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Worksheet 3

Introduction

On this sheet we will begin investigating some of the simplest forms of equations, those corre-
sponding to straight lines. We will use DERIVE to determine the intersection of a straight line with
a given curve (which may also be a straight line) in the plane.

Problem 4

• Use DERIVE to Author the equation y = 2x + 4. Hence plot the curve.

From the graph write down the coordinates where

(i) the line cuts the y-axis, (0, . . . . . . . . .) (the y-intercept).

(ii) the line cuts the x-axis, (. . . . . . . . . , 0) (the x-intercept).

• Repeat the above with the equation y = −2x + 4.

(i) the line cuts the y-axis, (0, . . . . . . . . .) (the y-intercept).

(ii) the line cuts the x-axis, (. . . . . . . . . , 0) (the x-intercept).

• Using the graph write down the slopes of the two lines:

(i) Slope of y = 2x + 4 is . . . . . . . . ..

(ii) Slope of y = −2x + 4 is . . . . . . . . ..

This should remind you of some general theory about straight lines. The equation of
a straight line is often given by y = mx + c where m is the gradient and c is the
y-intercept. The value of c is determined by putting x = 0 and solving for y.

The gradient of a straight line through two points (x1, y1) and (x2, y2) is, by definition,

m =
y2 − y1

x2 − x1
provided that x1 6= x2.

From this we obtain that the equation of a straight line through the two points is given
by

y − y1 = m(x− x1).

The most general equation for a straight line is given by

ax + by = c.

This allows lines of the form ax = c, i.e., lines with infinite gradient.

Problem 5

• Write down the equations of the three straight lines through pairs of the following points A,
B, and C:

A = (−3,−7), B = (2, 6), C = (2,−4).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Plot these three lines with DERIVE and check the lines do pass through the three points. Then
use your diagram to deduce the area of the enclosed triangle.
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Problem 6

Start with a fresh plot window (or clear an existing one by using <Ctrl D>).

• Plot the straight lines

(i) 2y + 3x = 2 (ii) 2y + 3x = 4 (iii) 2y + 3x = 6 (iv) 2y + 3x = 8.

• From your graph describe what happens to the straight lines as the right hand side of each
equation increases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• On your diagram plot the curve x2 + y2 = 1.

• By experimentation (i.e., by plotting 2y+3x = c for different values of c) find the largest value
of c (to 1 decimal place) such that 2y + 3x = c and x2 + y2 = 1 have at least one point in
common.

c = . . . . . . . . . . . .

The straight line that satisfies the above requirement is a tangent to the curve. To solve this
problem algebraically rather than approximately using diagrams we need to find the value of
c such that the line and the curve intersect in a single point rather than two points (compare
with your diagram above).

• From 2y + 3x = c deduce that y = c
2 − 3

2x. Use this to substitute for y in the equation
x2 + y2 = 1 and hence show that

13x2 − 6xc + (c2 − 4) = 0. (1)

• Treating equation (1) as a quadratic in x show that the condition for a single root is c2 = 13.
Hence find the values of c and the coordinates of the point of contact of the straight line and
the curve.

c = . . . . . . . . . . . . point = (. . . . . . . . . , . . . . . . . . .).

Note that this gives two possible values of c: plot both straight lines. The values of c obtained
are the maximum and minimum values of c for which the straight line and the curve intersect
only once.

Problem 7

A company produces 2 products X and Y . Denoting the production levels by x and y respectively,
measured in thousands of units produced, a constraint on the production plant is given by 2x2 +y2 ≤
1. If the profit on the production of 1000 of X is £3000 and the profit on the production of 1000
of Y is £4000 show that the total profit in units of £1000 is given by P = 4y + 3x. This problem
asks you to find the production levels to produce maximum profit and the corresponding amount of
profit generated.

• This problem is mathematically the similar to Problem 6.

• To get an idea of the solution use DERIVE to draw the curve 2x2 + y2 = 1.

Note that production can only take place either on or inside this curve with x and y non-
negative.

• Plot the 2 straight lines P = 4y + 3x with P = 4 and P = 5.

• Write down a rough estimate of the maximum profit and the production levels.

profit = . . . . . . . . . . . . levels: x = . . . . . . . . . . . . and y = . . . . . . . . . . . .
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• Proceed as in the second part of Problem 6 to obtain accurate values for the maximum profit
and production levels.

profit = . . . . . . . . . . . . levels: x = . . . . . . . . . . . . and y = . . . . . . . . . . . .

Problem 8

• Plot the following straight lines:

(i) x = 0 (ii) y = 0 (iii) 3y+2x = 6 (iv) 4x+4y = 9 (v) y+2x = 4.

• The boundary and interior of the pentagon bounded by these lines is specified by the inequalities

(i) x ≥ 0 (ii) y ≥ 0 (iii) 3y+2x ≤ 6 (iv) 4x+4y ≤ 9 (v) y+2x ≤ 4.

Use the trial method of the above 2 problems to find the maximum value of P satisfying these
inequalities where P is given by P = 2y + 3x. Specify the values of x and y at this point.

x = . . . . . . . . . . . . and y = . . . . . . . . . . . .


