y2 = C2e
λ2t ⇒ y2 = Cy

λ2/λ1

1 (4.1)

The phase diagram, although given by this expression, will depend on the signs of λ1 and λ2. Thus
we consider the three possible scenarios, namely where the λ’s are both positive, both negative or of
different sign.
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4.3.1 λ1 > 0 > λ2: saddle

From Eq 4.1 we can deduce that with these values of lambda:

• λ2 < 0 ⇒ y2 → 0 as t →∞
• λ2 < 0 ⇒ y2 →∞ as t → −∞
• λ1 > 0 ⇒ y1 → 0 as t → −∞
• λ1 > 0 ⇒ y1 →∞ as t →∞
• If C1 = 0 then the trajectory is y1 = 0, that is the y2-axis is part of the phase diagram. In this

case y2 = C2e
λ2t which means that |y2| grows as as t tends to minus infinity and viceversa (this

determines the direction of the arrows in the phase diagram).

• If C2 = 0 then the trajectory is y2 = 0, that is the y1-axis is also part of the phase diagram, as
we can see below. In this case y1 = C1e

λ1t, that is to say |y1| tending to infinity as t tends to
infinity.

The phase diagram for the canonical case is seen in Fig. 4.1(a). To find the phase diagram for the full
system ẋ = Ax we recall that x = Py where P is the matrix whose columns are the eigenvectors of A.

If E1 and E2 are the eigenvectors of A corresponding to the eigenvalues λ1 and λ2 respectively then
(

x1

x2

)
=

(
E1 E2

) (
y1

y2

)

Thus we see that the unit vector
(

1
0

)
along the y1-axis is transformed to E1 in the x1-x2 plane. That

is to say the y1 axis is transformed into the line of E1. Similarly the y2-axis is transformed into the
line of E2. Thus we see that the diagram is deformed, squashing or stretching the trajectories. Under

(a): canonical case

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

(b): transformed saddle
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-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 4.1: (a) canonical saddle with λ1 = 1 and λ2 = −2. (b) the transformed saddle to give the
phase diagram for ẋ = Ax

this transformation the direction of the arrows on the y1-y2 axes is maintained along the lines of E1
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and E2. This is a useful way of determining the direction of the arrows for the whole diagram. The

diagram has been drawn using the example of Section 3.3.1 where λ1 = 1, λ2 = −2, E1 =
(

2
1

)
and

E2 =
(

1
1

)
. In Fig.4.1(b) the heavy lines are the lines of the eigenvectors E1 and E2 respectively.

4.3.2 λ1 > λ2 > 0 : unstable node

From Eq. 4.1 we can deduce

dy2

dy1
=

dy2

dt
dy1

dt

=
λ2C2e

λ2t

λ1C1eλ1t
=

λ2

λ1
Ce−(λ1−λ2)t

where C1 and C2 have been combined to give C. Hence:

• As t →∞ dy2

dy1
→ 0 thus the trajectories become horizontal.

• As t → −∞ |dy2

dy1
| → ∞ thus the trajectories become vertical.

• Both y1 and y2 tend to zero as t tends to minus infinity. (from Eq. 4.1)

• Both |y1| and |y2| tend to infinity at t tends to plus infinity.(from Eq. 4.1)

Additionally from Eq. 4.1 we can see that both the axes are trajectories with arrows pointing away
from the origin as follows:

• If C1 = 0 then the trajectory is y1 = 0 and y2 = C2e
λ2t, that is to say the y2-axis with |y2|

tending to zero as t tends to infinity.

• If C2 = 0 then the trajectory is y2 = 0 and y1 = C1e
λ1t, that is to say the y1-axis with |y1|

tending to infinity as t tends to infinity.

Fig. 4.2 is drawn using the data from example 4.1 where the eigenvalues are +6 and +3 and the

eigenvectors are E1 =
(

2
1

)
and E2 =

(
1
2

)
. The lines along these direction are shown in fig.

4.2(b) in bold and are respectively the transformations of the y1 and y2 axes.

Example 4.1

Given
ẋ = 7x1 − 2x2 ẋ2 = 2x1 + 2x2

• Locate and classify the fixed point.

• Sketch the phase diagram.

• Obtain the solution that passes through the point (1, 1) at t = 0.
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(a): canonical unstable node

-2

-1

0

1

2

-2 -1 0 1 2

(b): transformed unstable node
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0

1

2

-2 -1 0 1 2

Figure 4.2: (a) canonical unstable node with λ1 = 6 and λ2 = 3. (b) the transformed unstable node
to give the phase diagram for ẋ = Ax

This is in fact the same example we did in page 37, so we already know the fixed points, eigenvectors
and eigenvalues. We will take the solutions we found there and concentrate largely on drawing the
phase diagram. Recall the solutions:

x = C1e
λ1tE1 + C2e

λ2tE2 = C1e
6t

(
2
1

)
+ C2e

3t

(
1
2

)

Or in terms of components:

x1 = 2C1e
6t + C2e

3t x2 = C1e
6t + 2C2e

3t

We are given the initial condition that at t = 0, x1 = x2 = 1, which allows us to fix the constants as

1 = 2C1 + C2 and 1 = C1 + 2C2 ⇒ C1 = C2 = 1/3

Thus the solutions are:
x1 =

1
3

(
2e6t + e3t

)
x2 =

1
3

(
e6t + 2e3t

)
.

The phase diagram is drawn in Fig. 4.2(b) The important features are that the trajectories become
parallel to the image of the y1-axis, that is to say parallel to E1 as t → ∞ and appear to emanate
from the origin parallel to the image of the y2-axis, that is to say parallel to E2.

4.3.3 λ1 < λ2 < 0 : stable node

Provided we arrange for |λ1| > |λ2|, that is to say λ1 is now the most negative eigenvalue rather than
the most positive, then the phase diagram for the stable node is exactly the same as the one for the
unstable node but with the arrows reversed.

4.4 Phase Diagram Type ll: λ1 = λ2 6= 0

This is the case where the quadratic characteristic equation has only a single or repeated root which
leads to a single independent eigenvector. This type does not include the case where A = λI since in



CHAPTER 4. PHASE DIAGRAMS FOR SECOND ORDER LINEAR SYSTEMS 49

this case any vector is an eigenvector and the problem is virtually trivial; see Type lV. As in Type l.
we consider the canonical case first with λ1 > 0 and then transform to obtain the phase diagram for
ẋ = Ax.

4.4.1 λ1 = λ2 > 0: unstable improper node

The canonical form is given by

ẏ =
(

λ1 1
0 λ1

)
y ⇒ y1 = eλ1t(C1t + C2) y2 = C1e

λ1t (4.2)

The most useful thing we can do is to calculate the gradient of the phase paths in terms of, initially t
and then in terms of y1 and y2 as follows:

• Differentiating y1 and y2 from Eq. (4.2) with respect to t gives

dy2

dy1
=

ẏ2

ẏ1
=

C1λ1

C1 + λ1C1t + λ1C2

Thus as t →∞,
dy2

dy1
→ 0 and the trajectories become horizontal. Similarly as t → −∞,

dy2

dy1
→ 0

and again the trajectories are horizontal. This is in contrast to the case of the unstable node
where the trajectories became vertical as t → −∞

• Directly from the canonical equations in (4.2) ẏ1 = λ1y1 + y2 and ẏ2 = λ1y2 thus:

dy2

dy1
=

ẏ2

ẏ1
=

λ1y2

λ1y1 + y2

Hence the trajectories are vertical along the line y2 = −λ1y1. Note that in the unstable case
this line has negative gradient since λ1 > 0 and is shown in dots in Fig 4.3(a). The line is useful
when sketching the diagram however transforming it into the x1-x2 phase space does not give a
line on which the trajectories are still vertical. To locate such a line in the x1-x2 phase space it
is necessary to refer back to the original problem and draw the line ẋ1 = 0.

• Finally we note from Eq 4.2 that as t → −∞ the trajectories tend to the origin, since both y1

and y2 tend to zero, and as t →∞ both |y1| and |y2| tend to infinity.

Example 4.2

Fig. 4.3 is obtained using the following example:

Given

ẋ =
(

1 1
−1 3

)
x

obtain the phase diagram and the general solution.
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-2
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

trajectories line of vertical traj

-2
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0

1
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-2 -1 0 1 2

trajectories line of vertical trajectories

Figure 4.3: (a) canonical unstable improper node with λ1 = 2; the line of vertical trajectories is given
by 2y1 + y2 = 0. (b) the transformed diagram. The line of vertical trajectories now obtained from
ẋ = 0 which gives x1 + x2 = 0 (see example)

• First calculating the eigenvalues we obtain:

|A−λI| =
∣∣∣∣

1− λ 1
−1 3− λ

∣∣∣∣ = (1−λ)(3−λ)+1 = λ2−4λ+4 = (λ−2)2 = 0 ⇒ λ1 = λ2 = 2

• λ = 2 The eigenvector is given by:
(

1− 2 1
−1 3− 2

) (
a
b

)
= 0 ⇒ a = b ⇒ E1 =

(
1
1

)

• The J1 vector, which is required for the solution but not for the diagram is given by:

(A− λI)J1 = E1 ⇒
( −1 1
−1 1

)(
a
b

)
=

(
1
1

)
⇒ a = b− 1

Thus
(

a
b

)
=

(
b− 1

b

)
= b

(
1
1

)
+

( −1
0

)

We can take any value of b to give a J1, thus we take the simplest value, namely b = 0 to give

J1 =
( −1

0

)
.

• The phase diagram is shown in Fig 4.3(b) where we note that the trajectories leave the origin
with increasing t since the node is unstable. Additionally as the node is improper the trajectories
are parallel to E1 both as they leave the origin and as they tend to infinity. ie they tend to
become parallel to E1 as |t| → ∞. To help sketch the diagram we have plotted in dotted format
the line along which the trajectories are vertical. This is given by setting ẋ1 = 0 which in this
example gives x1 + x2 = 0.
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• Using the vectors E1 and J1 and the eigenvalue λ = 2 the solution is given by

x = e2t(C1t + C2)
(

1
1

)
+ C1e

2t

( −1
0

)

or in terms of components:

x1 = e2t(C1t + C2 − C1) and x2 = e2t(C1t + C2)

4.4.2 λ1 = λ2 < 0: stable improper node

Unfortunately a simple reversal of arrows is not sufficient to describe the difference between the
unstable and stable case. If λ1 < 0 then the gradient of the dotted line along which the trajectories
are vertical in the canonical diagram is now positive. In practice for the improper node it is best to
work with the final picture and draw in the line along which ẋ1 = 0, draw in the eigenvector E1 and
add the arrows according to whether the node is stable (towards the origin) or unstable (away from
the origin).

4.5 Phase Diagram Type lll: λ1 and λ2 complex α± iβ

The canonical equation for this type is given by

ẏ =
(

α β
−β α

)
y β > 0

As we saw in Eq.3.34 the solution is given by

y1 = r cos θ = r0e
αt cos(−βt + θ0) and y2 = r sin θ = r0e

αt sin(−βt + θ0) (4.3)

A simple way to see the shape of the phase space trajectories in this case is to notice that

y2
1 + y2

2 = r2
0e

2αt.

• If α = 0, this is the equation of a circle of radius r0. The phase space trajectories are concentric
circles, centered at the origin (see later in section 4.5.3).

• If α > 0, then the equation is not that of a circle anymore, but we can think of it as a “circle”
whose radius increases exponentially with time. In the phase diagram the trajectories will look
like curves that spiral out of the origin and go to infinity as t →∞.

• If α < 0, then the equation is not that of a circle either, but we can think of it as a “circle”
whose radius decreases exponentially with time. In the phase diagram the trajectories will look
like curves that spiral in towards the origin and go to infinity as t → −∞.

Although these equations represent simple curves in the canonical picture the transformation to the
x1-x2 plane will distort and may change the orientation of the solutions. As we see below, it is essential
that we track any change in orientation and try to figure out how the trajectories may get distorted
in the original coordinates.
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4.5.1 α > 0: unstable focus

From the polar coordinates it is clear that with positive α, as t increases, r, the distance from the
origin, increases exponentially, whereas θ decreases linearly with time. This mean that as t increase
a point P will move away from the origin and rotate clockwise about the origin. This is illustrated
in Fig 4.4(a). Looking at the transformation matrix to transform the canonical picture to the x1-x2

plane is not very fruitful and the only thing we can usefully do is to check the direction of the spiral
in the x1-x2 plane by looking at the sign of ẋ1 when x1 = 0, that is to say where the trajectories cut
the x2-axis. This is illustrated in Fig 4.4(b) which is constructed from the example below.

(a): Canonical Unstable Focus
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-1.5 -0.5 0.5 1.5

(b): Unstable Focus
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-1.5 -0.5 0.5 1.5

Figure 4.4: (a) Canonical unstable focus with λ1 = 1 + i and λ2 = 1− i (b) the transformed diagram.

Example 4.3

Fig. 4.4 is obtained using the following example:

Given

ẋ =
( −2 2
−5 4

)
x

obtain the phase diagram and the general solution.

• Eigenvalues are found by solving the characteristic equation:
∣∣∣∣
−2− λ 2
−5 4− λ

∣∣∣∣ = (−2− λ)(4− λ) + 10 = λ2 − 2λ + 2 = 0 ⇒ λ1 = 1 + i λ2 = 1− i

Thus the fixed point is an unstable focus.

• The eigenvector is given by
( −2− 1− i 2

−5 4− 1− i

)(
a
b

)
= 0 ⇒ (−3− i)a + 2b = 0

⇒ E1 =
(

2
3 + i

)
=

(
2
3

)
+

(
0
1

)
i = e1 + e2i
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• The solution is given by:

x = r0e
t
(
cos(−t + θ0) e1 + sin(−t + θ0) e2

)
= r0e

t

(
cos(−t + θ0)

(
2
3

)
+ sin(−t + θ0)

(
0
1

))

In components this gives:

x1 = 2r0e
t cos(−t + θ0) x2 = r0e

t (3 cos(−t + θ0) + sin(−t + θ0))

• The phase diagram consists of spirals moving away from the origin since α = 1 > 0. To check
the direction of the spirals we observe the direction of the trajectories as they cross the x2-axis
by considering the sign of ẋ1 at x1 = 0. In this example ẋ1 = −2x1 + 2x2 thus on the x2-axis,
x1 = 0 and ẋ1 = 2x2, which is positive if x2 > 0. Thus the trajectories crossing the positive
x2-axis move in the direction of increasing x1 and hence are moving in a clockwise direction. See
Fig. 4.4(b).

4.5.2 α < 0: stable focus

In the canonical picture the only change is that the spiral now tend towards the origin rather than
away, however the diagram will need to be redrawn since the rotation is still clockwise. In the x1-x2

plane the trajectories still spiral into the origin however as before it will be necessary to check the
orientation. (clockwise or anti-clockwise)

(a): Canonical Centre

-1

0

1

-1 0 1

(b): Centre

-1

0

1

-1 0 1

Figure 4.5: (a) Canonical centre (b) Centre for the system ẋ = Ax (see example below)

4.5.3 α = 0: centre

With α = 0 it is clear from the solution to the canonical problem (Eq 4.3) that r = r0, thus the
trajectories are concentric circles. In the canonical case the orientation is clockwise however in the
x1-x2 plane the orientation may be different and will have to be checked as before using the sign of
ẋ1. The following examples is a centre and is illustrated in Fig 4.5(b).

ẋ =
( −128 −272

80 128

)
x
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In the one dimensional case we mentioned the idea of stability and asymptotic stability (See section
2.2.) This is an example of a fixed point that is stable but not asymptotically stable. All the other
stable fixed points considered so far in this chapter have also been asymptotically stable as they tend
to the fixed point as t tend to infinity.

4.6 Phase Diagram Type lV: A = λ1I

This is the most trivial of the cases and really only arises after linearising a nonlinear problem (see
Chapter 5). From Eq. (3.35) the solution is given by x1 = C1e

λ1t and x2 = C2e
λ1t. Thus dividing

these two expressions and relabelling the constants we get that the trajectories are given by x2 = Cx1,
with C = C2/C1. Thus the trajectories are straight lines through the origin pointing away from the
origin if λ1 > 0 to give an unstable star node and pointing into the origin if λ1 < 0 to give a stable
star node.

Unstable star node

-1.5

-0.5

0.5

1.5

-1.5 -0.5 0.5 1.5

Figure 4.6: Unstable star node; ẋ = 2Ix

4.7 General Linear System

We conclude this chapter with the solution and phase diagram for the complete linear system ẋ = Ax+b
(so far, we have been looking only at the case b = 0) . The fixed points of this system are given by the
solution of the equation Aa + b = 0, however since we are only considering simple fixed points, that is
to say A is nonsingular, the fixed point is unique and given by a = −A−1b. If we move the origin to
the fixed point using the substitution x = a + z then:

ẋ = Ax + b ⇒ ẋ = ż = A(a + z) + b = Aa + Az + b

Since a is a fixed point Aa + b = 0 thus ż = Az.

Thus the solution and phase diagram for ẋ = Ax + b is obtained as follows:

• Solve Ax + b = 0 to give the fixed point a
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• Solve ż = Az for z

• Write x = a + z.

• From Fig. 4.7 we can see that the substitution x = a + z represents a change of origin, thus the
phase diagram for ẋ = Ax + b is obtained by drawing the phase diagram for ż = Az about the
new origin.

......................................................................

x2

x1

z1

z2

z

xa

O′

O

Figure 4.7: Change of origin from O to O ′

Example 4.4

Obtain the solution to :
ẋ1 = 4x1 − 6x2 − 6 ẋ2 = 3x1 − 5x2 − 4

such that x1 = 3 and x2 = 4 at t = 0.

Draw the phase diagram for the system.

• Writing the system in the form ẋ = Ax + b gives:
(

ẋ1

ẋ2

)
=

(
4 −6
3 −5

)(
x1

x2

)
+

( −6
−4

)

• The fixed point for the system is given by:

a =
(

a
b

)
= −

(
4 −6
3 −5

)−1 ( −6
−4

)
=

1
2

( −5 6
−3 4

)( −6
−4

)
=

(
3
1

)

Alternatively you can solve the simultaneous equations 4x1− 6x2− 6 = 0 and 3x1− 5x2− 4 = 0
by direct elimination.
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• The eigenvalues and eigenvectors for this matrix A have already been evaluated in Sec. 3.3.1 to

give λ1 = 1 and λ2 = −2 with E1 =
(

2
1

)
and E2 =

(
1
1

)
. Thus the solution of ż = Az is

given by:

z = C1e
t

(
2
1

)
+ C2e

−2t

(
1
1

)

and the fixed point at z = 0 is a saddle about this point.

Substituting for x = a + z gives:

x =
(

3
1

)
+ C1e

t

(
2
1

)
+ C2e

−2t

(
1
1

)

Applying the initial conditions that x1 = 3 and x2 = 4 at t = 0 gives:
(

3
4

)
=

(
3
1

)
+ C1

(
2
1

)
+ C2

(
1
1

)
⇒

(
0
3

)
= C1

(
2
1

)
+ C2

(
1
1

)

Thus we have two equations for C1 and C2, 2C1 + C2 = 0 and C1 + C2 = 3. Solving gives
C1 = −3 and C2 = 6, hence the particular trajectory through the point (3, 4) is given by:

x =
(

3
1

)
− 3et

(
2
1

)
+ 6e−2t

(
1
1

)

In terms of components this gives the two solutions:

x1 = 3− 6et + 6e−2t x2 = 1− 3et + 6e−2t

Saddle  about (3,1)

-0.5

0.5

1.5

-0.5 0.5 1.5 2.5 3.5 4.5

Figure 4.8: Saddle about the fixed point (3, 1) for ẋ = Ax + b

• The phase diagram is given in Fig 4.8. Note that this is a saddle drawn about the fixed point
at (3, 1) as origin. The eigenvectors E1 and E2 are drawn relative to this origin and thus the
trajectories move out along the line of E1 and in towards this origin along the line of E2.



Chapter 5

Nonlinear Second Order Systems

In this chapter we study two dimensional autonomous nonlinear systems of differential equations. In
general such systems are not solvable in terms of elementary functions such as exponentials, polynomi-
als and trigonometric functions. The method of approach is to linearise the systems about their fixed
points and then construct the phase diagrams accordingly to give overall or global pictures. The linear
solutions can also be used to approximate the exact solutions near the fixed points. This approach
was seen in the one dimensional case in Section 2.3.

5.1 Linearisation in 2-dimensions

Let x = a =
(

a1

a2

)
be a fixed point of the system ẋ = X(x). (ie. X(a) = 0)

Move the origin to the fixed point using the substitution x = z + a. (See fig 4.7)

Thus ẋ = ż = X(z + a) or expressing this in coordinates:

ż1 = X1(z1 + a1, z2 + a2) and ż2 = X2(z1 + a1, z2 + a2)

We now expand the righthand sides of these equations using Taylor’s expansion in two variables to
give:

ż1 = X1(a1, a2) + z1
∂X1(a1, a2)

∂x1
+ z2

∂X1(a1, a2)
∂x2

+

1
2!

(
z2
1

∂2X1(a1, a2)
∂x2

1

+ 2z1z2
∂2X1(a1, a2)

∂x1∂x2
+ z2

2

∂2X1(a1, a2)
∂x2

2

)
+ . . . (5.1)

ż2 = X2(a1, a2) + z1
∂X2(a1, a2)

∂x1
+ z2

∂X2(a1, a2)
∂x2

+

1
2!

(
z2
1

∂2X2(a1, a2)
∂x2

1

+ 2z1z2
∂2X2(a1, a2)

∂x1∂x2
+ z2

2

∂2X2(a1, a2)
∂x2

2

)
+ . . . (5.2)

Since x = a is a fixed point we have that X1(a1, a2) and X2(a1, a2) are both zero. If additionally we
stay close to x = a both z1 and z2 are small and thus in Eq. (5.1) and Eq. (5.2) we can ignore all

57
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terms of second order and above (that is to say z2
1 , z2

2 , z1z2 and above). Hence we form the linear
approximation as follows:

ż1 = z1
∂X1(a1, a2)

∂x1
+ z2

∂X1(a1, a2)
∂x2

(5.3)

ż2 = z1
∂X2(a1, a2)

∂x1
+ z2

∂X2(a1, a2)
∂x2

(5.4)

This can be written in matrix form as:

(
ż1

ż2

)
=




∂X1

∂x1

∂X1

∂x2

∂X2

∂x1

∂X2

∂x2




(a1,a2)

(
z1

z2

)
(5.5)

The notation (a1, a2) in Eq 5.5 indicates that the partial derivatives in the matrix should be evaluated
at x1 = a1 and x2 = a2.

The matrix in Eq 5.5 expressed at the general point (x1, x2) is called the Jacobian matrix of X(x).

We now consider an example of a nonlinear system and attempt to construct its global phase diagram
by initially constructing the phase diagrams close to its fixed points using the linearised equations
about the fixed points.

Example 5.1

Consider the following equations:

ẋ1 = x1 + x2
2 = X1 and ẋ2 = x2

1 + x2 = X2

1. Find the fixed points
The fixed points occur when X1(x1, x2) = X2(x1, x2) = 0. Thus

x1 + x2
2 = 0 (i) and x2

1 + x2 = 0 (ii)

Substituting for x1 from (i) into (ii) gives x4
2 + x2 = 0 which implies that x2 = 0 or x2 = −1.

Substituting these values back into (i) gives respectively x1 = 0 and x1 = −1.

Thus we have two fixed points, one at (0, 0) and one at (−1,−1).

2. Obtain the Jacobian matrix
This is given by:

A =




∂X1

∂x1

∂X1

∂x2

∂X2

∂x1

∂X2

∂x2


 =




1 2x2

2x1 1


 (5.6)
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3. Linearisation at (0, 0).
Using Eq 5.6 we obtain the linearisation about (0, 0) to be:

(
ż1

ż2

)
=

(
1 2x2

2x1 1

)

(0,0)

(
z1

z2

)
=

(
1 0
0 1

)(
z1

z2

)

Thus the linearisation is an unstable star node at the origin. The assumption will be that the
nonlinear system behaves very much like this close to the origin.

4. Linearisation at (−1,−1).
Using Eq 5.6 we obtain the linearisation about (−1, 1) to be:

(
ż1

ż2

)
=

(
1 2x2

2x1 1

)

(−1,−1)

(
z1

z2

)
=

(
1 −2
−2 1

)(
z1

z2

)

To classify this fixed point and draw its phase diagram we proceed as usual:

• The eigenvalues are given by:
∣∣∣∣

1− λ −2
−2 1− λ

∣∣∣∣ = (1− λ)2 − 4 = λ2 − 2λ− 3 = (λ− 3)(λ + 1) = 0

Thus λ1 = 3 and λ2 = −1. The fixed point for the linearisation is therefore a saddle point.
Again the assumption will be that the nonlinear system is similar to the linear system in
the neighbourhood of the fixed point.

• The eigenvectors are given by:
λ1 = 3

(
1− 3 −2
−2 1− 3

) (
a
b

)
=

( −2 −2
−2 −2

)(
a
b

)
= 0

Thus we see that −2a− 2b = 0 which gives E1 =
( −1

1

)

λ2 = −1
(

1 + 1 −2
−2 1 + 1

) (
a
b

)
=

(
+2 −2
−2 +2

)(
a
b

)
= 0

Thus we see that +2a− 2b = 0 which gives E2 =
(

1
1

)

5. Local phase diagram
The phase diagrams for these two fixed points are shown in Fig 5.1. Note how the saddle is
placed at (−1,−1) and the directions E1 and E2 are shown relative to a set of axes (denoted
in dots) through this point. To obtain the global phase diagram we now have to join these two
diagrams together in a consistent manner. This is not always that easy and in some cases more
than one construction is possible, though of course only one is correct.

The second phase diagram in Fig 5.1 is the true phase diagram for the nonlinear system, we can
see how the saddle and star node obtained by linearising about the two fixed points are linked
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−1

−1

.............................

.............................

E1E2

x1

x2

saddle

unstable star node

-2

-1

0

1

-2 -1 0 1

Figure 5.1: Hand drawn linear phase diagrams about the two fixed points; Nonlinear global picture

to give the global picture.

In this rather simple nonlinear problem it is possible to see that the line x2 = x1 is a tra-
jectory in the global picture. (shown as a heavy line in the global picture in Fig 5.1)

To show that x2 = x1 is a trajectory we show that it is a solution of the first order differ-
ential equation defining the phase diagram as follows:

dx2

dx1
=

ẋ2

ẋ1
=

x2
1 + x2

x1 + x2
2

(5.7)

Substituting x2 = x1 into each side of this equation gives:

dx2

dx1
=

dx1

dx1
= 1 and

x2
1 + x2

x1 + x2
2

=
x2

1 + x1

x1 + x2
1

= 1

Thus x2 = x1 is a solution of Eq 5.7 and hence is a trajectory in the phase plane.

Finally if we require an approximation to the solution of our nonlinear system near the fixed
point (−1,−1) then we can use the solution of the linearised problem about this point. In this
case this is given by:

x = a + z =
( −1
−1

)
+ C1e

3t

( −1
1

)
+ C2e

−t

(
1
1

)

or in component form:

x1 = −1− C1e
3t + C2e

−t and x2 = −1 + C1e
3t + C2e

−t

To illustrate how the phase diagram might change with only a small change in the original system
consider the following example:
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Example 5.2

Consider the following equations:

ẋ1 = x2
1 + x2 and ẋ2 = x1 + x2

2

1. Find the fixed points
The fixed points occur when:

x2
1 + x2 = 0 (i) and x1 + x2

2 = 0 (ii)

Substituting for x2 from (i) into (ii) gives x4
1 + x1 = 0 which implies that x1 = 0 or x1 = −1.

Substituting these values back into (i) gives respectively x2 = 0 and x2 = −1.

Thus the two fixed points are still at (0, 0) and (−1,−1).

2. Obtain the Jacobian matrix
This is given by:

A =




∂X1

∂x1

∂X1

∂x2

∂X2

∂x1

∂X2

∂x2


 =




2x1 1

1 2x2


 (5.8)

3. Linearisation at (0, 0).
Using Eq 5.8 we obtain the linearisation about (0, 0) to be:

(
ż1

ż2

)
=

(
2x1 1
1 2x2

)

(0,0)

(
z1

z2

)
=

(
0 1
1 0

)(
z1

z2

)

To classify this fixed point:

• The eigenvalues are given by:
∣∣∣∣

0− λ 1
1 0− λ

∣∣∣∣ = (−λ)2 − 1 = λ2 − 1 = (λ− 1)(λ + 1) = 0

Thus λ1 = 1 and λ2 = −1. The fixed point for the linearisation is therefore a saddle.
• The eigenvectors are given by:

λ1 = 1
( −1 1

1 −1

)(
a
b

)
= 0

Thus we see that −a + b = 0 which gives E1 =
(

1
1

)

λ2 = −1
(

1 1
1 1

)(
a
b

)
= 0

Thus we see that a + b = 0 which gives E2 =
( −1

1

)
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4. Linearisation at (−1,−1).
Using Eq. (5.8) we obtain the linearisation about (−1, 1) to be:

(
ż1

ż2

)
=

(
2x1 1
1 2x2

)

(−1,−1)

(
z1

z2

)
=

( −2 1
1 −2

)(
z1

z2

)

To classify this fixed point:

• The eigenvalues are given by:
∣∣∣∣
−2− λ 1

1 −2− λ

∣∣∣∣ = (−2− λ)2 − 1 = λ2 + 4λ + 3 = (λ + 3)(λ + 1) = 0

Thus λ1 = −3 and λ2 = −1. The fixed point for the linearisation is therefore a stable
node.

• The eigenvectors are given by:
λ1 = −3

( −2 + 3 1
1 −2 + 3

)(
a
b

)
=

(
1 1
1 1

)(
a
b

)
= 0

Thus we see that a + b = 0 which gives E1 =
( −1

1

)

λ2 = −1
( −2 + 1 1

1 −2 + 1

)(
a
b

)
=

( −1 1
1 −1

) (
a
b

)
= 0

Thus we see that −a + b = 0 which gives E2 =
(

1
1

)

5. Local phase diagram
The phase diagrams for these two fixed points are shown in Fig 5.2 Note how the stable node
is placed at (−1,−1) and the directions E1 and E2 are shown relative to a set of axes (denoted
in dots) through this point. The saddle is placed at (0, 0) and the directions E1 and E2 for this
point are again indicated. To obtain the global phase diagram we now have to join these two
diagrams together in a consistent manner.

The second phase diagram in Fig 5.2 is the true phase diagram for the nonlinear system, we can
see how the saddle and stable node obtained by linearising about the two fixed points are linked
to give the global picture.

As in the last problem it is possible to see that the line x2 = x1 is a trajectory in the global
picture. (shown in heavy line in the global picture in Fig 5.2)

Finally if we require an approximation to the solution of our nonlinear system near the fixed
point (−1,−1) then we can again use the solution of the linearised problem about this point. In
this case this is given by:

x = a + z =
( −1
−1

)
+ C1e

−3t

( −1
1

)
+ C2e

−t

(
1
1

)
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Figure 5.2: Hand drawn linear phase diagrams about the two fixed points; Nonlinear global picture

or in component form:

x1 = −1− C1e
−3t + C2e

−t and x2 = −1 + C1e
−3t + C2e

−t

The above examples bear out what we would expect, that is the nonlinear problem and its lineari-
sation about its fixed points have very similar phase diagrams and solutions in the neighbourhood of
the fixed points. However the following example shows that this is not always the case.

Example 5.3

Given the following differential equations analyse the phase diagram and solution in the neighbourhood
of the origin:

ẋ1 = −x2 − x1(x2
1 + x2

2) ẋ2 = x1 − x2(x2
1 + x2

2) (5.9)

The equations clearly have a fixed point at the origin and thus to investigate the phase diagram near
the origin we linearise the equations about x1 = x2 = 0. The Jacobian matrix is given by:

A =
( −3x2

1 − x2
2 −1− 2x1x2

1− 2x1x2 −x2
1 − 3x2

2

)

Thus at the origin the linearisation is:

ż =
(

0 −1
1 0

)
z

Evaluating the eigenvalues of A we obtain:

|A− λI| =
∣∣∣∣
−λ −1

1 −λ

∣∣∣∣ = λ2 − 1 = 0 ⇒ λ1 = +i λ2 = −i

which indicates that the origin is a centre, or at least for the linearised problem it is. However a centre
is a very delicate state for a system, it only needs a small change for the real part of the complex
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eigenvalue to become non-zero. In such a case the centre will turn into a focus. This example has been
chosen so that we can solve it exactly and see precisely what is happening at the origin; and elsewhere
for that matter. If we change to polar coordinates and substitute x1 = r cos θ and x2 = r sin θ into Eq
5.9 we obtain:

ṙ cos θ − rθ̇ sin θ = −r sin θ − r3 cos θ (i) ṙ sin θ + rθ̇ cos θ = r cos θ − r3 sin θ (ii)

Which gives, eliminating in turn ṙ and θ̇ from the left hand sides of these equation:

(i)× cos θ + (ii)× sin θ ⇒ ṙ = −r3 and (i)× sin θ − (ii)× cos θ ⇒ θ̇ = 1

The equation for θ, namely, θ̇ = 1, gives θ = t + θ0, where as usual θ0 is the value of θ at t = 0.
This implies that as time evolves any point on a trajectory will move steadily anticlockwise about
the origin. The question is does it move away from the origin, towards the origin or perform a closed
path around the origin as in the case of a centre? Turning our attention to the equation for r, namely
ṙ = −r3 we get:

ṙ = −r3 ⇒
∫
− 1

r3
dr =

∫
dt ⇒ 1

2r2
= t + C ⇒ r =

1√
2(t + C)

(5.10)

where the sign for the square root has been taken to be positive, since r, the distance from the origin
is always positive or zero. From Eq 5.10 we see that as t tends to infinity r tends to zero. Thus
all the trajectories will tend to and rotate anticlockwise about the the origin as t increases. Thus
the origin is in truth more like a stable focus for the nonlinear problem and not a centre as indi-
cated by linearisation. The linearised and nonlinear phase diagrams are shown in Fig 5.3. The
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Figure 5.3: Linearised centre; Nonlinear stable focus - slow convergence to the origin

linear problem is just a canonical centre but in the anticlockwise direction whereas the original non-
linear problem looks more like a stable focus at the origin, again moving in the anticlockwise direction.

As t increases the convergence to the origin of the nonlinear trajectories is slower than that found
for the stable canonical focus. The reason for this is that for the canonical focus convergence to the
origin is exponential, due to the eαt term in the solution. In this example we see from the solution
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of the nonlinear equation (Eq 5.10) that r clearly tends to zero as t increases, but only does so like 1/
√

t

The above example clearly showed that a centre in the linearised problem could in reality be a stable
focus in the nonlinear problem. It is also true that if the fixed point is a centre in the linearised
problem it may be an unstable focus in the original nonlinear problem. Finally we must consider the
question is it possible for the nonlinear and linearised versions to both be centres at a fixed point?
The following example for the sine pendulum, which we saw in Chapter 1, is an example that has such
fixed points, where linearising does not change the nature of the fixed points and centres in the linear
problem correspond to centres in the nonlinear problem. Strictly speaking we have not defined the
idea of a centre for a nonlinear system, however we will take it to mean that in every neighbourhood
of the fixed point there exists closed trajectories surrounding the fixed point.

Example 5.4 - Sine pendulum

The equation of the sine pendulum considered in Chapter 1 is given by θ̈ = − sin θ and writing this
in standard form gives: ẋ1 = x2 and ẋ2 = − sinx1, with x1 = θ and x2 = θ̇.

The fixed points are on the x1 axis (x2 = 0) where sinx1 = 0, which implies that x1 = nπ. To
linearise we form the Jacobian matrix:

(
0 1

− cosx1 0

)

Which equals
(

0 1
−1 0

)
at x1 = 2kπ and

(
0 1
1 0

)
at x1 = (2k − 1)π

At even multiple of π (ie where x1 = 2kπ) the Jacobian is already in canonical form for a centre. At
odd multiples of π it is easy to show that the Jacobian has eigenvalues λ1 = 1 and λ2 = −1, thus these

fixed points are saddles; further calculation gives the corresponding eigenvectors to be E1 =
(

1
1

)

and E2 =
(

1
−1

)
. Using this information we are able to hand draw the first phase diagram in Fig

5.4. To obtain the phase diagram for the nonlinear problem we are able to solve the differential
equation for dx2/dx1 as follows:

dx2

dx1
= −sinx1

x2
⇒

∫
x2 dx2 =

∫
− sinx1 dx1

⇒ x2
2

2
= cosx1 + C ⇒ x2 = ±

√
2(cosx1 + C) (5.11)

This final expression generates all the trajectories in the phase plane for the nonlinear system.

Let us consider what is happening around the origin. If we consider the trajectory through the
point P(π/3, 1) then Eq 5.11 gives C = 0 thus x2 = ±√2 cos x1. The ± in Eq 5.11 indicates that the
trajectory is symmetric about the x1-axis and since this particular curve cuts the x1-axis at ±π/2 the
complete trajectory is a closed curve. (see Fig 5.5). As we continue to consider trajectories further
and further from the origin we reach a point where C = 1, for example the trajectory through the
point Q(π/3,

√
3). This trajectory cuts the x1-axis at ±π (see Fig 5.5). Moving even further out from
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2ππ−π−2π

linearised sine pendulum

centre centrecentre

saddle saddle

Without Damping
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3
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Figure 5.4: Hand drawn linearised diagram; Nonlinear sine pendulm showing the centres at even
multiples of π.

.....................................................

x1

x2

x1 = π/3

π−π ]Á

π/2−π/2

P

Q

R

Figure 5.5:

the origin (point R) C becomes greater than 1 and therefore x2 is never zero and the trajectories
are no longer closed curves (see Fig 5.5). We have thus established that the phase diagram for the
nonlinear system also has a centre at the origin. Continuing the analysis we can establish that the
nonlinear system has centres at all fixed points with x1 = 2kπ, that is to say at even multiples of π.
The complete phase diagram is shown in Fig 5.4, the caption non damping referring to the fact that
we have ignored air resistance and friction. Below we consider the sine pendulum with damping taken
into account and draw the revised phase diagram.

Example 5.5 - damped sine pendulum

This final example shows how by introducing an extra term into the equations to model the idea of
friction the phase diagram changes and the centres become asymptotically stable fixed points. To
model air resistance we can imagine that the faster the pendulum swings the greater the air resis-
tance. Thus a simple assumption would be to take the resistance term to be proportional to the rate
of change of theta.

Thus takeing the resistance to be equal to εθ̇, where ε is a positive constant of proportionality, the
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equation for the motion becomes:
θ̈ = − sin θ − εθ̇

which with the usual relabelling of the variables gives:

ẋ1 = x2 and ẋ2 = − sinx1 − εx2

. The fixed points are still on the x1-axis at the same positions, that is to say at x1 = nπ To linearise
we form the Jacobian matrix:

(
0 1

− cosx1 −ε

)
which =

(
0 1
−1 −ε

)
x1 = 2kπ and

(
0 1
1 −ε

)
x1 = (2k − 1)π

x1 = (2k − 1)π
∣∣∣∣
−λ 1
1 −ε− λ

∣∣∣∣ = λ2 + ελ− 1 = 0 ⇒ λ =
−ε±√ε2 + 4

2

For all ε this give two non-zero values of λ each of different sign. Thus we still have a saddle point at
x1 = odd multiples of π.

x1 = 2kπ

∣∣∣∣
−λ 1
−1 −ε− λ

∣∣∣∣ = λ2 + ελ + 1 = 0 ⇒ λ =
−ε±√ε2 − 4

2

Depending on the value of ε we obtain the following types of fixed point at x1 = even multiples of π.

• ε2 − 4 < 0: this gives two complex eigenvalues with real part = −ε/2, thus since ε > 0 the fixed
point is a stable focus. The phase diagram for this case is given in Fig 5.6 where ε has been
taken equal to 1.

• ε2− 4 = 0: this gives a single eigenvalue = −ε/2 and hence the fixed point is an stable improper
node since ε > 0.

• ε2 − 4 > 0: with ε > 0 this give two real negative eigenvalues, thus the fixed point is a stable
node.

We note that no matter what positive value ε takes the fixed points at the even multiples of π are
stable and the pendulum will ultimately tend to rest at one of these points.

5.2 Linearisation theorem

In section 5.1 we saw how the linearisation of a nonlinear system about its fixed points could be used to
construct the global phase diagram for the system. We also saw that not in all cases did the linearised
system and the nonlinear system have the same phase diagram around a fixed point. This section
sets out in the form of definitions and theorems what we can and cannot do as far as linearisation is
concerned.
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With Damping
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Figure 5.6: Damped sine pendulum: θ̈ = − sin θ− θ̇; stable focii at even multiples of π saddles at odd
multiples of π

Definition - simple fixed point
The system

ẋ = X(x)

is said to have a simple fixed point at x = a if:

• X(a) = 0, that is to say x = a is a fixed point.

• The linearisation of the system about x = a is simple. That is to say if the linearisation is
ż = Az then detA 6= 0.

The idea of an autonomous linear system having a simple fixed point has now been extended via the
concept of linearisation to the idea of any autonomous system having a simple fixed point. We now
state the main linearisation theorem:

Theorem - Linearisation
In the neighbourhood of a simple fixed point of the nonlinear system

ẋ = X(x)

the phase portrait of the system and its linearisation are similar, except possibly in the case where
the linearised system is a centre.

Classification of fixed points
We use the classification of the linearised system to classify a simple fixed point of a nonlinear system,
except where the linearisation is a centre.

As we have seen if the linearisation is a centre at the fixed point the nonlinear system may also
be a centre in the sense that it is surrounded by closed trajectories. Alternatively the nonlinear sys-
tem may also be a stable or unstable focus in the sense that the trajectories about the fixed point
spiral into or out of the fixed point (next year, if you do the 2nd part of this module, you will learn
more about this special cases known as limit cycles).



Chapter 6

Non-Simple Fixed Points

Up to this point the classification of a fixed point using the linearisation about the point has been
restricted to simple fixed points. It is only for simple fixed points that the linearisation theorem is
valid and even in that case only provided the linearized point is not a centre.

This chapter discusses the case of a non-simple fixed point. Even though we cannot use the lineari-
sation theorem to strictly predict the behaviour of the associated non-linear problem the linearised
phase diagrams will give some useful information.

The definition of a simple fixed point was formally given at the end of Chapter 5. If the lineari-
sation of ẋ = X(x) about a fixed point is given by ż = Az then, z = 0 is a non-simple fixed point if
det(A) = 0.

6.1 Linear Examples

Let us start by considering a linear system of the form ẋ = Ax. There are only three possible situations
in which det(A) = 0.

6.1.1 ẋ1 = 0, ẋ2 = x2

This system of equations corresponds to

A =
(

0 0
0 1

)
,

which clearly has one vanishing eigenvalue and zero determinant. The equations are easily solved by

x1 = C1, x2 = C2e
t,

with C1, C2 arbitrary constants. The phase diagram for this case is very simple. All trajectories
correspond to constant values of x1, that is they are straight lines, parallel to the x2 axis.

6.1.2 ẋ1 = x1, ẋ2 = 0

This system of equations corresponds to

A =
(

1 0
0 0

)
,

69
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which clearly has one vanishing eigenvalue and zero determinant. The equations are easily solved by

x1 = C1e
t, x2 = C2,

with C1, C2 arbitrary constants. The phase diagram for this case is also very simple. All trajectories
correspond to constant values of x2, that is they are straight lines, parallel to the x1 axis.

6.1.3 ẋ1 = 0, ẋ2 = 0

This system of equations corresponds to

A =
(

0 0
0 0

)
,

which clearly has one vanishing eigenvalue and zero determinant. The equations are easily solved by

x1 = C1, x2 = C2,

with C1, C2 arbitrary constants. The phase diagram for this case is the whole x1 − x2 plane. Every
point on the plane is a fixed point and there is no “flow” between fixed points. So, there are no
trajectories, just fixed points. Given an initial condition, the system will for ever remain at that
initial condition, since every initial condition is also a fixed point.

6.2 Non-Linear Example - One eigenvalue non-zero

The first example considers a problem that has both simple and non-simple fixed points. The simple
fixed point is at the origin and can therefore be classified using the linearisation theorem. The phase
diagram for the linear model about a non-simple fixed point is drawn and compared with the exact
solution. (the problem is sufficiently simple to obtain an exact expression for all the trajectories.)

Example 6.1

Given:
ẋ1 = x1(1− 2x1 − x2) ẋ2 = x2(1− 2x1 − x2) (6.1)

The fixed points are obtained by equating each of the equations to zero:

x1(1− 2x1 − x2) = 0, x2(1− 2x1 − x2) = 0 ⇒ x1 = x2 = 0 or x2 = 1− 2x1

Thus there is an isolated fixed point at the origin and non-isolated fixed points on the line x2 = 1−2x1.
To determine which of these are simple and which are not consider the Jacobian at each of the points.

The Jacobian is given by:

J(x1,x2) =
(

1− 4x1 − x2 −x1

−2x2 1− 2x1 − 2x2

)

At (0,0):

J(0,0) =
(

1 0
0 1

)
⇒ detJ(0,0) = 1 6= 0 ⇒ (0, 0) simple fixed point
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Since (0,0) is a simple fixed points, and clearly not a centre, we can apply the linearisation theorem.
Thus (0,0) is an unstable star node since the linearised matrix = λI, λ = 1 > 0.

At a fixed point (α, β) on the line x2 = 1− 2x1.

J(α,β) =
(

1− 4α− β −α
−2β 1− 2α− 2β

)
=

( −2α −α
−2β −β

)
⇒ det J(α,β) = 0 (6.2)

Note that since (α, β) is on the line x2 = 1−2x1 the relationship β = 1−2α has been used to simplify
J(α,β).

Thus any point on the line x2 = 1− 2x1 is a non-simple fixed point.

Consider now a solution of the problem for the exact equations for the phase paths and compare
them with the results obtained using a linearisation about (0,0) and about a non-simple fixed point
(α, β).

1. Exact Trajectories

This problem is sufficiently simple for us to be able to determine the exact equations for the
phase diagram. From Eq(6.1) the differential equation for the trajectories gives:

ẋ2

ẋ1
=

dx2

dx1
=

x2(1− 2x2 − x2)
x1(1− 2x2 − x2)

=
x2

x1
⇒

∫
dx2

x2
=

∫
dx1

x1
⇒ x2 = Ax1

These steps are valid for points off the axes and off the line x2 = 1 − 2x1. It can however be
shown that both the axes are also trajectories.

Thus the phase paths consist of all straight lines through the origin, including the axes.

The phase diagram is shown in Fig. 6.1. For points above the line x2 = 1 − 2x1 the expression
1− 2x1 − x2 is negative. Thus for points above this line and to the right of the x2-axis (x1 > 0)
and the first of the equations in Eq(6.1) gives ẋ1 = x1(1 − 2x1 − x2) < 0. Hence in this region
x1 is decreasing and the trajectories are accordingly shown to approach the line of fixed points
x2 = 1 − 2x1. A similar argument for points below the line of fixed points shows that the
trajectories also tend to the line.

Finally it is worth remembering that from the linearisation theorem the origin is an unstable
star node, so the idea of trajectories leaving the origin is consistent with the line of fixed points
attracting trajectories.

2. Linearisation about (0,0) and a point S(α, β) on the line of fixed points.

About (0,0) it has already been shown that the linearisation gives an unstable star node.

Consider a point S(α, β) on the line of fixed points, thus β = 1− 2α and the Jacobian is given

as above in Eq(6.2) by J(α,β) =
( −α −α
−2β −β

)

The eigenvalues of J(α,β) are given by:

det
( −2α− λ −α

−2β −β − λ

)
= λ2+(β+2α)λ = 0 since β = 1−2α ⇒ λ2+λ = 0 ⇒ λ = 0,−1
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1− 2x1 − x2 < 0

1− 2x1 − x2 > 0

S

1− 2x1 − x2 = 0

x1

x2

9

fixed points

Figure 6.1: The fixed points are along the line x2 = 1− 2x1 and at the origin. By considering Eq(6.1)
the direction of the trajectories can be added to the diagram. The point S is a point on the line of fixed
points with coordinates (α, β).

The eigenvectors are calculated as:

λ1 = −1,

( −2α + 1 −α
−2β −β + 1

)(
a
b

)
⇒ a(1−2α)−αb = 0 ⇒ a

b
=

α

β
⇒ E1 =

(
α
β

)

λ2 = 0,

( −2α −α
−2β −β

)(
a
b

)
⇒ 2a = −b ⇒ E2 =

(
1
−2

)

Remembering that these vectors are relative to the point S the eigenline < E2 > lies along the
line of fixed points since they both have the same gradient, namely −2, and pass through (α, β).

Since S has position vector (α, β) and E1 =
(

α
β

)
the eigenline < E1 > will run through the

origin and S.

The linear diagram about S is then completed in the same way as in Fig. ?? above. However
in this example λ1 = −1 < 0, thus the trajectories, all of which are parallel to E1, will tend
towards < E2 >.

Also the trajectories about the origin will look like an unstable star node.

As seen in Fig. 6.2 it is difficult to imagine how the star node about the origin, with straight line
trajectories at all angles, links up with the parallel trajectories about S.

From the exact diagram in Fig. 6.1 it can be seen that it is the linearisation about S that is at
fault and indeed gets worse as points further away from S are considered.

6.3 Non-Linear Example - Both eigenvalues zero

The following example is taken from the Jan 2006 exam and is a good example of non-simple fixed
points where the curve containing the fixed points is not a straight line.

Example 6.2
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S

fixed points of non-linear system
on the line 1− 2x1 − x2 = 0

x1

x2

along < E2 >

trajectories about S parallel to < E1 >

fixed points of linearisation about S

¼

unstable star node

Figure 6.2: The diagram shows the phase paths drawn according to the linearisation about the simple
fixed point at the origin and the linearisation about the non-simple fixed point S. In this example
the non-simple fixed points of the non-linear system coincide with the non-simple fixed points of the
linearised system about S. In general this will not be the case.

Consider the system:

ẋ1 = x2(1− x2
1 − x2

2) = 0 ẋ2 = x1(x2
1 + x2

2 − 1) = 0 (6.3)

The fixed points are obtained by solving:

x2(1− x2
1 − x2

2) = 0 (i) x1(x2
1 + x2

2 − 1) = 0 (ii)

If (1− x2
1 − x2

2) = 0 both equations are satisfied, thus all points on the unit circle are fixed points.

Also (i) ⇒ x2 = 0, thus (ii) ⇒ x1(x2
1 − 1) = 0 ⇒ x1 = 0, x1 = ±1.

Since (±1, 0) are on the unit circle we deduce that the only fixed points are on the unit circle or
at the origin.

Construct the Jacobian:

J =




−2x1x2 1− x2
1 − 3x2

2

3x2
1 + x2

2 − 1 2x1x2




At (0, 0):

detJ = det
(

0 1
−1 0

)
= 1 6= 0

Thus the origin is a simple fixed point.

J(0,0) =
(

0 1
−1 0

)
canonical form for centre
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Thus although the origin is simple it is not possible to apply the linearisation theorem since the linear
problem is a centre.

On the unit circle:
Let (α, β) be the coordinates of a point S on the unit circle: thus α2 + β2 = 1. The Jacobian is now
given by:

J(α,β) =
( −2αβ 1− α2 − 3β2

3α2 + β2 − 1 2αβ

)
=

( −2αβ −2β2

2α2 2αβ

)
⇒ detJ(α,β) = 0 (6.4)

Thus the unit circle consists of non-simple fixed points.

1. Exact trajectories Since it is not possible to apply the linearisation theorem to any of the fixed
points the linear description may well be a poor representation of the true phase diagram. Again
the problem is sufficiently simple to be able to obtain exactly the equations of the trajectories.

From Eq(6.3):

ẋ2

ẋ1
=

dx2

dx1
=

x1(x2
1 + x2

2 − 1)
x2(1− x2

1 − x2
2)

= −x1

x2
⇒

∫
x2 dx2 = −

∫
x1 dx1 ⇒ x2

2 + x2
1 = C

Thus all the trajectories are circles centre the origin with the origin and the unit circle being
fixed points. To determine the orientation of the trajectories consider the sign of ẋ1 in the region
above the x1 axis, that is to say where x2 > 0.

From Eq(6.3), ẋ1 = x2(1− x2
1 − x2

2). Outside the unit circle (1− x2
1 − x2

2) < 0 thus ẋ1 < 0 and
hence x1 is decreasing. This implies the trajectories have an anti-clockwise orientation. Similarly
inside the unit circle the trajectories have a clockwise orientation.

It is worth noting that in this example both the exact and linear solutions give a centre at the
origin. As we have seen in Chapter 5, Example 5.3 this is not always the case.

The exact phase diagram is given in Fig 6.3

x1

x2

)

fixed points C = 1

Figure 6.3: Fixed points at the origin and unit circle centre the origin.
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2. Linearisation about a point S(α, β) on the unit circle of fixed points.

Using J(α,β) from Eq(6.4) above the eigenvalues are given by:

det
( −2αβ − λ −2β2

2α2 2αβ − λ

)
= λ2 = 0

Thus the two eigenvalues are both zero. The single eigenvector E1 is given by:
( −2αβ −2β2

2α2 2αβ

)(
a
b

)
= 0 ⇒ a

b
=
−β

α
⇒ E1 =

( −β
α

)

The first thing to note is that since S has position vector (α, β) the line from the origin to S is
perpendicular to E1.

Denoting as usual the linearised coordinates by z, the linearisation about S is given by:

ż =
( −2αβ −2β2

2α2 2αβ

)(
z1

z2

)
⇒ ż1 = −2αβz1 − 2β2z2

ż2 = 2α2z1 + 2αβz2
⇒ ż1 = −2β(αz1 + βz2)

(6.5)

Since E1 =
( −β

α

)
is relative to the z coordinates through S it lies along the line αz1+βz2 = 0.

Thus for points above the line of fixed points defined by E1, αz1+βz2 > 0 and hence from Eq(6.5)
ż1 < 0.Hence z1 is decreasing and the trajectories above the line of fixed points points from right
to left. Similarly the trajectories below the line of fixed point run in the opposite direction. See
Fig. ??.


