
Solutions to Sheet 1: differential equations and phase diagrams

1. For the first equation we have:

dy

dx
= 1 + y2 ⇒

∫
dy

1 + y2
=

∫
dx ⇒ tan−1(y) = x + C,

with C the integration constant. If we want that y(0) = 1 we have that:

tan−1(1) = C ⇒ π

4
= C.

and the solution is
y(x) = tan

(
x +

π

4

)
.

Similarly for the other equations,

dy

dx
= x cos2 y ⇒

∫
dy

cos2 y
=

∫
xdx ⇒ tan y =

x2

2
+ C.

The initial condition y(0) = π
4

gives C = 1 so that

y(x) = tan−1

(
x2

2
+ 1

)
.

For the last equation let us now include the initial conditions as integration limits
instead,

dy

dx
= y2+2y−3 ⇒

∫ y

−1

dy

y2 + 2y − 3
=

∫ x

0

dx ⇒
∫

dy

(y − 1)(y + 3)
= x+C ⇒

1

4

∫ y

−1

(
1

y − 1
− 1

y + 3

)
dy = x ⇒ ln

(
y − 1

y + 3

)y

−1

= ln

(
(y − 1)2

(y + 3)(−2)

)
= ln

(
1− y

y + 3

)
= 4x.

y − 1

y + 3
= e4x ⇒ y =

1− 3e4x

1 + e4x
.

2. The method of integrating factors tells us that if we have an equation such as:

dy

dx
+ P (x)y = Q(x),

then it can be solved by defining the integrating factor R(x) = e
∫

P (x)dx. The solution
is then,

y(x) =
1

R(x)

(∫
R(x)Q(x)dx + C

)
.

The first equation was

dy

dx
= cos x− y tan x, with y(0) = 1.

Here

R(x) = e
∫

tan xdx = e− ln(cos x) =
1

cos x
.
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Therefore

y(x) = cos x

(∫
dx + C

)
= (x + C) cos x.

The initial condition fixes C = 1.

For the second equation we have,

dy

dx
= ex − 3y, with y(0) =

1

2
.

We compute,
R(x) = e

∫
3dx = e3x.

Therefore

y(x) = e−3x

∫
e3xexdx + Ce−3x =

ex

4
+ Ce−3x.

The initial condition fixes C = 1
4
.

Finally, for the last equation

dy

dx
= cos x− y cot x, with y(

π

2
) = 1.

The function R(x) is

R(x) = e
∫

cot xdx = eln sin x = sin x.

Thus,

y(x) =
1

sin x

∫
sin x cos xdx +

C

sin x
=

sin x

2
+

C

sin x
.

The initial condition fixes C = 1/2.

3. The phase diagram is

Figure 1: The phase space diagram for ẏ = y(1− y2).

We can clearly see that the equation has three fixed points corresponding to

dy

dt
= y(1− y2) = 0, ⇒ y = 0, 1,−1.

In order to find out whether y(t) is increasing or decreasing in each region of phase
space we have to look at the sign of the derivative. We have four regions:
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• The region y > 1, has ẏ < 0, that is y(t) decreases for increasing time.

• The region 0 < y < 1 has ẏ > 0, so y(t) increases as time increases.

• The region −1 < y < 0 has ẏ < 0, so y(t) decreases as time increases.

• Finally, if y < −1, ẏ > 0, so y(t) increases as time increases.

The phase diagram tells us a lot about how the solution of the differential equation
should behave. The phase diagram tells us that our solution should behave in four
different ways, depending on the initial condition:

• If the initial condition, y0 is y0 > 1 we know that y(t) decreases with time. So
our solution y(t) will start at the value y0 and then decrease until reaching the
value 1 where it will stay (asymptotic value).

• If the initial condition is 0 < y0 < 1, the phase diagram tells us that it will
evolve towards the value 1 as well.

• If the initial condition is −1 < y0 < 0, the phase diagram tells us that it will
evolve towards the value -1, decreasing with time.

• Finally, if y0 < −1, it will also evolve towards the value -1.

In summary all solutions with initial condition y0 > 0 evolve toward the fixed point
value 1 and all solutions with initial condition y0 < 0 evolve towards the fixed point
value -1.

Although the problem did not ask for this, it is interesting to try to solve the
equation explicitly. Let the initial condition be y0 = y(t0). The general solution is

∫ y

y0

dy

y(1− y2)
=

∫ t

t0

dt ⇒
∫ (

1

y
+

1

2(1− y)
− 1

2(1 + y)

)
dy = t− t0.

Therefore

ln y − 1

2
ln(1− y2)− ln y0 +

1

2
ln(1− y2

0) = t− t0 ⇒ y

y0

√
1− y2

0

1− y2
= et−t0 .

Squaring both sides and solving for y we obtain

y2(1− y2
0)

y2
0(1− y2)

= e2(t−t0) ⇒ y2
(
1− y2

0 + y2
0e

2(t−t0)
)

= y2
0e

2(t−t0) ⇒ y2 =
y2

0e
2(t−t0)

1− y2
0 + y2

0e
2(t−t0)

.

As we can see there are really two solutions, depending on whether we choose the
positive or the negative sign when taking the square root. Our choice will depend
on the initial conditions.

Let us consider each region in the phase diagram separately:

(a) Region y0 < −1: In this case y0 is negative and therefore the solution that we
need to pick is

y = −
√

y2
0e

2(t−t0)

1− y2
0 + y2

0e
2(t−t0)

.
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This function is defined everywhere, except if the denominator vanishes. This
can happen for some value of t = t∞ if y2

0 − 1 = y2
0e

2(t∞−t0), which gives

t∞ = t0 +
1

2
log

(
y2

0 − 1

y2
0

)
.

The number inside the argument of the log function is 1−1/y2
0, which is smaller

than 1. So the contribution from the log is negative, which means that t∞ < t0.
Therefore the interval of definition of the solution would be I ∈ (t∞,∞).
Concerning the behaviour of the function, we can see that y → −1 when
t →∞, which is what one would expect from the phase diagram.

(b) Region −1 < y0 < 0: In this case y0 is still negative and therefore the solution
that we need to pick is the same as above

y = −
√

y2
0e

2(t−t0)

1− y2
0 + y2

0e
2(t−t0)

.

This function is defined everywhere, except if the denominator vanishes. This
can not happen in this region, as the denominator remains always positive.
Therefore I ∈ (−∞,∞).

y → −1 when t →∞, which is what one would expect from the phase diagram.
Also, y → 0 when t → −∞, which is also consistent.

(c) Region 0 < y0 < 1: In this case y0 > 0 and therefore the solution that we need
to pick is

y =

√
y2

0e
2(t−t0)

1− y2
0 + y2

0e
2(t−t0)

.

This function is defined everywhere, except if the denominator vanishes. This
can not happen in this region, as the denominator remains always positive.
Therefore I ∈ (−∞,∞).

y → 1 when t →∞, which is what one would expect from the phase diagram.
Also, y → 0 when t → −∞, which is also consistent.

(d) Region y0 > 1: In this case y0 > 0 and therefore the solution that we need to
pick is

y =

√
y2

0e
2(t−t0)

1− y2
0 + y2

0e
2(t−t0)

.

This function is defined everywhere, except if the denominator vanishes. This
happens for the same t∞ computed for the first case and the log term is again
negative in this case, which means that I ∈ (t∞,∞). y → 1 when t → ∞ as
expected.

4. The velocity/vector diagrams for the three sets of equations are:
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If we try to draw the phase diagrams for the three cases on top of the vector diagram
we obtain the three plots below. Some features of these phase diagrams can indeed
be seen from the vector diagrams above if one pays close attention to the change in
slope of neighboring segments. However, it is hard to deduce all features just from
the vector diagram, as we have no way to know which segments lie on the same
phase space trajectory. Also, we still need to use the original equations to find out
what the direction of the arrows will be.
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Fortunately there is a general method that allows one to know precisely what the phase
space diagrams of equations of the type considered here will look like. For equations which
are linear both in x and y and have a fixed point at (0, 0) one can precisely classify all
types of phase diagrams that are possible, depending on the values of a, b, c and d. The
core part of this module will precisely deal with understanding this method.

According to this classification, it turns out that for the first picture above, the origin
is a fixed point of a type known as a saddle point. For the second case the origin is what is
called an stable focus. In this case all phase space trajectories spiral in towards the origin
when t → ∞. Finally, in the third diagram the origin is a fixed point of a type know as
an improper unstable node. In this case unstable means that all trajectories tend to flow
away from the origin as t increases (the opposite behaviour as for the focus before).
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