## Worksheet 3

## Introduction

On this sheet we will begin investigating some of the simplest forms of equations, those corresponding to straight lines. We will use DERIVE to determine the intersection of a straight line with a given curve (which may also be a straight line) in the plane.

## Problem 4

- Use DERIVE to Author the equation $y=2 x+4$. Hence plot the curve.

From the graph write down the coordinates where
(i) the line cuts the $y$-axis, $(0, \ldots \ldots \ldots)$ (the $y$-intercept).
(ii) the line cuts the $x$-axis, $(\ldots \ldots \ldots, 0)$ (the $x$-intercept).

- Repeat the above with the equation $y=-2 x+4$.
(i) the line cuts the $y$-axis, $(0, \ldots \ldots \ldots)$ (the $y$-intercept).
(ii) the line cuts the $x$-axis, $(\ldots \ldots \ldots, 0)$ (the $x$-intercept).
- Using the graph write down the slopes of the two lines:
(i) Slope of $y=2 x+4$ is $\qquad$
(ii) Slope of $y=-2 x+4$ is $\qquad$

This should remind you of some general theory about straight lines. The equation of a straight line is often given by $y=m x+c$ where $m$ is the gradient and $c$ is the $y$-intercept. The value of $c$ is determined by putting $x=0$ and solving for $y$.
The gradient of a straight line through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is, by definition,

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { provided that } x_{1} \neq x_{2}
$$

From this we obtain that the equation of a straight line through the two points is given by

$$
y-y_{1}=m\left(x-x_{1}\right) .
$$

The most general equation for a straight line is given by

$$
a x+b y=c .
$$

This allows lines of the form $a x=c$, i.e., lines with infinite gradient.

## Problem 5

- Write down the equations of the three straight lines through pairs of the following points $A$, $B$, and $C$ :

$$
A=(-3,-7), \quad B=(2,6), \quad C=(2,-4)
$$

- Plot these three lines with DERIVE and check the lines do pass through the three points. Then use your diagram to deduce the area of the enclosed triangle.


## Problem 6

Start with a fresh plot window (or clear an existing one by using $<\mathrm{Ctrl} \mathrm{D}>$ ).

- Plot the straight lines
(i) $2 y+3 x=2$
(ii) $2 y+3 x=4$
(iii) $2 y+3 x=6$
(iv) $2 y+3 x=8$.
- From your graph describe what happens to the straight lines as the right hand side of each equation increases.
- On your diagram plot the curve $x^{2}+y^{2}=1$.
- By experimentation (i.e., by plotting $2 y+3 x=c$ for different values of $c$ ) find the largest value of $c$ (to 1 decimal place) such that $2 y+3 x=c$ and $x^{2}+y^{2}=1$ have at least one point in common.

$$
c=\ldots \ldots \ldots \ldots
$$

The straight line that satisfies the above requirement is a tangent to the curve. To solve this problem algebraically rather than approximately using diagrams we need to find the value of $c$ such that the line and the curve intersect in a single point rather than two points (compare with your diagram above).

- From $2 y+3 x=c$ deduce that $y=\frac{c}{2}-\frac{3}{2} x$. Use this to substitute for $y$ in the equation $x^{2}+y^{2}=1$ and hence show that

$$
\begin{equation*}
13 x^{2}-6 x c+\left(c^{2}-4\right)=0 \tag{1}
\end{equation*}
$$

- Treating equation (1) as a quadratic in $x$ show that the condition for a single root is $c^{2}=13$. Hence find the values of $c$ and the coordinates of the point of contact of the straight line and the curve.

$$
c=\ldots \ldots \ldots \ldots . \quad \text { point }=(\ldots \ldots \ldots, \ldots \ldots \ldots) .
$$

Note that this gives two possible values of $c$ : plot both straight lines. The values of $c$ obtained are the maximum and minimum values of $c$ for which the straight line and the curve intersect only once.

## Problem 7

A company produces 2 products $X$ and $Y$. Denoting the production levels by $x$ and $y$ respectively, measured in thousands of units produced, a constraint on the production plant is given by $2 x^{2}+y^{2} \leq$ 1. If the profit on the production of 1000 of $X$ is $£ 3000$ and the profit on the production of 1000 of $Y$ is $£ 4000$ show that the total profit in units of $£ 1000$ is given by $P=4 y+3 x$. This problem asks you to find the production levels to produce maximum profit and the corresponding amount of profit generated.

- This problem is mathematically the similar to Problem 6.
- To get an idea of the solution use DERIVE to draw the curve $2 x^{2}+y^{2}=1$.

Note that production can only take place either on or inside this curve with $x$ and $y$ nonnegative.

- Plot the 2 straight lines $P=4 y+3 x$ with $P=4$ and $P=5$.
- Write down a rough estimate of the maximum profit and the production levels.

$$
\text { profit }=\ldots \ldots \ldots \ldots . \quad \text { levels: } x=\ldots \ldots \ldots \ldots . \quad \text { and } \quad y=\ldots \ldots \ldots \ldots .
$$

- Proceed as in the second part of Problem 6 to obtain accurate values for the maximum profit and production levels.

$$
\text { profit }=\ldots \ldots \ldots \ldots . \quad \text { levels: } x=\ldots \ldots \ldots \ldots . \quad \text { and } \quad y=
$$

## Problem 8

- Plot the following straight lines:
(i) $x=0$
(ii) $y=0$
(iii) $3 y+2 x=6$
(iv) $4 x+4 y=9$
(v) $y+2 x=4$.
- The boundary and interior of the pentagon bounded by these lines is specified by the inequalities
(i) $x \geq 0$
(ii) $y \geq 0$
(iii) $3 y+2 x \leq 6$
(iv) $4 x+4 y \leq 9$
(v) $y+2 x \leq 4$.

Use the trial method of the above 2 problems to find the maximum value of $P$ satisfying these inequalities where $P$ is given by $P=2 y+3 x$. Specify the values of $x$ and $y$ at this point.

$$
x=\ldots \ldots \ldots \ldots . \quad \text { and } \quad y=\ldots \ldots \ldots \ldots
$$

